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Summary 

 

By using Shannon’s sampling formula, the problem of the detection of a deterministic signal in 

white Gaussian noise, by means of an energy-measuring device, reduces to the consideration of 

the sum of the squares of statistically independent Gaussian variates. When the signal is absent, 

the decision statistics has a central chi-square distribution with the number of degrees of freedom 

equal to twice the time-bandwidth product of the input. When the signal is present, the decision 

statistics has a non-central non-centrality parameter � equal to the ratio of signal energy to two-

sided noise spectral density. Since the non-central chi-square distribution has not been tabulated 

extensively enough for our purpose, an approximate form was used. This form replaces the non-

central chi-square whose degrees of freedom and threshold are determined by the non-centrality 

parameter and the previous degrees of freedom.    
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CHAPTER-1 

COGNITIVE RADIO: INTRODUCTION 

Cognitive radio is a new paradigm of designing wireless communication systems which aims to 

enhance the utilization of the radio frequency (RF) spectrum. The motivation or should we say the 

necessity is the scarcity of the available frequency spectrum, increasing demand, caused by the 

emerging wireless applications for mobile users. Most of the available radio spectrum has already 

been allocated to existing wireless systems, however, and only small parts of it can be licensed to 

new wireless applications. Nonetheless, a study by the Spectrum Policy Task Force (SPTF) of the 

Federal Communications Commission (FCC) has showed that some frequency bands are heavily 

used by licensed systems in particular locations and at particular times, but that there are also many 

frequency bands which are only partly occupied or largely unoccupied. For example we have a case 

that of spectrum band allocated to cellular networks in the USA which reach the highest utilization 

during working hours, but remain largely unoccupied from midnight until early morning. 

The major factor that leads to inefficient use of the radio spectrum is the spectrum licensing scheme 

itself. In traditional spectrum allocation based on the command-and-control model, where the radio 

spectrum allocated to licensed user is not used, it cannot be utilized by unlicensed users and 

applications. Due to this static and inflexible allocation, legacy wireless systems have to operate 

only on a dedicated spectrum band, and cannot adapt the transmission band according to the 

changing environment. For example, if one spectrum band is heavily used, the wireless system 

cannot change to operate on another more lightly used band. 

The right to access the spectrum is generally defined by frequency, space, transmit power, spectrum 

owner (i.e. licensee), type of use, and the duration of license. Normally, a license is assigned to one 

licensee, and the use of spectrum by this licensee must conform to the specification in the license 

(e.g. maximum transmit power, location of base station). In the current spectrum licensing scheme, 

the license cannot change the type of use or transfer the right to other licensee. This limits the use of 

the frequency spectrum and results in low utilization of the frequency spectrum. Essentially, due to 

the current static spectrum licensing scheme, spectrum holes or spectrum opportunities arise. 

Spectrum holes are defined as frequency bands which are allocated to, but in some locations and at 

sometimes not utilized by, licensed users, and, therefore, could be accessed by unlicensed users. 
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Fig1: Spectrum hole [2] 

The limitations in spectrum access due to the static spectrum licensing scheme can be summarized 

as follows: 

• Fixed type of spectrum usage: In the current spectrum licensing scheme, the type of 

spectrum use cannot be changed. For example, a TV band which is allocated to National 

Television System Committee (NTSC)-based analog TV cannot be used by digital TV 

broadcast or broadband wireless access technologies. However, this TV band could remain 

largely unused in many locations due to cable TV systems. 

•   Licensed for a large region: When a spectrum is licensed, it is usually allocated to a 

particular user or wireless service provider in a large region (e.g. an entire city or state). 

However, the wireless service provider may use the spectrum only in areas with a good 

number of subscribers, to gain the highest return on investment. Consequently, the allocated 

frequency spectrum remains unused in other areas, and other users or service providers are 

prohibited from accessing this spectrum. 

• Large chunk of licensed spectrum : A wireless service provider is generally licensed             

with a large chunk of radio spectrum (e.g. 50 MHz). For a service provider, it may not             

be possible to obtain license for a small spectrum band to use in a certain area for a             

short period of time to meet a temporary peak traffic load. For example, a cdma2000             

cellular service provider may require a spectrum with bandwidth of 1.25MHz or 3.75MHz 

to provide temporary wireless access service in a hotspot area. 
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• Prohibit spectrum access by unlicensed users: In the current spectrum licensing            

scheme, only a licensed user can access the corresponding radio spectrum and unlicensed            

users are prohibited from accessing the spectrum even though it is unoccupied by the 

licensed users. For example, in a cellular system, there could be areas in a cell            

without any users. In such a case, unlicensed users with short-range wireless              

communications would not be able to access the spectrum, even though their             

transmission would not interfere with cellular users. 

 

 

1.1FUNCTIONS OF COGNITIVE RADIO 

 

The main functions of cognitive radio to support intelligent and efficient dynamic spectrum 

access are as follows: 

 

• Spectrum sensing: The goal of spectrum sensing is to determine the status of the spectrum and the 

activity of the licensed users by periodically sensing the target frequency band. In particular, a 

cognitive radio transceiver detects an unused spectrum or spectrum hole (i.e. band, location, and 

time) and also determines the method of accessing it (i.e. transmit power and access duration) 

without interfering with the transmission of a licensed user. Spectrum sensing can be either 

centralized or distributed. In centralized spectrum sensing, a sensing controller (e.g. access point or 

base station) senses the target frequency band, and the information thus obtained is shared with 

other nodes in the system. Centralized spectrum sensing can reduce the complexity of user 

terminals, since all the sensing functions are performed at the sensing controller. However, 

centralized spectrum sensing suffers from location diversity. For example, the sensing controller 

may not be able to detect an unlicensed user at the edge of the cell. In distributed spectrum sharing, 

unlicensed users perform spectrum sensing independently, and the spectrum sensing results can be 

either used by individual cognitive radios (i.e. non-cooperative sensing) or shared with other users 

(i.e. cooperative sensing). Although cooperative sensing incurs a communication and processing 

overhead, the accuracy of spectrum sensing is higher than that of non-cooperative sensing. 

 

• Spectrum analysis: The information obtained from spectrum sensing is used to schedule and plan 

spectrum access by the unlicensed users. In this case, the communication requirements of 

unlicensed users are also used to optimize the transmission parameters. Major components of 

spectrum management are spectrum analysis and spectrum access optimization. In spectrum 

analysis, information from spectrum sensing is analyzed to gain knowledge about the spectrum 
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holes (e.g. interference estimation, duration of availability, and probability of collision with a 

licensed user due to sensing error). Then, a decision to access the spectrum (e.g. frequency, 

bandwidth, modulation mode, transmit power, location, and time duration) is made by optimizing 

the system performance given the desired objective (e.g. maximize the throughput of the unlicensed 

users) and constraints (e.g. maintain the interference caused to licensed users below the target 

threshold). 

 

• Spectrum access: After a decision is made on spectrum access based on spectrum analysis, the 

spectrum holes are accessed by the unlicensed users. Spectrum access is performed based on a 

cognitive medium access control (MAC) protocol, which intends to avoid collision with licensed 

users and also with other unlicensed users. The cognitive radio transmitter is also required to 

perform negotiation with the cognitive radio receiver to synchronize the transmission so that the 

transmitted data can be received successfully. A cognitive MAC protocol could be based on a fixed 

allocation MAC (e.g. FDMA, TDMA, CDMA) or a random access MAC (e.g. ALOHA, 

CSMA/CA) . 

 

• Spectrum mobility: Spectrum mobility is a function related to the change of operating frequency 

band of cognitive radio users. When a licensed user starts accessing a radio channel which is 

currently being used by an unlicensed user, the unlicensed user can change to a spectrum band 

which is idle. This change in operating frequency band is referred to as spectrum handoff. During 

spectrum handoff, the protocol parameters at the different layers in the protocol stacks have to be 

adjusted to match the new operating frequency band. Spectrum handoff must try to ensure that the 

data transmission by the unlicensed user can continue in the new spectrum band. 

 

1.2 COMPONENTS OF COGNITIVE RADIO 

 

The major functions of cognitive radio, which are required to adapt the transmission parameters 

according to the changing environment, can be represented through a “cognitive cycle”. The 

different components in a cognitive radio transceiver which implement these functionalities are 

shown in figure below. 
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Fig 2: Components in a cognitive node [2] 

 

• Transmitter/receiver: A software-defined radio-based wireless transceiver is the major component 

with the functions of data signal transmission and reception. In addition, a wireless receiver is also 

used to observe the activity on the frequency spectrum (i.e. spectrum sensing). The transceiver 

parameters in the cognitive radio node can be dynamically changed as dictated by higher layer 

protocols. 

 

• Spectrum analyzer: The spectrum analyzer uses measured signals to analyze the spectrum usage 

(e.g. to detect the signature of a signal from a licensed user and to find spectrum holes for 

unlicensed users to access). The spectrum analyzer must ensure that the transmission of a licensed 

user is not interfered with if an unlicensed user decides to access the spectrum. In this case, various 

signal-processing techniques can be used to obtain spectrum usage information. 

 

• Knowledge extraction/learning: Learning and knowledge extraction use the information on 

spectrum usage to understand the ambient RF environment (e.g. the behavior of licensed users). A 

knowledge base of the spectrum access environment is built and maintained, which is subsequently 

used to optimize and adapt the transmission parameters to achieve the desired objective under 

various constraints. Machine learning algorithms from the field of artificial intelligence can be 

applied for learning and knowledge extraction. 

 



• Decision making: After the knowledge of the spectrum usage is available, the decision on 

accessing the spectrum has to be made. The optimal decision depends on the ambient environment 

– that is, it depends on the cooperative or competitive behavior of the unlicensed users. Different 

techniques can be used to obtain an optimal solution. For example, optimization theory can be 

applied when the system can be modeled as a single entity with a single objective. In contrast, game 

theory models can be used when the system is composed of multiple entities each with its own 

objective. Stochastic optimization may be applied when the states of the system are random. 

 

1.3 SPECTRUM SENSING 

 

Fig 3:Different types of spectrum sensing in the physical layer [2] 

 

The objective of spectrum sensing is to detect the presence of transmissions from licensed users. 

There are three major types of spectrum sensing, namely, non-cooperative sensing, cooperative 

sensing, and interference-based sensing. These will be described below. 

 

1.3.1 Non-cooperative transmitter sensing 

Non-cooperative spectrum sensing is used by an unlicensed user to detect the transmitted signal 

from a licensed user by using local measurements and local observations. The model for signal 

detection at time t can be described as:  

x(t) =    n(t), H0 

                           h s(t) + n(t), H1 
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where x(t ) is the received signal of an unlicensed user, s(t ) is the transmitted signal of the licensed 

user, n(t ) is the additive white Gaussian noise (AWGN), and h is the channel gain. Here, H0 and 

H1 are defined as the hypotheses of not having and having a signal from a licensed user in the target 

frequency band, respectively. The performance of a spectrum sensing technique is generally 

measured in terms of the probability of correct detection (Pd), the probability of false alarm (Pf ), 

and the probability of miss (Pm). Mathematically, Pd = Probability {decision = H1|H1}, Pf = Prob 

{decision = H1|H0}, and Pm = Probability {decision = H0|H1}. 

 

The three different methods in non-cooperative sensing are as follows: 

 

1.3.2 Matched filter detection or coherent detection: Matched filter detection is generally used to 

detect a signal by comparing a known signal (i.e. a template) with the input signal. A matched filter 

will maximize the received SNR for the measured signal. Therefore, if the information of the signal 

from a licensed user is known (e.g. modulation and packet format), a matched filter is an optimal 

detector in stationary Gaussian noise. Since a template is used for signal detection, a matched filter 

requires only a small amount of time to operate. However, if this template is not available or is 

incorrect, the performance of spectrum sensing degrades significantly. Matched filter detection is 

suitable when the transmission of a licensed user has pilot, preambles, synchronization word or 

spreading codes, which can be used to construct the template for spectrum sensing. 

 

1.3.3 Cyclostationary feature detection: The transmitted signal from a licensed user generally has a 

periodic pattern. This periodic pattern is referred to as cyclostationarity, and can be used to detect 

the presence of a licensed user. A signal is cyclostationary (in the wide sense) if the autocorrelation 

is a periodic function. With this periodic pattern, the transmitted signal from a licensed user can be 

distinguished from noise, which is a wide-sense stationary signal without correlation. In general, 

cyclostationary detection can provide a more accurate sensing result and it is robust to variations in 

noise power. However, the detection is complex and requires long observation periods to obtain the 

sensing result. A pattern recognition scheme based on a neural network can be used to implement 

cyclostationary feature detection for spectrum sensing.  

 

1.3.4 Transmitter energy detection: Energy detection is the optimal method for spectrum sensing 

when the information from a licensed user is unavailable. In the case of energy detection, the output 

signal from a bandpass filter is squared and integrated over the observation interval. A decision 

algorithm compares the integrator output with a threshold  to decide whether a licensed user exists 
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or not. In general, the energy detection performance deteriorates (e.g. Pm increases) when the SNR 

decreases. 

An energy detection algorithm was proposed in for a non-fading environment and the expressions 

for probability of detection Pd and probability of false alarm Pf were obtained as follows:  

��=Q(√2�,√�)  and ��=Γ(
, �
)/Γ(m),  where γ is the SNR of the received signal, λ is the energy 

detection threshold, Γ (·) and _(· , ·) are the complete and incomplete gamma functions, espectively, 

and Q(·) is the generalized Marcum Q-function. In the presence of shadowing and multipath fading, 

the probability of detection can be obtained from: Pd = � ���2�, √����(�)��,�  where fγ (x) is the 

probability distribution function of SNR under fading. 

The two shortcomings of energy detection are: 

 (1) It is susceptible to the uncertainty of noise power. 

(2)  It can only detect the presence of the signal but cannot differentiate the type of signal (e.g. 

signals from secondary users sharing the same channel with the primary user). Therefore, the 

detection error would be high in presence of signal sources other than the licensed user. 

 

1.3.5 Cooperative sensing 

An unlicensed transmitter may not always be able to detect the signal from a licensed transmitter 

due to its geographic separation and channel fading. For example, the transmitter and receiver of the 

unlicensed user cannot detect the signal from the transmitter of the licensed user since they are out-

of-range. This is referred to as the hidden node problem. In this case, when the transmitter of the 

unlicensed user transmits, it will interfere with the receiver of the licensed user. To solve the hidden 

node problem in non-cooperative transmitter sensing, cooperative spectrum sensing can be used. In 

cooperative sensing, spectrum sensing information from multiple unlicensed users are exchanged 

among each other to detect the presence of licensed users. The cooperative spectrum sensing 

architecture can be either centralized or distributed. Using cooperative exchange of spectrum 

sensing information, the hidden node problem can be solved and the detection probability can be 

significantly improved in a heavily shadowed environment. However, this incurs a greater 

communication and computation overhead compared with non-cooperative sensing. For cooperative 

sensing, two different networks (i.e. a sensor network and an operational network) can be deployed 

to perform spectrum sensing and access, respectively. In this case, the sensor network collects 

spectrum usage information of licensed users which can be processed by a central controller. Then a 

spectrum usage map is created and distributed to the operational network of unlicensed users for 

optimizing the spectrum access.  
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Fig 4: Hidden Node problem [2] 

 

1.3.6 Interference-based sensing 

 

Interference-based sensing was proposed by the FCC. In this case, the sensing algorithm will 

measure the noise/interference level (from all sources of signals) at the receiver of the licensed user. 

This information is used by an unlicensed user to control the spectrum access (e.g. by computing 

expected interference level) without violating the interference temperature limit. Alternatively, an 

unlicensed transmitter may observe the feedback signal from a licensed receiver to gain knowledge 

on the interference level. 

 

1.4 POTENTIAL APPLICATIONS OF COGNITIVE RADIO 

 

Cognitive radio concepts can be applied to a variety of wireless communications scenarios, a few of 

which are described below: 

 

• Next generation wireless networks: Cognitive radio is expected to be a key technology for next 

generation heterogeneous wireless networks. Cognitive radio will provide intelligence to both the 

user-side and provider-side equipments to manage the air interface and network efficiently. At the 

user-side, a mobile device with multiple air interfaces (e.g. WiFi, WiMAX, cellular) can observe 

the status of the wireless access networks (e.g. transmission quality, throughput, delay, and 

congestion) and make a decision on selecting the access network to connect with. At the provider-

side, radio resource from multiple networks can be optimized for the given set of mobile users and 
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their QoS requirements. Based on the mobility and traffic pattern of the users, efficient load 

balancing mechanisms can be implemented at the service provider’s infrastructure to distribute the 

traffic load among multiple available networks to reduce network congestion. 

 

• Coexistence of different wireless technologies: New wireless technologies (e.g. IEEE 802.22-

based WRANs)  are being developed to reuse the radio spectrum allocated to other wireless services 

(e.g. TV service). Cognitive radio is a solution to provide coexistence between these different 

technologies and wireless services. For example, IEEE 802.22-based WRAN users can 

opportunistically use the TV band when there is no TV user nearby or when a TV station is not 

broadcasting. Spectrum sensing and spectrum management will be crucial components for IEEE 

802.22 standard-based WRAN technology to avoid interference to TV users and to maximize 

throughput for the WRAN users. 

• e-Health services: Various types of wireless technologies are adopted in healthcare services to 

improve efficiency of the patient care and healthcare management. However, using wireless 

communication devices in healthcare application is constrained by EMI (electromagnetic 

interference) and EMC (electromagnetic compatibility) requirements. Since the medical equipments 

and biosignal sensors are sensitive to EMI, the transmit power of the wireless devices has to be 

carefully controlled. Also, different biomedical devices (e.g. surgical equipment, diagnostic and 

monitoring devices) use RF transmission. The spectrum usage of these devices has to be carefully 

chosen to avoid interference with each other. In this case, cognitive radio concepts can be applied. 

For example, many wireless medical sensors are designed to operate in the ISM (industrial, 

scientific, and medical) band, which can use cognitive radio concepts to choose suitable 

transmission bands to avoid interference. 

 

 

 

 

 

 

 

 

 

 

 

 



  Page 

11 

 

  

CHAPTER-2 

TECHNICAL OVERVIEW 

 

Software used: MATLAB R2010a 

2.1 DETECTION OF SPECTRUM HOLES 

The starting point for signal detection theory is that nearly all reasoning and decision making takes 

place in the presence of some uncertainty. Signal detection theory provides a precise language and 

graphic notation for analyzing decision making in the presence of uncertainty. The general 

approach of signal detection theory has direct applications in terms of spectrum sensing for 

cognitive radios. For instance, the secondary users need to detect whether or not a primary user is 

present in the network.  

As an illustration, the probability distribution functions (pdfs) of the received signals at a secondary 

user are shown in figure below. If the primary user is absent, the pdf is a noise-only distribution. If 

the primary user’s signal is being transmitted, the pdf is signal plus noise distribution. According to 

a certain criterion (or threshold), the secondary user determines if the primary user is present or not. 

Depending on whether or not the primary user is present and on the secondary user’s decision, there 

are four possibilities as shown in table below. With the transmission of a primary user, if the 

secondary user detects the transmission, it is called a “hit”; otherwise, it is called a “miss.” In the 

absence of a primary user, if the secondary user says the primary is “on,” the case is called a “false 

alarm”; otherwise it is the “correct rejection.” The false alarm is also called a type-I error and the 

miss is also called a type-II error. It is evident that the probabilities of all four cases highly depend 

on the threshold. 

 

Fig 5: Illustration of a typical detection problem [2] 
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Table 1: Signal detection paradigm [2] 

 

2.2 PRACTICAL SPECTRUM SENSING APPROACHES 

 

Energy detection: An energy detector is a non-coherent detector that avoids the complicated 

coherent receivers required by a matched filter, and can be implemented using spectrum analyzing 

tools such as fast Fourier transform (FFT).  

 

 

Fig 6: Approach in energy detection [3] 

 

Although an energy detector is very simple to implement, there are several drawbacks: 

 First, the spectrum sensing speed is relatively slow.  

Second, the threshold for detection is very susceptible to the noise level and in-band interference. 

This is even worse in the frequency-selective and time-varying channels.  

Third, an energy detector cannot differentiate modulated signals, noise, and interference. As a 

result, the benefits of detection and interference cancellation techniques cannot be employed. 

Fourth, the primary user and the secondary user cannot be distinguished, while only the primary 

user’s transmission should be protected. 

 

2.3 MODULATION TECHNIQUE INVOLVED 

 

In our project, the modulation technique used is that of Frequency Shift Keying. The particular 

purpose for using this technique is the fact that at higher frequency the probability of bit error is 

least when we are employing this method. 
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2.3.1 Transmitter for BFSK Signal 

In Binary frequency shift keying (BFSK) the binary data waveform d(t) generates a binary signal 

             ���� (!) =  �2�$ cos [)*! + �(!)Ω!]      (1) 

Here d(t)= +1 or -1 corresponding to the logic levels 1 and 0 of the data waveform. The transmitted 

signal is of amplitude √2Ps and is either 

���� (!) =  ./(!) =  �2�$ cos [)* + Ω!]      (2) 

or    

 ���� (!) =  .0(!) =  �2�$  cos [)* − Ω!]     (3) 

  

And thus has an angular frequency ω˳+ῼ or ω˳-ῼ with ῼ a constant offset from the nominal carrier 

frequency ω˳. We shall call the higher frequency ωᴴ (= ω˳+ῼ) and the lower frequency ωᶫ (= ω˳-

ῼ).We may conceive that the BFSK signal is generated in the manner as shown below. Two 

balanced modulators are used, one with carrier ωᴴ and one with carrier ωᶫ. The voltage values of 

pᴴ(t) and of pᶫ(t) are related to the voltages values of d(t) in the following manner. 

d(t) pᴴ(t) pᶫ(t) 

+1V +1V 0V 

-1V 0V +1V 

 

Thus when d(t) changes from +1 to -1 pᴴ changes from 1 to 0 and pᶫ from 0 to 1. At any time either 

pᴴ or pᶫ is 1 but not both so that the generated signal is either at angular frequency ωᴴ or at ωᶫ. 

 

Fig 7: A representation of a manner in which a BFSK signal can be generated. [10] 
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Fig 8: Power spectral densities [10] 

 

 

2.3.2 Receiver for BFSK Signal 

A BFSK signal is typically demodulated by a receiver system as shown in figure. The signal is 

applied to two bandpass filters one with center frequency at fᴴ the other at fᶫ. Here we have 

assumed, as above, that fᴴ-fᶫ=2(ῼ/2∏)=2fᵇ. The filter frequency ranges selected do not overlap and 

each filter has a passband wide enough to encompass a main lobe in the spectrum. Hence one filter 

will pass nearly all the energy in the transmission at fᴴ the other will perform similarly at fᶫ. The 

filter outputs are applied to envelope detectors and finally the envelope detector outputs are 

compared by a comparator. A comparator is a circuit that accepts two input signals. It generates a 

binary output which is at one level or the other depending on which input is larger. Thus at the 

comparator output the data d(t) will be reproduced.    
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Fig 9: A receiver for a BFSK signal [10] 

 

2.4 THEOREMS AND MATHEMATICAL CONCEPTS 

 

2.4.1 Shannons’s Sampling Theorem 

The Whittaker-Shannon interpolation formula or sinc interpolation is a method construct a 

continuous-time bandlimited function from a sequence of real numbers. Given a sequence of real 

numbers, x[n], the continuous function: 

2(!)  = 3 �[4]. 6748(! − 49
9 )

:

;:
 

 

has a Fourier transform, X(f), whose non-zero values are confined to the region: |f|<=1/2 T. When 

parameter T has units of seconds, the bandlimit, ½ T, has units of cycles/sec (hertz). When the x[n] 

sequence represents time samples, at interval T, of a continuous function, the quantity fs=1/T is 

known as the sample rate, and fs/2 is the corresponding Nyquist frequency.  When the sampled  

function  has a bandlimit,  B,  less  than the Nyquist f requency, x(t) is a perfect reconstruction of 

the original function. Otherwise, the frequency components above the Nyquist frequency fold into 

the sub-Nyquist region of X(f), resulting in distortion. 

 



  Page 

16 

 

  

 

2.4.2 Additive White Gaussian Noise  

  

Additive white Gaussian noise (AWGN) is one of the channel model in  which the only detoriation  

to  communication  is  a  linear  addition  of  wideband  noise  with  a  constant  spectral density 

(expressed as watts per hertz of bandwidth) and a Gaussian distribution of amplitude. The model 

does not account for fading, frequency selectivity, interference, nonlinearity or dispersion. The 

probability density function p of a Gaussian random variable z is given by: 

 

�<= =  1
?√2@ A

;
(B;C)D

ED  

 

where z represents the grey level,  µ -the mean value and  σ -the standard deviation. In our case 

which is white Gaussian noise µ=0. 

 

Fig 10: Additive white Gaussian noise [11] 
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2.4.3 Chi-squared distribution  

 In  probability  theory  and  statistics,  the  chi-squared  distribution with k  degrees of  freedom is 

the distribution of a  sum of the squares of  k independent  standard  normal  random  variables.  It  

is  one  of  the  most  widely  used probability  distributions  in  inferential  statistics,  e.g.,  in  

hypothesis  testing  or  in construction  of  confidence  intervals.  When  there  is a need  to  contrast 

it  with  the  non-central  chi-squared  distribution,  this  distribution  is  sometimes  called  the  

central  chi-squared distribution. 

 

 

Fig 11: Chi-square distribution [12] 

 

2.4.4  Pearson’s  theorem 
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Let us consider r boxes B1, . . . , Br and throw n balls XG, . . . , Xn into these boxes independently  

of each other with probabilities  

P(Xi H B1) = p1, . . . , P(Xi  =  Br) = pr , 

so that  

p1  + . . . + pr  = 1. 

Let IJ be a number of balls in the jth box:  

IJ  = #{balls X1, . . . , Xn in the box Bj } =  ∑ I(XGϵBOPQRG ) 

On average, the number of balls in the jth box will be npO since 

EvO =∑ EI(XGϵBOPQRG )  =  P(Xl = Bj ) = npO  

We can expect that a random variable IJ  should be close to npO. For  example, we can use a  Central 

Limit Theorem to describe precisely how close IJ is to npO. The next result tells us how  we can 

describe the closeness of IJ  to npO simultaneously for all boxes j ≤ r. The main difficulty in this 

Theorem comes from the fact that random variables IJ  for j ≤ r are not independent  because the 

total number of balls is fixed  

  vG + ⋯ … … … … + vZ = n . 

If we know the counts in n - 1 boxes we automatically know the count in the last box.  

Theorem (Pearson): We have that the random variable 

∑ ([\;P]\)D

P]\
ZORG →_ χZ;G  

converges in distribution with (r-1) degrees of freedom.  
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2.4.5 Goodness-of-fit for continuous  distribution.  

Let X1, . . . , Xn be samples from unknown distribution P and consider the following  hypotheses: 

  Hb : P = Pb 

HG: P≠ Pb 

for some particular, possibly continuous distribution Pb . To apply the chi-squared test above we 

will group the values of 2s into a finite number of subsets. To do this, we will split a set of all 

possible outcomes f into a finite number of intervals IG, . . . , Ir  as shown in figure below: 

 

Fig 12: Discretizing continuous distribution 

The null hypothesis Hb, of course, implies that for all intervals 

. P(X ϵ Ij ) = Pb (X ϵ Ij ) = pOb 

Therefore, we can do chi-squared test for  

  Hbg : P(X ϵ Ij)= pOb for all j ≤ r 

HGg = otherwise 
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Asking whether Hbg  holds is, of course, a weaker question that asking if Hbholds, because Hb 

implies Hbg  not the other way around. There are many distributions different from P that have the 

same probabilities of the intervals IG, . . . , Ir  as  P.  On the other hand, if we group into more and 

more intervals, our discrete approximation of P will get closer and closer to P,  so in some sense 

Hbg will get closer to Hb. However, we cannot split into too many intervals either, because the χZ;G -

distribution approximation for statistic T in Pearson’s theorem is asymptotic. 
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CHAPTER-3 

Methodology 

 

We  proceed  from  the  only  known  fact  that  our  signal  is  deterministic  and  the  noise 

considered  here  is  additive  white  Gaussian  noise.  In  the  absence  of  much  knowledge 

concerning  the signal,  it seems appropriate  to  use  an  energy  detector to  determine  the presence 

of a signal. The energy detector measures the energy in the input wave over a specific  time  

interval.  It  is  assumed  here  that  the  noise  has  a  flat  band-limited  power density spectrum. By 

means of a sampling plan, the energy in a finite time sample of the noise  can  be  approximated  by  

the  sum  of  squares  of  statistically  independent  random variables  having  zero  means  and  

equal  variances. The  energy  detector  consists  of  a square law device followed bay finite time 

integrator. The output of the integrator at any time is the energy of the input to the squaring device 

over the interval Tin the past. The noise prefilter serves to limit the noise bandwidth; the noise at 

the input to the squaring device has a band-limited, flat spectral density. 

 

3.1 Fourier Transform 

 

Using Fourier transform theory, the frequency spectrum of the continuous time waveform x(t) can 

be written 

 

X(f)=� �(!);Js�t:
;: dt 

 

And the time waveform can be expressed in terms of its spectrum as 

 

x(t)=� 2(�)AJs�t:
;: df 

 

Since this is true for any continuous function of time, x(t), it is also true for �$(t) 

 

2$(f)=� �$(!)A;Js�t:
;: dt 
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Replacing �$(t) by the sampling representation 

 

2$(f)=� [∑ �(!)u(! − 49):vR;: ]A;Js�t:
;: dt 

 

The order of the summation and integration can be interchanged and it can be written as 

 

2$(f)=∑ �(49):vR;: A;Js�vw  

 

This equation is the exact form of a Fourier series representation of 2$(f), a periodic function of 

frequency having period 1/T. The coefficients of the Fourier series are x(nT) and they can be 

calculated from the following integral: 

 

x(nT)=T� 2(�)
x

Dyx
zDy

AJs�vwdf 

 

The last two equations are a Fourier series pair which allow calculation of either the time signal or 

frequency spectrum in terms of the opposite member of the pair. 

 

3.2 Energy detection 

 

 

 

Fig 13: Squaring Integrator device [1] 

 

The detection is a test of the following two hypotheses  
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1) Ho : The input y(t) is noise alone:  

a)  y(t)=n(t)  

b)  E[n(t)]=0  

c)  Noise spectral density = No, (two-sided)  

d)  Noise bandwidth = W cycles per second.  

 

2)  H1 : The input y(t) is signal plus noise :  

a)  y(t)=n(t)+s(t)   

b)  E[n(t) + s(t)] = s(t).  

The output of the integrator is denoted by V and we concentrate on a particular interval, say, (0, T), 

and take the test statistic as V or any quantity monotonic with V. We shall find it  convenient  to  

compute  the  false  alarm  and  detection  probabilities  using  the  related quantity.  

  

V’= 
G

{* � �(!)�!w
|                                                   (1) 

 

It is known that a sample function, of duration T, of a process which has a bandwidth W (negligible 

energy outside this band) is described approximately by a set of sample values 2TW in number. 

Starting with a low pass process, we can express the noise in the form of 

 

n(t)=∑  }~6748(2)! − 7):~R;:                                      (2) 

 

where,  

 

sinc(x)=
�QP (∏�)

∏�             and 

 

   }~=n( ~
�)                                                     (3) 

 

each a, is a Gaussian random variable with zero mean and with the same variance   which is the 

variance of n(t), therefore 
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?~=2�*W, all i,                                                               (4) 

 

Using the fact that: 

 

� 6748(2�! − 7)6748(2�! − �)�! =:
;:

G
W,  i=k 

                                                               =   0,   i≠ �        (5) 

We may write 

� 4(!)�!:
;:  = 

G
� ∑ }~:~R;:                                             (6) 

 

Over the  interval  (0, T), n(t) may be  approximated  by a  finite  sum  of  2TW  terms, as follows: 

 

4(!) = ∑ }~ 6748(2�! − 1)w�~RG , 0 < t < T              (7) 

 

Similarly,  the  energy in a sample of duration  T is approximated  by 2T W  terms of the right-hand 

side of eqn 6: 

� 4(!)�!w
|   =

G
� ∑ }~w�~RG                                             (8) 

 

We can see that (8) is No2 V’ , with V’ here being the test statistic under hypothesis Ho. 

 

��
��{�D

 =  �~                                                                  (9) 

 

which makes 

V’ = ∑ �~w�~RG                                                                  (10) 

 

Thus, V’  is the sum of the squares of  2TW Gaussian random variables, each with zero mean and 

unity variance.  V’  is said to have a chi-square distribution with 2TW degrees of freedom. We will 
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now consider the input y(t) when the signal s(t) is present. The segment of signal duration T may be 

represented by a finite sum of 2TW terms. 

 

s(t)=∑ �~w�~RG sinc(2Wt-i),                                                  (11) 

 

where 

�~ = 6( ~
�)                                                                        (12) 

 

By following the same reasoning as above, we can approximate the signal energy in the interval 

(0,T)  by    

 

� 6w
| (t)dt=(G

W)∑ �~w�~RG                                                   (13) 

 

We define the coefficient ßi by 

 

�~=
��

��{�D
                                                                         (14) 

 

G
{�D

� 6w
| (t)dt=∑ �~w�~RG                                                     (15) 

 

Using eqn (11) and (2), the total input y(t) with the signal present can be written as: 

 

y(t)=∑ (}~ + �~w�~RG )sinc(2Wt-i)                                       (16) 

 

The energy of y(t) in the interval (0,T) is approximated by  

               

� �w
| (t)dt=( G

�)∑ (}~ + �~)w�~RG                                       (17) 
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Under the hypothesis HI, the test statistic V’  is    

 

V’=(
G
{*)� �w

| (t)dt=∑ (�~ + �~)w�~RG                                 (18) 

 

The  sum  in  eqn  (18)  is  said  to  have  a  non-central  chi-square  distribution  with  2TW degrees 

of freedom and a non-centrality parameter  , given by 

 

Λ=∑ �~w�~RG =
G

{�D
� 6w

| (t)dt=
��

{�D
                                         (19) 

 

Λ  is the ratio of signal energy to noise spectral density, provides a convenient definition of signal-

to-noise ratio. 
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3.3 Flow Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4  Computation of Detection and False Alarm Probabilities 

 

The probability  of false alarm  Q0  for a given threshold �w′ is given by  

Qo = Prob {V' > �w′  | Ho} = Prob {  f29� > �w′ }.  

The far right hand side  of  previous equation indicates  a chi-square variable  with 2TW  

degrees  of freedom. For the same threshold  level �w′  the probability  of detection �� is  

given by   

��=  Prob{V'  >  �w′ | H1 }  =  Prob {  f29�(�) > �w′ }. 

When the Secondary user receiver does not have 

information regarding parameters of primary user signal 

Apply energy detection technique 

Feed the signal to energy detector 

Compare final output with the 

threshold level 

Calculate Pf and Pd 

END 
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The symbol  fg29�(�)  indicates a  noncentral chi-square variable with 2TW degrees of freedom 

and noncentrality parameter  ; in our case    = Es / N02 , and is defined as the signal-to-noise  ratio.  

As  mentioned  above,  extensive  tables  exist  for  the chi-square distribution,  but  the  non-central  

chisquare  has  not  been  as  extensively  tabulated. Approximations were taken for this. 

 

 

 

 

 

Fig 14: Receiver Operating Characteristics (ROC) curve (1) [1] 

 

X axis: �*,  Probability of False Alarm  

Y axis: �� ,Probability of Detection  

T=Observation Time  

W=Bandwidth  

2TW=2 
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Fig 15: Receiver Operating Characteristic(ROC) curve (2) [1] 

 

It is interesting to see how 2TW and the signal-to-noise ratio � vary for given false alarm and 

detection probabilities. Figure shown above gives such a relationship for various �* and ��. It is 

clearly seen that increasing 2TW, the number of degrees of freedom, causes an  increase  in  the  

required  signal-to-noise  ratio.  A  natural  question  is:  why  does increasing the time-bandwidth  

product increase the  required  signal-to-noise ratio.  It has been suggested that the answer lies in the 

increased incoherence of the noise which tends to “dilute” the signal energy, somewhat analogously 

to  the  suppression  encountered  in incoherent detection. 
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CHAPTER-4 

Results 

 

According to the model of signal detection at time t, when only noise is present i.e. n(t), it is null 

hypothesis. When signal plus noise with some channel gain is received at the receiver, it is alternate 

hypothesis. 

  

In this graph binary signal is sent through channel with some additive white Gaussian noise using 

Frequency shift keying. 

 

Binary Information =  1 0 1 0 1 

  

 

Fig 16 (a) : FSK modulation of binary information 

 

OUTPUT: 

 

Non-central chi-sqaure distribution and following Alternate Hypothesis 
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Then its power spectral density graph is shown below for the received signal at the receiver. 

 

 

Fig 16 (b) : Power Spectral Density of received signal 

 

When only noise is received at the receiver, it is Null Hypothesis. Here power spectral density of 

noise is shown below. 

 

OUTPUT: 

 

Central chi-square distribution i.e. means it is following Null hypothesis. 

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
7

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45
Periodogram Using FFT

Frequency (Hz)

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

d
B

/H
z
)



  Page 

32 

 

  

 

 

Fig 16 (c): Power spectral density of noise 

 

In this graph red line represents the presence of users and green dotted line represents the false 

detection of spectrum. If availability is 1, means spectrum is used by some user, it may be primary 

or secondary user. If availability is 0, means spectrum is not used by any of the user. When the 

value of green dotted line is 1, means user is not present but it is showing that user is there. 

 

Graph has been plotted for different values SNR, Probability of false alarm and percentage of 

occupancy with their respective values of threshold where number of users are 25 and having 

bandwidth = 250 Hz.  
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Threshold = 1.0174 

percentage of occupancy = 0.5 

SNR = - 20 

Probability of false alarm =  0.001 

 

 

Fig 17 (a)  
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Threshold = 1.0174 

percentage of occupancy = 0 

SNR = - 20 

Probability of false alarm =  0.001 

 

 

Fig 17 (b) 
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Threshold = 1.0174 

percentage of occupancy = 1 

SNR = - 20 

Probability of false alarm =  0.001 

 

 

 

Fig 17 (c) 
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Threshold = 1.0174 

percentage of occupancy = 0.5 

SNR = - 100 

Probability of false alarm =  0.001 

 

 

Fig 17 (d) 
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Threshold = ∞ 

percentage of occupancy = 0.5 

SNR = - 100 

Probability of false alarm =  0.000 

 

 

Fig 17 (e) 
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Conclusion 

 

If the form of a signal to be detected is unknown, it appears appropriate to consider an energy 

detector as a device for deciding whether or not the signal is present. Since an energy detector does 

not care about anything but the amount of energy in the given observation time, the form of the 

signal does not affect the conditional probability that a threshold will be exceeded when the signal 

is present. Of course, it is assumed that the noise is zero mean Gaussian. By using Shannon’s 

sampling theorem, one can show that the energy in a finite time interval can be described as a sum 

of the square of a number of statistically independent Gaussian variates if the noise input is 

Gaussian and has flat spectral density over a limited bandwidth.  

Although in this project we have taken the point of view that the unknown signal is of deterministic 

form, there is nothing in it which changes results for any signal, known or unknown, deterministic 

or random, provided the probability of detection is considered a conditional probability of detection 

where the condition is a given amount of signal energy; i.e., if the signal present has a certain 

amount of energy, then its detection probability is given as shown in this project, regardless of 

where the signal comes from. It may come from a random process, or may be a one-shot affair, or 

may come from a process which repeats signals of the same form at regular or irregular intervals. 
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Challenges 

The main challenge was to provide the similar input signal to our detector as a physical receiver 

would have received. Since the cost of Universal Software Radio Peripheral is quite high we are 

bound to use Matlab coding and functions. And so quite a few assumptions were made which 

sometimes contradicted result.  

The second most important challenge in this project is to manage the tradeoff between probability 

of false alarm and correct detection. 
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