PROJECT REPORT

PACKET SNIFFER

Department of Computer Science & Engineering

4°° 1»?0&\,_',.,

%

N, »EE UNIVCQ
-’,)

1 4
201amua3*

[+]
Juit
AYPEE UNIVERSITY OF

MAY 2014

Under the Supervision of
Mr. Punit Gupta
By

Shubham Rajvanshi(101349)

Submitted in partial fulfillment of the requirements
For the degree of

BACHELOR OF TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT

S. No.

Table of Content

Topic Page No.

CERTIFICATE
ACKNOWLEDGEMENT
ABSTRACT

S

INTRODUCTION

1.1AIM 6

1.2 EXISTING SYSTEM 7

1.3 DRAWBACKS OF EXISTING SYSTEM 7
LITERATURE SURVEY

TECHNICAL DETAILS

3.1 PROPOSED SYSTEM 10

3.2 SPECIFIC REQUIREMENTS 11

3.3 ARCHITECTURE OF THE PROPOSED SYSTEM 12
3.4 DATA FLOW DIAGRAM 13

3.5 USE CASE DIAGRAM 14

3.6 COMPONENT DIAGRAM 15
METHODOLOGY

4.1 MODULES 17

4.2 INSTALLATION & IMPLEMENTATION 17
4.3 SCREENSHOTS 19

4.4 CODE 23

RESULTS & CONCLUSION

5.1 FUTURE WORK 44

REFRENCES

06-07

08-09
10-15

16-43

44

45

CERTIFICATE

This is to certify that the work titled “PACKET SNIFFER” submitted by Shubham
Rajvanshi in partial fulfillment for the award of degree of B.Tech of Jaypee University of
Information Technology, Waknaghat has been carried out under my supervision. This
work has not been submitted partially or wholly to any other University or Institute for
the award of this or any other degree or diploma.

Signature of Supervisor :

Name of Supervisor : Mr. Punit Gupta

Designation : Assistant Professor

Date:

ACKNOWLEDGEMENT

I would like to express our sincere thanks and gratitude to our guide Mr. Punit Gupta
for his valuable guidance and suggestions. I am highly indebted to him for providing me
an excellent opportunity to learn and present my studies in the form of this project.

| take this opportunity to thank the members of the teaching and non-teaching staff of
JUIT for the timely help extended by them.

Lastly thanking our parents, for their morale support and encouragement.

Signature of the student :

Name of Student: Shubham Rajvanshi

Date:

ABSTRACT

This project presents the full implementation of the Psniffer application software that
captures network data as well as provides sufficient means for the decision making
process of an administrator. The aim of this application is to write code in Java, and also
develop an application that consumes little memory on the hard disk. This work
illustrates the requirement needed to design a new application; it was developed in Java
and it consumes little memory on the hard disk. This application comprises of five
independent modules that handles different task efficiently. This program can monitor
network traffic, analyzes traffic patterns, identify and troubleshoot network problems.
This application does not transmit any data onto the network, uses 1MB of the hard disk
space, friendly GUI and it is very easy to install.

Chapterl

INTRODUCTION

Packets in computer communications can be defined as a quantity of data of limited size.
In Internet all traffic travels in the form of packets, the entire file downloads, Web page
retrievals,email, all these Internet communications always occur in the form of packets.
In the internet,packet is a formatted unit of data carried by a packet mode in computer
network.This work develop a PSniffer network analyzer that can capture network traffic
and analyze it and allows user to take only the feature as needed with little memory usage
for installation and store it in a file to use it later in his work, then this will reduce the
memory that is used to store the data unlike available tools can only capture network
traffic without analysis, while some require large memory size for installation. In
addition, have a user friendly control interface.

Network sniffing is a network layer attack consisting of capturing packets from the
network transmitted by other computers and reading the data content in search of
sensitive information like passwords, session tokens and confidential information. This
could be done using tools called network sniffers; these tools collect packets on the
network and, depending on the quality of the tool, analyze the collected data like protocol
decoders or stream reassembling.

Sniffer is used as an assistant of network management because of its monitoring and
analyzing features which can help to troubleshoot network, detect intrusion, control
traffic or supervise network contents.

Psniffer when installed in a network will help monitor network traffic and keeps log of all
connections to the network, which is then analyzed for the detection of suspicious
activities.

1.1AIM

This project aims at developing a Network Packet Sniffer. Network Packet Sniffer is
a piece of software that monitors all network traffic. This is unlike standard network
hosts that only receive traffic sent specifically to them. As data streams flow across the
network, the sniffer captures each packet and eventually decodes and analyzes its content.
For network monitoring purposes it may also be desirable to monitor all data packets in a
LAN and to mirror all packets passing through a shared bus.

6

1.2 EXISTING SYSTEM

As a network administrator who needs to identify, diagnose, and solve network
problems, a company manager who wants to monitor user activities on the network and
ensure that the corporation’s communications assets are safe, or a consultant who has to
quickly solve network problems for clients. It is difficult to identify the problems if the
network traffic is not tracked, as an administrator in general we depend on the analyzer
provided by the operating system (if any) or the anti virus software that is installed to

provide real-time network security.

1.3 Drawbacks with the Existing System

e Administrators need to put lot of efforts to identify the traffic
e Time taking process.

e No possibility of automatic network control.

e Presence of administrator is compulsory.

Chapter2

Literature Survey

Packet Sniffing Tools are computer hardware/software that captures traffic traveling over
any sort of digital network. As data is sent across the network, the packet sniffer
intercepts the packets and decodes them accordingly. These tools can be used for a
variety of reasons including monitoring network performance or stealing
passwords/personal information sent. There are many packet sniffing programs available;
many of which are free of charge. Here is a review of multiple packet sniffers that we
were able to uncover and a description of what they do.

1. Wireshark/Ethereal — Most popular packet sniffing tool because of its many
features and supportability. It’s a Windows/Unix open source network analyzer that
supports many protocols. It allows users to examine every packet individually or the
network as a whole.

2. Kismet— Powerful wireless sniffer that identifies networks using passive sniffing. It
detects network sniffing multiple types of packets such as Ip, Tcp, Udp, Arp, and
Dhcp packets. Its primary use is for something called wardriving — that is finding
wireless networks/hotspots in a location or while traveling.

3. Tcpdump- Classic sniffer tool that uses command prompt (platform for many other
tools such as wireshark). Used primarily for network monitoring and data acquisition.
The advantages of a smaller tool are less security worries and it doesn’t require a lot
of resources.

4. Cain and Abel — Primary password detection/recovery for Windows systems. This
software sniffs networks to recovery passwords; it cracks encryptions, decodes
scramblers, uncovers cached, and records VolP. It uses multiple algorithms to
accomplish these tasks.

5. Ettercap — Terminal based sniffer for Ethernet LANSs. It is capable of dissecting
almost any security protocol (https, ssh) while keeping the connection synchronized.
Also determines the geometry (type) of LAN.

6. Dsniff — Suite of powerful examining and penetration tools used for monitoring
networks. Many tools are included to sniff whatever data you are looking for through
multiple protocols. Capable of recovery very confidential information and
passwords.

7. NetStumbler — Popular windows tool for finding open wireless access points. Can be
used in many handheld devices such as phones and pdas. Similar to Kismet except
NetStumbler takes a much more active approach to finding wireless networks.

8. Ntop — Primarily used to analyze network traffic and usage. It displays network
status in its terminal and can act like a web server and store many different traffic
statistics.

9. Ngrep — Basic traffic monitoring tool that mirrors much of gnu’s grep. Allows users
to specify expressions to match within packets and recognizes most networking
protocols.

10. EtherApe — Graphical network monitor for Unix systems. Displays network activity
in the form of graphs using colors to distinguish between protocols. Capable of
reading traffic information from a file or live from a network.

Chapter3

Technical Details

The project will be implemented in ECLIPSE using JAVA language. Following are some
of the functionalities we will implement.

Basic Functionality:

1 Network Monitor [Basic packet capture]

2 Packet Filtering

3 Network Utilities [Ping, TCP Statistics, UDP Statistics]
4 Packet Analysis

3.1 PROPOSED SYSTEM

As a network analyzer (as a. packet sniffer), this system make it easy for us to monitor
and analyze network traffic in its intuitive and information-rich tab views. With this
system network traffic monitor feature, we can quickly identify network bottleneck and
detect network abnormities. This article is to discuss how we can monitor network traffic
with this network traffic monitor feature.

10

Advantages with the proposed system

Network Admin can monitor the packets any where through out the world.
Traffic can be controlled

System performance will be increased

Immediate generation of reports on demand.

Graphical data is available to analyze the network.

3.2Specific Requirements

Hardware Interfaces :

Mouse is required for use of application

Keyboard is required for use of application

Monitor is required for use of application

Network interface card is required for packet capture
1.5 MB of hard disk space.

1 GB RAM (Random Access Memory).

Software Interfaces:This software requires following software interfaces:

WinPcap V4.0.1
ECLIPSE
JPcap V1.5

11

3.3Architecture of the Proposed System

The design of the proposed system discusses the various requirements that will make up
the application.Installation on Windows requires WinPcap software which can be
downloaded from winPcap website. Jpcap is a set of Java classes which provide an
interface and system for network packet capture, it is required for packet capture in Java
and built upon Libpcap which is a packet capture library in C language. Java Runtime
Environment (JRE) 5.0 or higher will also be required to run this Java application.More
space may be required to store the captured packets since the required space on hard disk
for installation is less than 1MB.

By conducting the requirements analysis we listed out the requirements that are useful to
restate the problem definition.

Analyze network Layer.
Analyze Transport Layer.
Analyze Application Layer.
Analyze UDP Protocol
Analyze TCP Protocol
Analyze HTTP Protocol
Analyze Free Memory Size

Find out the Packets over network.

12

3.4Dataflow Diagrams (DEDs)

DFDs are the model of the proposed system. They clearly should show the requirements
on which the new system should be built. Later during design activity this is taken as the
basis for drawing the system’s structure charts.The Basic Notation used to create a DFD’s
are as follows:

IF & MAC Maetwork trat'ic
addmess Information

Fig. 3.4.1 Level 0 DFD

FPackel
Inform ation
T T - Layers
f// ™ | Information
User o { Packet
o o y Sniffer Graphical
/ » Representation
— of Info..
| Free Memory
| Information
IF & MAC

address ir LAN

Fig. 3.4.2 Level-1 DFD

13

3.5USE CASE DIAGRAM

In software engineering, a use case diagram is a type of behavioral diagram defined by
and created from a Use-case analysis. Its purpose is to present a graphical overview of the
functionality provided by a system in terms of actors, their goals (represented as use
cases), and any dependencies between those use cases.The main purpose of a use case
diagram is to show what system functions are performed for which actor. Roles of the
actors in the system can be depicted in figure below:

System

Packet Capturing

-
\

Metworkddministrator

Offline Analysis

Fig. 3.5.1 Use Case Diagram

3.6 Component Diagram

A component diagram depicts how components are wired together to form larger
software systems. Components are wired together by using an assembly connector to
connect the required interface of one component with the provided interface of another
component.An assembly connector is a ""connector between two components that defines
that one component provides the services that another component requires. An assembly
connector is a connector that is defined from a required interface or port to a provided
interface or port.

JPCAP

=niting

T

% winpcap
— .ﬁppliuliulll Lay =1
—

g uoP

e twaerle | g ar

Transspcart |y sr

Fig. 3.5.1 Component Diagram of the Psniffer

15

Chapter 4

Methodology

Installation on Windows requires WinPcap software which can be downloaded from
winPcap website. Jpcap is a set of Java classes which provide an interface and system for
network packet capture, it is required for packet capture in Java and built upon Libpcap
which is a packet capture library in C language. Java Runtime Environment (JRE) 5.0 or
higher will also be required to run this Java application.More space may be required to
store the captured packets since the required space on hard disk for installation is less
than 1MB.

Psniffer is a customized software application that has a number of features. These
features enable:

» Administrators to show statistics of received packets.

 Administrators detect malicious IP addresses according to its number of ARP requests
in previously specified time.

» Administrators to view all network interfaces and enable them to capture data from that
interface and consequently save captured packets.

» Administrators generate reports that aid effective and efficient decision making.

The Psniffer is developed in JavaTM. This application is designed into five (5)
independent modules which take care of different tasks efficiently.

1. User Interface Module.
2. Packet Sniffing Module.
3. Analyze layers Module.
4. Free Memory Module.

5. Protocol Analysis Module.

16

4.1 MODULES

User Interface Module:

Actually every application has one user interface for accessing the entire application. The
user interface for the Psniffer application is designed completely based on the end users.
It provides an easy to use interface to the users. This user interface has an attractive look
and provides ease of navigation. Technically, the swing is used in core java for preparing
this user interface.

Packet Sniffing Module:

This module takes care of capturing packets that are seen by a machine’s network
interface. It grabs all the packets that goes in and out of the Network Interface Card
(NIC) of the machine on which the sniffer is installed. This means that, if the NIC is set
to the promiscuous mode, then it will receive all the packets sent to the network.

Analyze Layers Module:

This module contains the code for analyzing the layers in the system. Mostly in this
module we have to discuss about three layers Transport layer, Application Layer,
Network Layer. The module shows the graphical representation of the usage of different
layers in packet capturing time. It can show the graph like line graph.

Free Memory Module: This module analyzes computer memory usage at the time of
packet capturing. It can show the memory size in number format as well as graphical
representation.

Protocol Analysis Module: This module analyzes the protocols of the layers. Like
Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Hypertext
Transfer Protocol (HTTP) etc. It can show the source port, destination port and packet
length of the system of each protocol.

4.2 INSTALLATION & IMPLEMENTATION OF CODE

Installation on Windows requires WinPcap software which can be downloaded from
winPcap website. Jpcap is a set of Java classes which provide an interface and system for
network packet capture, it is required for packet capture in Java and built upon Libpcap
which is a packet capture library in C language. Java Runtime Environment (JRE) 5.0 or
higher will also be required to run this Java application.More space may be required to
store the captured packets since the required space on hard disk for installation is less
than 1MB.

17

Implementation

e MAC 1= MAC
Host B 1P Host © MAC Host A IR Host C mMAaCce

IPB=-172.16.6.158
MAC B:-00-1B-FC-E7-D4-94

IP A-172.16.6.160
MAC A=-O0-1B-FC~-E7-94-14

Sniffer (1P Packet
Routing I nablcd)

@ Victirnm Hosis
1P C:-172.16.6.188

MAC C-00-1B-FC-E7-90-11

Host A 1P Host A MAC
Host B 1P Host B MAC

3 MAC l

Fig.4.2.1 ARP Cache poisioning that would be used for the implementation.

Sniffers are programs that allow a host to capture any network packet illicitly. Specially,
if the sniffers are active because active sniffer can alter or block network traffic while
passive sniffer can only monitor network traffic. In this work the Passive Sniffer would
be used.There are two ways to sniff network traffic:

A host running a sniffer sets its NIC in promiscuous mode. If any host’s NIC is running
in promiscuous mode, it will receive all packets either those packets targeted to it or
not.This way of sniffing is effective in an environment which is broadcast in nature like
hub,access point and bus Local Area Network (LAN) environments.

ARP cache poisoning is also used for sniffing. This way of sniffing is effective in an
environment, which is not broadcast in nature. Address Resolution Protocol (ARP) cache
poisoning depends on local ARP cache maintained by each host of network. This cache
contains IP with corresponding Media Access Control (MAC) addresses of recently
accessed hosts.

ARP cache poisoning process that would be used for implementation. In this diagram, 'C’
host performs ARP cache poisoning attack. 'C' host sends an ARP poison packet to target
host 'A" which contains host 'C' MAC address in source MAC address field and host 'B’
IP address in source IP address field of ARP poison packet. When target host 'A'’ receives
this packet, it poisons local ARP cache value either by adding false entry or updating old

18

entry with new one. Same process is repeated with host 'B'. This process corrupts the
local ARP caches of host ‘A" and 'B' which are shown in Figure 5. After the completion of
poisoning process, both hosts cannot communicate directly with each other. Each host
sends a packet to sniffer host and sniffer host reroutes packet back to actual destination.
Sniffer host must have IP packet routing enabled so that it could send packet back to
actual destination after getting confidential information.

4.3 SCREENSHOTS

|£| Packet Capture E@
FILE Options Sniff Help
v | oy | e |

Source Mac Destination Mac | Frame Type Source [P | Destinatian IP Protocal

JNCAEE IS E Y S

Fig.4.3.1 User Interface of PacketSniffer

19

[

Microsoft

Microsu st [embe] [comsat]

JMicron

Fig.4.3.2 Selecting Ethernet Port

Packet Capture (==] =

FILE Options Sniff Help

3 Ethernet
3 IP Details

[source IPA1 72 16,7313
[Destiantion IP:17216.16.246
[source Porta12e
[Destination PortE1 683

Fig.4.3.3 PacketSniffer is Sniffing TCP Packets from the Ethernet Port using tcp
filter

20

3 Frame

Sevenn Lo][cmen |

3 IP Details

[Destiantion IP:172.16.17.255
D Source Port1 37
[Destination Port137

E [y source IP 721616189

Fig.4.3.4 PacketSniffer is Sniffing UDP Packets from the Ethernet Port using udp
filter

%] Packet Capture o || = =

FILE Options Sniff Help

Filter String: ficmp |

g Frame
7 Ethemnet

Emnﬂ Details
S icie]

[y 1CMP Type:a

[gubnet masko

D Redirect Address:null
D Advertised Address:null
Oo

[y 1cmMP Typea

Fig.4.3.5 PacketSniffer is Sniffing ICMP Packets from the Ethernet Port using icmp
filter

21

|&| Packet Capture o = =

FILE Options Sniff Help

1 Packet
[Frame

=

- [Hardware Type Ether

[Sender Hardware Address: T8:84:3ced:30:23

— D Target Hardware Address:00:00:00:00:00:00

— D Sender Profocol Address M 7216.16.120

— D Target Protocol Address:M F2A6.16.169

— D Operation:Arp Reguest

-~ [Protocal Type: 1P

[Hardware Address Lenath's

— [Protocal Length:s

Fig.4.3.6 PacketSniffer is Sniffing ARP Packets from the Ethernet Port using arp
filter

22

4.4 CODE

[* 1. */import java.awt.BorderLayout;

[* 2: */import java.awt.Color;

[* 3. */import java.awt.event.ActionEvent;

[* 4. *[import java.awt.event.ActionListener;
/* 5. */import java.awt.event.MouseEvent;

[* 6: */import java.awt.event.MouseL.istener;
[* 7. */import java.awt.event. WindowAdapter;
[* 8: */import java.awt.event.WindowEvent;

/* 9: */import java.io.lOException;

/* 10: */import java.io.PrintStream;

/* 11: */import java.util.ArrayList;

[* 12: */import javax.swing.JDialog;

/* 13: */import javax.swing.JFileChooser;
[* 14: */import javax.swing.JFrame;

/* 15: */import javax.swing.JLabel;

[* 16: */ import javax.swing.JMenu;

[* 17: */ import javax.swing.JMenuBar;
/* 18: */import javax.swing.JMenultem;
/* 19: */import javax.swing.JOptionPane;
[* 20: */ import javax.swing.JPanel;

[* 21: */import javax.swing.JScrollPane;
[* 22: *[import javax.swing.JTable;

[* 23. */import javax.swing.SwingUtilities;

23

[* 24: *[import javax.swing.table.DefaultTableModel;
[* 25: */import javax.swing.table.JTableHeader;
[* 26: */import javax.swing.table. TableColumn;
[* 27: */import javax.swing.table. TableColumnModel;

/* 28: */import javax.swing.table.TableModel;

[* 29: */import jpcap.JpcapCaptor;

import jpcap.packet.Packet;

[* 31: */

[* 32: */ public class gui

[* 33: */ extends JPanel

[* 34: */ implements ActionListener, MouseListener
[* 35: */{

[* 36: */ JMenuBar mb;

[* 37: *| gui.update n;

[* 38: */ JScrollPane jsp;

[* 39: 14 */ ArrayList<Packet> arrp = new ArrayList();
[* 40: */ JMenultem mil,;

[* 41: */ JMenultem mi2;

[* 42: */ JMenultem mi3;

[* 43: */ JMenultem mi4;

[* 44: */ JMenultem mib5;

[* 45: *[JMenultem mi6;

/* 46: */ JMenultem mi7;

24

"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"

47:
48:
49:
50:
51:

52

53:
o4:
55!
56:

*/ JMenu m1,

*/ JMenu m2;

*/ JMenu m3;

*/ JMenu m4;

*/ sniffer snif;

: 18 */ final RowHighlightRenderer renderer = new RowHighlightRenderer();
*[JpcapCaptor cap;

*[fstring fil;

*[JFrame f;

*/ DefaultTableModel tm;

57: 23 */ String[] columns = { "Source Mac", "Destination Mac", "Frame Type",
"Source IP", "Destination IP", "Protocol™ };

58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:

*/ JTable tb;
*/
*/gui()
x| {
27 */ this.f = new JFrame("Packet Capture™);
28 */ setupLayout();
29 */ setSize(1200, 800);
30 */ this.f.setSize(1200, 800);
31*/ this.f.setDefaultCloseOperation(0);
32 */ this.f.addWindowListener(
*/
34*/ new WindowAdapter()

*/ {

25

[* 71 * public void windowClosing(WindowEvent w)
I* 72: */ {
[* 73:38 */ if (gui.this.arrp.isEmpty())

I* 74: % {

[* 75: 40 */ int check = JOptionPane.showConfirmDialog(gui.this.f, "Do You
want to save current Data");

[* 76:41*/ if (check == 0)

[* 77 * {

[* 78:43*/ JFileChooser chooser = new JFileChooser();

[* 79: 44>/ int value = chooser.showSaveDialog(gui.this.f);

/* 80: 45 */ if (value == 0)

[* 81: */ {

[* 82: 47 */ writer wr = new writer(gui.this.cap, chooser.getSelectedFile());
[* 83: 48 */ wr.save(gui.this.arrp);

[* 84:49 */ System.out.printin("Saved");

[* 85: */ }

[* 86: */ }

[* 87:52*/ else if (check == 2)

[* 88: */ {

[* 89: 54 */ return;

[*90: */ }

[* 91 }

[* 92: 57 */ if ((ui.this.n instanceof gui.update)) {
[* 93: 59 */ if (qui.this.n.isAlive())
[* 94: */ {

26

[* 95: 61 */

[* 96: 62 */

/> 97:
/* 98:

*/
*/

[* 99: 65 */

/* 100:
/*101:
/*102:
/*103:
[* 104:
/* 105:
I* 106:
/*107:
/*108:
/* 109:
/* 110:
/*111:
[*112:
[* 113:
[* 114:
[* 115:
/* 116:
[* 117:
* 118:

/*119:

*/
68 */
69 */

70 */

*/}

*/

gui.this.n.stop();

gui.this.snif.stop();

¥
¥
System.exit(0);
k

b
this.f.setVisible(true);

this.snif = new sniffer();

*/ private void setupLayout()

*

74 */
75 */
*/
*/
*/
79 */
*/
87 */
88 */
89 */
90 */

91 */

this.tm = new DefaultTableModel(null, this.columns);
this.tb = new JTable(this.tm)

{

public boolean isCellEditable(int rowlIndex, int colindex)

{

return false;
}
h
TableColumn tcol = this.tb.getColumnModel().getColumn(0);
tcol.setCellRenderer(new RowHighlightRenderer());
tcol = this.tb.getColumnModel().getColumn(l);

tcol.setCellRenderer(new RowHighlightRenderer());

27

[*120: 92 */
[*121: 93 */
[*122: 94 *|
[*123: 95 */
[*124: 96 */
[*125: 97 */
[*126: 98 */
[*127: 99 */
[*128:100 */
[*129:101 */
/*130:102 */
/*131:103 */
[*132:104 */
/*133:105 */
[*134:106 */
[*135:107 */
/*136:108 */
[*137:109 */
/*138:110 */
[*139:111 */
[*140:112 */
[*141:113 */
[*142:114 */
[*143:115 */

[*144:116 */

tcol = this.th.getColumnModel().getColumn(2);
tcol.setCellRenderer(new RowHighlightRenderer());
tcol = this.th.getColumnModel().getColumn(3);
tcol.setCellRenderer(new RowHighlightRenderer());
tcol = this.th.getColumnModel().getColumn(4);
tcol.setCellRenderer(new RowHighlightRenderer());
tcol = this.th.getColumnModel().getColumn(5);
tcol.setCellRenderer(new RowHighlightRenderer());
JTableHeader header = this.tb.getTableHeader();
header.setBackground(Color.LIGHT_GRAY);
this.fil = new fstring(this);

this.mb = new JMenuBar();

this.jsp = new JScrollPane(this.tb);

this.m1 = new JMenu("FILE");

this.m2 = new JMenu("Options");

this.m3 = new JMenu("Help");

this.m4 = new JMenu("'Sniff");

this.mil = new JMenultem("Open™);

this.mi2 = new JMenultem("Save");

this.mi3 = new JMenultem("EXxit");

this.mi4 = new JMenultem(*"Options™);

this.mi5 = new JMenultem(**Choose Device");
this.mi6 = new JMenultem(*Start Sniffing");
this.mi7 = new JMenultem("Stop Sniffing");

this.mi6.setEnabled(false);

28

[*145:117 */ this.mi7.setEnabled(false);
[*146:118 */ this.m1.add(this.mil);
[*147:119 */ this.m1l.add(this.mi2);
[*148:120 */ this.m1.add(this.mi3);
[*149:121 */ this.m2.add(this.mi4);
/*150:122 */ this.m2.add(this.mi5);
[*151:123 */ this.m4.add(this.mi6);
[*152:124 */ this.m4.add(this.mi7);
[*153:125 */ this.mb.add(this.m1);

[*154:126 */ this.mb.add(this.m2);

[*155:127 */ this.mb.add(this.m4);

[*156:128 */ this.mb.add(this.m3);

[*157:129 */ this.f.setIMenuBar(this.mb);
/*158:130 */ setLayout(new BorderLayout());
/*159:131 */ add(this.jsp, "Center");
/*160:132 */ this.tb.addMouseListener(this);
/*161:133 */ this.mil.addActionListener(this);
[*162:134 */ this.mi2.addActionListener(this);
/*163:135 */ this.mi3.addActionListener(this);
/*164:136 */ this.mi4.addActionListener(this);
[*165:137 */ this.mi5.addActionListener(this);
/*166:138 */ this.mi6.addActionListener(this);
[*167:139 */ this.mi7.addActionListener(this);
/*168:140 */ this.f.setLayout(new BorderLayout());

/*169:141 */ this.f.add(this.fil, "North");

29

[*170:142 */ this.f.add(this, "Center");

[*171: */ }

[*172: =/

[*173: */ public void mouseClicked(MouseEvent m)
[*174: * {

[*175:146 */ if (m.getSource() == this.tb)

*176: * {

[*177:148 */ tree t = new tree((Packet)this.arrp.get(this.th.getSelectedRow()));
[*178:149 % t.draw();

[*179: */ }

[*180: */ }

[*181: */

[*182: */ public void mousePressed(MouseEvent m) {}
[*183: */

/*184: */ public void mouseReleased(MouseEvent m) {}
[*185: */

[*186: */ public void mouseEntered(MouseEvent m) {}
[*187: */

/*188: */ public void mouseExited(MouseEvent m) {}
[*189: */

/*190: */ public void actionPerformed(ActionEvent e)
[*191: * {

[*192:162 */ if (e.getSource() == this.mi5)

[*193: */ {

[*194:164 */ this.snif.getDeviceList();

30

[*195:165 */
/*196:166 */
[*197:167 */
/*198:168 */
/*199:169 */
[*200:170 */
[*201: */

[*202:172 */
[*203: */

[*204:174 *|
[* 205:175 */
[*206:176 */
[*207:177 */
[*208:178 */
[*209:179 */
[*210: */

[*211:181 */
[*212: */

[*213:183 */
[*214:184 */
[*215:185 */
[*216:186 */
[*217:187 */
[*218:188 */

[*219:189 */

String[] dnames = this.snif.getDeviceNames();
selector s = new selector();

s.setup(dnames, this);

s.setSize(300, 300);
s.setDefaultCloseOperation(1);

s.setVisible(true);

else if (e.getSource() == this.mi7)

this.n.stop();
this.mi7.setEnabled(false);
this.mi6.setEnabled(true);
this.mi5.setLabel("Choose Device");
this.mi5.setEnabled(true);

repaint();

else if (e.getSource() == this.mi6)

this.mi6.setEnabled(false);
this.mi7.setEnabled(true);
this.mi5.setLabel("Stop Sniffing First™);
this.mi5.setEnabled(false);
this.arrp.clear();

remove(this.tb);

remove(this.jsp);

31

[*220:190 */ this.tm = new DefaultTableModel(null, this.columns);
[*221:191*/ this.tb = new JTable(this.tm)
[%222: %] {

[*223. */ public boolean isCellEditable(int rowlIndex, int colindex)
[*224: */ {

[* 225:195 */ return false;

[*226: */ }

[%227:197 */ };

[*228:198 */ this.jsp = new JScrollPane(this.tb);
[*229:199 */ this.tb.addMouseL.istener(this);
/*230:200 */ add(this.jsp);

[*231:201 */ validate();

[*232:202 */ repaint();

[*233:203 */ this.n = new gui.update();
[*234:204 */ this.n.setPriority(6);

[*235:205 */ this.n.setName("PacketCapture");
[*236:206 */ this.n.start();

[*237:207 */ repaint();

[*238: */ }

[*239:209 */ else if (e.getSource() == this.mi3)
[*240: * {

[*241:211*/ if ("this.arrp.isEmpty())

[*242: * {

[* 243:213 */ int check = JOptionPane.showConfirmDialog(this, "Do You want to
save current Data");

32

[* 244:214 *|
[*245: *|
[* 246:216 */
[* 247:217 */
[* 248:218 */
[*249: */
[* 250:220 */
[*251:221 */
[* 252:222 *|
[*253: */
[*254: *|
[* 255:225 */
[*256: */
[* 257:227 */
[*258: */
[*259: */
[* 260:230 */
[*261:232 */
[*262: */
[* 263:234 */
[* 264:235 */
[*265: */
[*266: */
[*267:239 */

[*268: */

if (check ==0)

JFileChooser chooser = new JFileChooser();
int value = chooser.showSaveDialog(this);

if (value == 0)

writer w = new writer(this.cap, chooser.getSelectedFile());

w.save(this.arrp);

System.out.printIn("Saved");

else if (check == 2)

return;

if ((this.n instanceof gui.update)) {

if (this.n.isAlive())

this.n.stop();

this.snif.stop();

¥

}
System.exit(0);

33

[*269:241 */ else if (e.getSource() == this.mi2)

[*270: * {

[*271:243 */ if (this.arrp.isEmpty())

[*272: * {

[* 273:245 */ System.out.printin("No Packets Are to save");
[*274: * }

[*275: *[else

[*276. * {

[* 277:249 */ JFileChooser chooser = new JFileChooser();
[* 278:250 */ int value = chooser.showSaveDialog(this);
[*279:251 */ if (value == 0)

[*280: */ {

[*281:253 */ writer w = new writer(this.cap, chooser.getSelectedFile());
[* 282:254 */ w.save(this.arrp);

[* 283:255 */ System.out.printIin("Saved");

[*284: */ }

[*285: * }

[*286: */ }

[*287: *| else

[*288: * {

[*289: */ JFileChooser chooser;

[*290:259 */ if (e.getSource() == this.mil)

%2910 %/ {

[*292:261 */ if (this.arrp.isEmpty())

x293: * {

34

[* 294:263 */ int r = JOptionPane.showConfirmDialog(this, "Do you want to save
current data?");

I* 295:264 */ if (r == 0)
I%296: */ {

[*297:266 */ JFileChooser chooserl = new JFileChooser();

[*298:267 */ int value = chooserl.showSaveDialog(this);

[*299:268 */ if (value == 0)

[*300: */ {

/*301:270 */ writer w = new writer(this.cap, chooserl.getSelectedFile());
[*302:271 */ w.save(this.arrp);

[*303:272 */ System.out.printIin(""Saved");

[*304:273 */ this.arrp.clear();

[*305: */ }

I*306:275 */ return;

[*307: */ }

/* 308:277 */ if (r==2){

[*309:279 */ return;

[*310: */ }

[*311: =/ }

[*312:283 */ chooser = new JFileChooser();

[*313:284 */ int val = chooser.showOpenDialog(this);

[*314:285 */ if (val ==0)

[*315: */ {

[* 316:287 */ reader re = new reader(this.tm, chooser.getSelectedFile());

[*317:288 */ this.arrp = re.read();

35

/* 318:289 */ System.out.printIn("File has been read");
[*319: */ }

[*320: */ }

[*321:292 */ else if (e.getSource() == this.mi4)

1*322: * {

[* 323:294 */

[*324: * }

[*325: * }

[*326: */ }

[*327: */

/*328: */ public void trigger(int i)

1*329: * {

[*330: * try

[*331: * {

[*332:302 */ this.cap = this.snif.openDevice(i);
/*333:303 */ this.snif.setFilter(filter.filter);

[*334:304 */ System.out.printin("Device Opened" + i);
/*335:305*/ this.mi6.setEnabled(true);

[*336: */ }

[*337: */ catch (IOException X)

*338: * {

/*339:309 */ System.out.printin("Can't Open Device\n Error:™ + Xx);
/*340:310 */ JDialog err = new JDialog();

[*341:311*/ JLabel | = new JLabel("Can not Open Device\n" + Xx);

[*342:312 */ err.add(l);

36

[*343:313*/ err.setVisible(true);

[*344: * }

[*345: */ }

[*346: */

[*347: */ public void apply()

[*348: * {

[*349: *[try

[*350: * {

[*351:320 %/ this.snif.setFilter(filter.filter);
[*352: * }

/*353: */ catch (Exception Xx)

[*354: * {

[*355:324 */ System.out.printIn("Error" + x);
[*356: */ }

[*357: */ }

[*358: */

/*359: */ public void apply(String s)
/*360: */ throws Exception

[*361: * {

[*362:329 */ this.snif.setFilter(s);

[*363: */ }

[*364: */

[*365: */ public static void main(String[] s)
[*366: * {

[*367:334 */ if (s.length > 0)

37

*368: * {

/*369:336 */ if (s[0].equals("-c™)) {
[*370:338 */ if (s.length > 1) {
[*371:339 */ new com(s);
[*372: */ }else {

[*373:341 */ new com();
[*374: *| }

[*375: * }

[*376: * '}

[*377: * else{

[*378:346 */ SwingUtilities.invokeLater(new Runnable()
*379: * {

[*380: */ public void run()
[*381: */ {

/* 382:350 */ new gui();
[*383: */ }

[*384: * });

[*385: * }

[*386: */ }

[*387: */

[*388: */ private class update
[*389: */ extends Thread
[*390: */ {

[*391: */ Packetp;

[*392: */

38

[*393: */
[*394: *|
[*395: */
[*396: */
[*397:360 */
[*398: */
[*399:362 */
[* 400:363 */
[* 401:364 */
[* 402:365 */
* 403:366 */
I* 404:367 */
[* 405:368 */
* 406:369 */
[* 407:370 */
[* 408:371 */
[*409:372 */
[*410:373 */
[*411:374 *|
[* 412:375 */
[*413: */
[*414: *|
[*415: */
[*416: */

[*417:380 */

private update() {}

public void run()

inti=0;

TableColumn tcol = gui.this.th.getColumnModel().getColumn(0);

tcol.setCellRenderer(new RowHighlightRenderer());
tcol = gui.this.tb.getColumnModel().getColumn(1);
tcol.setCellRenderer(new RowHighlightRenderer());
tcol = gui.this.tb.getColumnModel().getColumn(2);
tcol.setCellRenderer(new RowHighlightRenderer());
tcol = gui.this.tb.getColumnModel().getColumn(3);
tcol.setCellRenderer(new RowHighlightRenderer());
tcol = gui.this.tb.getColumnModel().getColumn(4);
tcol.setCellRenderer(new RowHighlightRenderer());
tcol = gui.this.tb.getColumnModel().getColumn(5);
tcol.setCellRenderer(new RowHighlightRenderer());
JTableHeader header = gui.this.tb.getTableHeader();

header.setBackground(Color.LIGHT_GRAY);

for (5;)

try

this.p = gui.this.snif.getPacket();

39

[* 418:381 */ gui.this.arrp.add(this.p);

/*419:382 */ i++;

[*420:383 */ pac.arrange(gui.this.tm, this.p);

[*421: *| }

[*422: */ catch (IOException x)

[* 423 */ {

I* 424:387 */ System.out.printIn("Exception>>>" + x);
[*425: */ }

[*426: */ catch (Exception nx)

[* 427 */ {

[* 428:391 */ System.out.printin("Exception>>>" + nx);
[* 429:392 */ nx.printStackTrace();

*430:393 */ gui.this.arrp.remove(i - 1);

[*431:394 */ i--;

[*432: =/ }

[* 433:396 */ System.out.printin("No of Packets Loaded:" + i);
[*434: * }

[*435: * '}

[*436: */ }

I* 437 %/}

SNIFFER:
/* 1. */import java.io.lOException;
[* 2: */import java.io.PrintStream;

/* 3. */ import jpcap.JpcapCaptor;

40

I* 4:
I* 5:
I* 6:
[* 7
I* 8:

/* 9:

/* 10:
[*11:
[*12:
* 13:

[* 14:

*/ import jpcap.NetworklInterface;
*/ import jpcap.packet.Packet;

*/

*/ class sniffer

*/ {

*/ private JpcapCaptor capt;

*[private NetworklInterface[] devs;
*/ private Thread t;

*/

*/ public void getDeviceL.ist()
* {

/*15:16 */ this.devs = JpcapCaptor.getDeviceL.ist();

[* 16:
[* 17:
[* 18:

[*19:

*/ }
*/
*/ public NetworklInterface[] getDeviceList(boolean b)

*/ {

[*20:20 */ this.devs = JpcapCaptor.getDeviceList();

[*21:21 */ return this.devs;

[*22:
/* 23:
[* 24:

/* 25:

*/ }
*/

*/ public String[] getDeviceNames()
*/ {

[*26:25*/ String[] dname = new String[this.devs.length];

[*27:26 */ for (inti=0; i < this.devs.length; i++) {

[*28:27*/ dname[i] = this.devs][i].description;

41

[*29: * }

[*30:28 */ return dname;

[*31: * }

[*32: *

/*33: */ public JpcapCaptor openDevice(int i)

[*34: */ throws IOException

[*35: * {

[*36:33 %/ System.out.printin(*'You Choose device No.>" + i);
[*37:34* this.capt = JpcapCaptor.openDevice(this.devs][i], 65535, true, 1000);
/*38:35* return this.capt;

[*39: * }

[*40: */

[*41: */ public void setFilter(String filt)

[*42: */ throws IOException

[*43: * {

[* 44:39 *| this.capt.setFilter(filt, true);

[*45:40 */ System.out.printIn("Filter is set to>>" + filt);
I*46: * }

[*47: */

[* 48: */ public Packet getPacket()

[*49: * {

/*50:45 */ Packet pac = this.capt.getPacket();

[*51:46 */ return pac;

[*52: * }

[*53: */

42

[*54: *[public void stop()
[*55: * {
/*56:50 */ this.capt.close();
[*57: * }

[*58: */}

43

Chapter 5

Results& Conclusion

Compared to similar works this application shows the layer involved in sniffing and the
protocols. This Passive Sniffer would be installed on a collision domain that makes use of
the switch rather than the broadcast domain (HUB). The collision domain would be used
since the use of HUBS in network setting is gradually reducing due to its broadcasting
nature. Psniffer has a very rich and user friendly GUI developed in Java Swing
Technology. Thus it is totally easy to use. With Java, the most considerable advantage is
platform independence; therefore Psniffer is also platform independent. The installation
file for Psniffer is only 587 KB, so it is highly economical in terms of memory use and
because it is based on object-oriented design, any further changes can be easily adaptable.

5.1 Future Work

It is not possible to develop a system that meets all the requirements of the user. User
requirements keep changing as the system is being used. Some of the future
enhancements that can be done to this system are:

* As the technology emerges, it is possible to upgrade the system that can be adaptable to
desired environment.

» The present application is a standalone application, i.e. only in intranet. So we have
chance to extend this in internet.

* Based on the future security issues, security can be improved using emerging
technologies.

44

REFERENCES

Ryan Spangler “Packet Sniffing on Layer 2 Switched Local Area
Networks”University of Wisconsin — Whitewater Department of Computer and
Network Administration(December 2003).

Suhas A Desai “ Packet Sniffing: Sniffing Tools Detection Prevention Methods” University
of California Department of Network Administration.(April 2004).

Ryan Spangler University of Wisconsin —Packet Sniffer Detection with Anti Sniff ”.

A. Ornaghi, M. Valleri, “Man in the middle attacks Demos” Blackhat [Online Document],
2003.

45

