
i 

 

Detection of Distributed Denial of Service  

Attack (DDoS) Against a Web Server 

 

Project Report submitted in partial fulfillment of the requirement for the 

degree of 

Bachelor of Technology 

in 

COMPUTER SCIENCE & ENGINEERING 

Under the Supervision of 

 
MR. AMOL VASUDEVA 

 

by 

MUDIT SRIVASTAVA (091274) 

UJJWAL THAKUR (091284) 

UTKARSH AGNIHOTRI (091290) 

to 

 

 

 
 

Jaypee University of Information Technology 

Waknaghat, Solan – 173234, Himachal Pradesh 

 



ii 

 

 

CERTIFICATE 

 

This is to certify that the work titled “Detection of Distributed Denial of Service Attack (DDoS) 

Against a Web Server” submitted by “Mudit Srivastava, Ujjwal Thakur and Utkarsh Agnihotri” 

in partial fulfillment for the award of degree of B.Tech in CSE from Jaypee University of Information 

Technology, Waknaghat has been carried out under my supervision. This work has not been submitted 

partially or wholly to any other University or Institute for the award of this or any other degree or 

diploma.  

 

 

Signature of Supervisor  ............................. 

Name of Supervisor           Mr. Amol Vasudeva 

Designation                      Sr. Lecturer 

Date                       ….......................... 



iii 

 

 

ACKNOWLEDGEMENT 

 

With candor and pleasure we take this opportunity to express our sincere gratitude to our esteemed 

guide Mr. Amol Vasudeva. Without his exemplary guidance and co-operation it would not have been 

possible for us to reach the completion of this project. 

It is our pleasant duty to thank all the staff members of the Department of C.S.E. & I.C.T., especially 

our H.O.D.,Prof. Dr. S.P. Ghrera and our supervisor and project coordinator Dr. Nitin who never 

hesitated from helping us during the course of this project. 

Finally, we gratefully acknowledge the support, encouragement & patience of our families and friends. 

 

Date:        

Mudit Srivastava (091274) 

Ujjwal Thakur (091284) 

Utkarsh Agnihotri (091290) 

 

 

 

 

 

 

 

 

 



iv 

 

 

LIST OF FIGURES 

 

FIG2- 1CLASSIFICATION OF ATTCAKS 4 

FIG2- 2 HANDLER/AGENT ARCHITECTURE 10 

FIG2- 3STEPPING STONE 11 

FIG2- 4 SIMPLE SCANNING PROCESS 12 

FIG2- 5 WORM PROPAGATION 13 

FIG2- 6 PROPAGATION WITH CENTRAL REPOSITORY 14 

FIG2- 7 PROPAGATION WITH BACK-CHAINING 15 

FIG2- 8 AUTONOMOUS PROPAGATION 15 

FIG2- 9 THREE-WAY HANDSHAKE 17 

FIG2- 10 CLASSIFICATION OF IDS 20 

FIG2- 11 PACKET-FILTERING ROUTER 24 

FIG2- 12 APPLICATION-LEVEL GATEWAY 25 

FIG2- 13 CIRCUIT-LEVEL GATEWAY 26 

 

FIG3- 1 LOW INTERACTION AND HIGH INTERACTION HONEYPOT 31 

FIG3- 2 PLACEMENT OF HONEYPOT 32 

 

FIG4- 1 HASH TABLE FOR DETECTION ENGINES 37 

FIG4- 2 DDOS ATTACK DETECTION AND HISTORY-BASED IP SOURCE ADDRESS 

FILTERING 38 

 

FIG5- 1 PROPOSED DESIGN OF WEB SERVER SYSTEM FOR DETECTION OF DDOS 

ATTACKS 39 

FIG5- 2 DESIGN OF THE PROJECT PART 41 

FIG5- 3 GUI OF LOIC-1.0.7.42 42 

FIG5- 4 AN ATTACK IN PROGRESS USING LOIC V1.07.0 44 

FIG5- 5 INCREMENTAL MODEL 46 

FIG5- 6 LEVEL 0 DFD 47 



v 

 

FIG5- 7 LEVEL 1 DFD 47 

TABLE OF CONTENTS 

CERTIFICATE I 

ACKNOWLEDGEMENT III 

LIST OF FIGURES IV 

TABLE OF CONTENTS V 

CHAPTER 1: INTRODUCTION AND PROBLEM STATEMENT 1 

1.1 Introduction 1 

1.2 Key Issues and Challenges 3 

1.3 Statement of the Problem 3 

CHAPTER 2: BACKGROUND STUDY 4 

2.1 Classification of attacks 4 

2.1.1 Virus 4 

2.1.2 Worms 5 

2.1.3 Trojan Horse 5 

2.1.4 Spyware 5 

2.1.5 Phishing 6 

2.2 DoS and DDoS Attacks 6 

2.2.1DoS and DDoS: 6 

2.2.1 Damaging Effects of DoS and DDoS 7 

2.2.2 How do DoS and DDoS attack works? 8 

2.2.2.1Recruiting and Controlling Attacking Machines: 9 

2.2.3 How Attacks Are Waged? 11 

2.2.4  Semantic Levels of DDoS Attacks 15 



vi 

 

2.2.5 Attack Toolkits 18 

2.3 Intrusion Detection System 18 

2.3.1 Need for IDS 19 

2.3.2 Classification of IDS 20 

2.4 Behavior after attacks 21 

CHAPTER 3: HONEYPOT SYSTEM 29 

3.1 Honey Pot Systems 29 

3.2 Honeypots 29 

3.3 Purposes of Honeypot 30 

3.4 Classification of Honeypots 30 

3.5 Placement of Honeypots 32 

3.6 Advantages and Disadvantages of Honeypots 33 

CHAPTER 4: DETECTION ALGORITHM 35 

4.1 Detection Mechanisms 35 

4.1.1 Packet Data Analysis 35 

4.1.2 Use of Traffic Fingerprints 36 

4.1.3 Traffic Flow Analysis 36 

4.2 Our Approach 36 

4.2.1 The detection feature 38 

CHAPTER 5: PROPOSED DESIGN AND IMPLEMENTATION 39 

5.1 Proposed Design of Project 39 

5.1.1 Firewall 40 

5.1.2 Server 40 



vii 

 

5.1.3 Honeypot 40 

5.2 Modular Design 41 

5.3 Hardware and Software Requirements 41 

5.4 Software Used for Launching Flooding Attack 42 

5.5 Working Mechanism 44 

5.6 Software Development Life Cycle 46 

5.7 Data Flow Diagrams 47 

CHAPTER 6:CODE SNIPPET 48 

6.1 jpcap Packet Capture Library 48 

6.1.1 NetworkInterfaceAddress 48 

6.1.2 Class NetworkInterface 49 

6.1.3 Class JpcapCaptor 49 

6.1.4 Class PacketDispatcher 49 

6.2 Package firewall 50 

6.2.1 Class Firewall 50 

6.2.1.1 Class AllConnections 51 

6.2.1.2 Class TrafficData 52 

6.2.2 Class DetectDDoS 53 

6.2.2.1 Class ScanList 53 

6.2.2.2 Class PacketPrinter 54 

6.3 Package faketelnetserver 54 

6.3.1 Class EngageClient 54 

6.3.2 Class FakeTelnetServer 55 

6.3.3 Class FetchPassword 55 

6.3.4 Class MaskCharacters 55 



viii 

 

6.4 Package chatserver 56 

6.4.1 Class ChatServer 56 

6.4.1.1 Class HandleClients 56 

CHAPTER 7 :  APPENDIX 57 

7.1 List of Abbreviations 57 

CHAPTER 8: BIBLOGRAPHY 58 



ix 

 

 



1 

 

CHAPTER 1: INTRODUCTION AND PROBLEM STATEMENT 

 

1.1 Introduction 

Network security has evolved from independently deployed products such as firewalls into the realm 

of system-wide solutions. The reason is simple: For today's companies, especially in this era of 

regulatory activity, preserving the integrity, confidentiality of corporate information is critical to 

success. As we move further into an information-driven global economy, the value of information, and 

controlled access to that information, has never been greater. The goal of IT infrastructure therefore is 

to create systems that can detect and protect against unauthorized access while providing timely access 

to legitimate users. Simply denying access in the face of an attack is no longer acceptable. Today's 

networks must be able to respond to attacks in ways that maintain network availability and reliability 

and allow a business to continue to function. In many respects, the goal of security is to make networks 

more resilient by making them more flexible. Rather than succumb, networks must be able to absorb 

attacks and remain operational, much in the same way the human immune system allows us to keep 

functioning in the presence of viruses and related bacterial infections. 

 

The Internet was created in 1969 to provide an open network for researchers’ .In the last decade, the 

phenomenal growth and the success of the Internet is changing its traditional role. Unfortunately, with 

the growth of the Internet, the attacks to the Internet have also increased incredibly fast. The 

occurrence of the Morris Worm in 1988 marked the first major computer security incident on the 

Internet. 

 

The widespread need and ability to connect machines across the Internet has caused the network to be 

more vulnerable to intrusions and has facilitated break-ins of a variety of types. Along their paths 

between a client and a server, network packets consume various kinds of resources including access 

link bandwidth, router buffers etc. Distributed-Denial-of-Service (DDoS) attacks inject maliciously-

designed packets into the network to deplete some or all these sources.  

 

Whereas service front-ends can be protected from DDoS attacks by massive replication, back-ends 

cannot tolerate the same level of replication, because of higher.  

costs and tighter consistency constraints. DDoS attacks are difficult to prevent because of inevitable 

software vulnerabilities, which get exploited by attackers and are used to launch the attack. 



2 

 

 

There are four different ways to defend against DDoS attacks: 

(1) Attack prevention aims to fix security holes, such as insecure protocols, 

(2) Attack detection aims to detect DDoS in the process of an attack, 

(3) Attack source identification aims to locate the attack sources and 

(4) Attack reaction aims to eliminate or curtail the effects of an attack. 

 

Countermeasures for the DDoS attacks are getting more sophisticated and widely used firewalls pop 

up in the nearly every company. Network intrusion detection systems start their triumphal mechanism. 

But do we know enough of our enemy? Or are these systems always a step behind the black hats? 

 

Gathering this kind of information about enemy is not easy but important. By knowing attack 

strategies, countermeasures can be taken and the vulnerabilities can be fixed. To gather as much 

information as possible as possible is one main goal of a Honeypot. Generally, such information 

gathering should be done silently, without alarming an attacker. All the gathered information leads to 

an advantage on the defending side and can therefore be used on the productive systems to prevent 

attacks. 

 

Honeypot is an important security technology used to understand and combat DDoS attacks. It gets is 

name from the age old saying “you can catch more flies with honey rather than vinegar”. It is primarily 

an instrument for information gathering and learning. 

 

A Honeypot is set up on a network for the sole purpose of being attacked. It is designed with deliberate 

vulnerabilities, which is exposed to a public network. The goal is first to lure intruders away from the 

real system, and secondly to closely monitor the intruder to study the exploits which are used. 

Honeypots are not supposed to receive any legitimate traffic and thus, any traffic destined to a 

Honeypot is most probably an ongoing attack and can be analyzed to reveal vulnerabilities targeted by 

attackers’. Coupled with an Intrusion Detection System (IDS), Honeypots are effective in detecting 

victim hosts. 

 



3 

 

1.2 Key Issues and Challenges  

  

In order to develop an affective DDoS detection mechanism we must have a firewall in place. The 

issue at hand is the development of a rule based  packet filtering proxy gateway. It also has to be 

configured correctly to gather relevant data about the incoming traffic to allow the detection 

mechanism to work correctly. The design of the firewall is a major challenge as the entire project is 

coded in Java and there are no native APIs in Java which allow for efficient capturing of data packets. 

 

One problem with the use of honeypot systems is the issue of liability. Intentionally placing an 

insecure machine on a network and allowing it to get compromised can put an organization into a very 

awkward position if the attacker on the other organizations’ or individuals’ systems. Therefore, 

limitations have to be placed on honeypots’ out-bound network connections in order to prevent abuse 

at the hands of attackers.  

 

1.3 Statement of the Problem   

 

Design of a proxy gateway and implementation of a Source IP Address Monitoring Algorithm to 

detect a Distributed Denial of Services (DDoS) attack. 

The project consists of two stages: 

1. Deployment of DDoS attacks: DDoS attacks shall be deployed to a target machine either 

through a pre-constructed tool or would be self constructed. 

2. Construction of a proxy gateway and implementation of a detection algorithm to detect the 

DDoS attack while it is taking place. 

3. Use of Honeypots to study how intruders try to compromise a system. 

 

 

 

 

 



4 

 

CHAPTER 2: BACKGROUND STUDY 

  

2.1 Classification of attacks 

 

 

 

Fig2- 1Classification of Attcaks 

 

2.1.1 Virus 

The term virus is credited to University of Southern California professor Frederick Cohen in his 1984 

research paper Computer Viruses: Theory and Experiments. A computer virus is designed to attack a 

computer and often to wreak havoc on other computers and network devices. A virus can often be an 

attachment in an e-mail, and selecting the attachment can cause the executable code to run and 

replicate the virus. A virus must be executed or run in memory in order to run and search for other 

programs or hosts to infect and replicate. As the name implies, a virus needs a host such as a 

spreadsheet or e-mail in order to attach, infect, and replicate.  

 
CLASSIFICATION

 OF 

ATTACKS 

VIRUSES 

WORMS 

PHISHING 

TROJAN 

HORSE 

SPYWARE 

DOS & DDoS 



5 

 

2.1.2 Worms 

A worm is a destructive software program that scans for vulnerabilities or security holes on other 

computers in order to exploit the weakness and replicate. It uses a network to send copies of itself to 

other nodes (computer terminals on the network) and it may do so without any user intervention. 

Unlike a virus, it does not need to attach itself to an existing program. Worms almost always cause 

harm to the network, if only by consuming bandwidth, whereas viruses almost always corrupt or 

modify files on a targeted computer. Worms can replicate independently and very quickly.  

Protecting against dangerous computer worms 

Worms spread by exploiting vulnerabilities in operating systems. All vendors supply regular security 

updates and if these are installed to a machine then the majority of worms are unable to spread to it. If 

a vendor acknowledges vulnerability but has yet to release a security update to patch it, a zero day 

exploit is possible. However, these are relatively rare. 

Users need to be wary of opening unexpected email, and should not run attached files or programs, or 

visit web sites that are linked to such emails. However, as with the ILOVEYOU worm, and with the 

increased growth and efficiency of phishing attacks, it remains possible to trick the end-user into 

running a malicious code. Anti-virus and anti-spyware software are helpful, but must be kept up-to-

date with new pattern files at least every few days. The use of a firewall is also recommended. 

 

2.1.3 Trojan Horse 

The term 'Trojan horse' is generally attributed to Daniel Edwards of the NSA. He is given credit for 

identifying the attack form in the report "Computer Security Technology Planning Study". 

A Trojan horse, or Trojan, is pernicious software that attempts to masquerade itself as a trusted 

application such as a game or screen saver. Once the unsuspecting user attempts to access what 

appears to be an innocuous game or screen saver, the Trojan can initiate damaging activities such as 

deleting files or reformatting a hard drive.  

2.1.4 Spyware 

Spyware is a class of software applications that can participate in a network attack. Spyware is an 

application that attempts to install and remain hidden on a target PC or laptop. Once the spyware 

application has been surreptitiously installed, the spyware captures information about what users are 

doing with their computers. Some of this captured information includes websites visited, e-mails sent, 



6 

 

and passwords used. Attackers can use the captured passwords and information to gain entry to a 

network to launch a network attack. 

In addition to being used to directly participate in a network attack, Spyware can also be used to gather 

information that can be sold underground. This information, once purchased, can be used by another 

attacker that is "harvesting data" to be used in planning another network attack. 

2.1.5 Phishing 

Phishing is a type of network attack that typically starts by sending an e-mail to an unsuspecting user. 

The Phishing e-mail attempts to look like a legitimate e-mail from a known and trusted institution such 

as a bank or ecommerce site. This false e-mail attempts to convince users that something has 

happened, such as suspicious activity on their account, and that the user must follow the link in the e-

mail and logon to the site to view their user information. The link in this e-mail is often a false copy of 

the real bank or ecommerce site and features a similar look-and-feel to the real site. The Phishing 

attack is designed to trick users into providing valuable information such as their username and 

password.  

2.2 DoS and DDoS Attacks 

The goal of a DoS attack is to disrupt some legitimate activity, such as browsing Web pages, listening 

to an online radio, transferring money from your bank account, or even docking ships communicating 

with a naval port. This denial-of-service effect is achieved by sending messages to the target that 

interfere with its operation, and make it hang, crash, reboot, or do useless work. 

2.2.1DoS and DDoS: 

One way to interfere with a legitimate operation is to exploit vulnerability present on the target 

machine or inside the target application. The attacker sends a few messages crafted in a specific 

manner that take advantage of the given vulnerability. Another way is to send a vast number of 

messages that consume some key resource at the target such as bandwidth, CPU time, memory, etc. 

The target application, machine, or network spends all of its critical resources on handling the attack 

traffic and cannot attend to its legitimate clients. 

Now let us assume that an attacker would like to launch a DoS attack on example.com by bombarding 

it with numerous messages. Also assuming that example.com has abundant resources, it is then 

difficult for the attacker to generate a sufficient number of messages from a single machine to overload 

those resources. However, suppose he gains control over 100,000 machines and engages them in 



7 

 

generating messages to example.com simultaneously. Each of the attacking machines now may be 

only moderately provisioned (e.g., have a slow processor and be on a modem link) but together they 

form a formidable attack network and, with proper use, will be able to overload a well-provisioned 

victim. This is a distributed denial-of-service—DDoS. 

. In DDoS attacks, breaking into a large number of computers and gaining malicious control of them is 

just the first step. The attacker then moves on to the DoS attack itself, which has a different goal—to 

prevent victim machines or networks from offering service to their legitimate users. No data is stolen, 

nothing is altered on the victim machines, and no unauthorized access occurs. The victim simply stops 

offering service to normal clients because it is preoccupied with handling the attack traffic. While no 

unauthorized access to the victim of the DDoS flood occurs, a large number of other hosts have 

previously been compromised and controlled by the attacker, who uses them as attack weapons. In 

most cases, this is unauthorized access, by the legal definition of that term. 

2.2.1 Damaging Effects of DoS and DDoS 

While the denial-of-service effect on the victim may sound relatively benign, especially when one 

considers that it usually lasts only as long as the attack is active, for many network users it can be 

devastating. Use of Internet services has become an important part of our daily lives. The Internet is 

increasingly being used to conduct business and even to provide some critical services. Following are 

some examples of the damaging effects of DoS attacks. 

• Sites that offer services to users through online orders make money only when users can access 

those services. For example, a large book-selling site cannot sell books to its customers if they 

cannot browse the site's Web pages and order products online. A DoS attack on such sites 

means a severe loss of revenue for as long as the attack lasts. Prolonged or frequent attacks also 

inflict long-lasting damage to a site's reputation—customers who were unable to access the 

desired service are likely to take their business to the competition. Sites whose reputations were 

damaged may have trouble attracting new customers or investor funding in the future. 

• Large news sites and search engines are paid by marketers to present their advertisements to 

the public. The revenue depends on the number of users that view the site's Web page. A DoS 

attack on such a site means a direct loss of revenue from the marketers, and may have the long-

lasting effect of driving the customers to more easily accessible sites. Loss of popularity 

translates to a direct loss of advertisers' business. 



8 

 

• Some sites offer a critical free service to Internet users. For example, the Internet's Domain 

Name System (DNS) provides the necessary information to translate human-readable Web 

addresses (such as www.example.com) into Internet Protocol (IP) addresses (such as 

192.0.34.166). All Web browsers and numerous other applications depend on DNS to be able 

to fetch information requested by the users. If DNS servers are under a DoS attack and cannot 

respond due to overload, many sites may become unreachable because their addresses cannot 

be resolved, even though those sites are online and fully capable of handling traffic. This 

makes DNS a part of the critical infrastructure, and other equally important pieces of the 

Internet's infrastructure are also vulnerable. 

• Numerous businesses have come to depend on the Internet for critical daily activities. A DoS 

attack may interrupt an important videoconference meeting or a large customer order. It may 

prevent a company from sending out an important document for a rapidly approaching deadline 

or interfere with its bid for a large contract. 

• The Internet is increasingly being used to facilitate management of public services, such as 

water, power, and sewage, and to deliver critical information for important activities, such as 

weather and traffic reports for docking ships. A DoS attack that disrupts these critical services 

will directly affect even people whose activities are not related to computers or the Internet. It 

may even endanger human lives. 

 

 

2.2.2 How do DoS and DDoS attack works? 

There are two main approaches to denying a service: exploiting vulnerability present on the target or 

sending a vast number of seemingly legitimate messages. The first kind of an attack is usually called a 

vulnerability attack, while the second is called a flooding attack. 

1.) Vulnerability attacks 

Vulnerability attacks work by sending a few specifically crafted messages to the target application that 

possesses vulnerability. This vulnerability is usually a software bug in the implementation or a bug in a 

default configuration of a given service. Malicious messages by the attacker represent an unexpected 



9 

 

input that the application programmer did not foresee. The messages cause the target application to go 

into an infinite loop; to severely slow down, crash, freeze, or reboot a machine; or to consume a vast 

amount of memory and deny service to legitimate users. This process is called exploiting vulnerability, 

and the malicious messages are called the exploit. In some cases, vulnerabilities of this kind can be 

exploited in the operating system, a common piece of middleware, or in a network protocol, as well as 

in application programs. While it is impossible to detect all vulnerabilities, it can also be quite hard to 

find new exploits. This means that each vulnerability that is detected and patched is a large gain and a 

sure step ahead for the defenders. 

 

2.) Flooding attack 

Flooding attacks work by sending a vast number of messages whose processing consumes some key 

resource at the target. For instance, complex messages may require lengthy processing that takes up 

CPU cycles, large messages take up bandwidth, and messages that initiate communication with new 

clients take up memory. Once the key resource is tied up by the attack, legitimate users cannot receive 

service. The crucial feature of flooding attacks is that their strength lies in the volume, rather than in 

content. This has two major implications: 

a. The attackers can send a variety of packets. The attack traffic can be made arbitrarily similar to 

the legitimate traffic, which greatly hinders defense. 

b. The flow of traffic must be so large as to consume the target's resources. The attacker usually 

has to engage more than one machine to send out the attack traffic. Flooding attacks are 

therefore commonly DDoS attacks. 

The fact that the line between vulnerability and flooding attacks is thin and many attacks may well 

falls into both the vulnerability and flooding categories. 

2.2.2.1Recruiting and Controlling Attacking Machines: 

DDoS attacks require engagement of multiple machines, which will be sending the attack traffic to the 

victim. Those machines do not belong to the attacker. They are usually poorly secured systems at 

universities, companies, and homes—even at government institutions. The attacker breaks into them, 

takes full control, and misuses them for the attack. Therefore, the attacking machines are frequently 

called zombies, daemons, slaves, or Agents. 



10 

 

The Agents are usually poorly secured machines—they do not have recent patches and software 

updates, they are not protected by a firewall or other security devices, or their users have easily 

guessed passwords. The attacker takes advantage of these well-known holes to break in. Unpatched 

and old software has well-known vulnerabilities with already-written exploits. These belong to a 

specific kind of vulnerabilities—once exploited, they allow the attacker unlimited access to the system, 

as if he had an administrator's account. Accounts with easily guessed passwords, such as combinations 

of users' names or dictionary words, allow another easy way into the machine. 

Once the attacker has gained control of the host, she installs the DDoS attack agent and makes sure 

that all traces of the intrusion are well hidden and that the code runs even after the machine is 

rebooted.DDoS attacks frequently involve hundreds or thousands of agents. It would be tedious and 

time consuming if the attacker had to manually break into each of them. Instead, there are automated 

tools that discover potential agent machines, break into them, and install the attack code upon a single 

command from an attacker, and report success back to her. 

The attacker further hides her identity by deploying several layers of indirection between her machine 

and the agents. She uses one or several machines that deliver her commands to the agents. These 

machines are called Handlers or Masters. Figure 2.2 illustrates the Handler/Agent architecture: 

 

Fig2- 2 Handler/Agent architecture 



11 

 

Another layer of indirection consists of the attacker's logging on to several machines in sequence, 

before accessing the handlers. These intermediary machines between the attacker's machine and the 

handlers are called the stepping stones, and are illustrated in figure2.3: 

 

Fig2- 3Stepping stone 

Both handlers and stepping stones are used to hinder investigation attempts. If authorities located and 

examined an agent machine, all its communication would point to one of the handlers. Further 

examination of the handler would point to a stepping stone and from there to another stepping stone. If 

stepping stones are selected from different countries and continents (and they usually are), it becomes 

very difficult to follow the trail back to the attacker's machine and unveil her identity. 

2.2.3 How Attacks Are Waged? 

 

Recruitment of the Agent Network 

a.) Finding Vulnerable Machines 

The attacker needs to find machines that she can compromise. To maximize the yield, she/he will want 

to recruit machines that have good connectivity and ample resources and are poorly maintained. 

Unfortunately, many of these exist within the pool of millions of Internet hosts. 

The process of looking for vulnerable machines is called scanning. Figure 2.4 depicts the simple 

scanning process. The attacker sends a few packets to the chosen target to see whether it is alive and 

vulnerable. If so, the attacker will attempt to break into the machine. 

 



12 

 

 

Fig2- 4 Simple Scanning Process 

Tools that can be used for scanning are blended threats and worms. 

Blended threats are individual program or group of programs that provide many services, in this case 

command and control using IRC bot and vulnerability scanning. 

A bot (derived from "robot") is a client program that runs in the background on a compromised host, 

and watches for certain strings to show up in an IRC channel. These strings represent encoded 

commands that the bot program executes, such as inviting someone into an IRC channel, giving the 

user channel operator permissions, scanning a block of addresses (netblock), or performing a DoS 

attack. Netblock scans are initiated in certain bots, such as Power, by specifying the first few octets of 

the network address (e.g., 192.168 may mean to scan everything from 192.168.0.0 to 

192.168.255.255). Once bots get a list of vulnerable hosts, they inform the attacker using the botnet (a 

network of bots that all synchronize through communication in an IRC channel). The attacker retrieves 

the file and adds it to her list of vulnerable hosts. Some programs automatically add these vulnerable 

hosts to the vulnerable host list, thereby constantly reconstituting the attack network. Network blocks 

for scanning are sometimes chosen randomly by attackers.Worms choose the addresses to scan using 

several methods. Figure 2.5 illustrates the worm propagation: 



13 

 

 

Fig2- 5 Worm Propagation 

• Completely randomly - Randomly choose all 32 bits of the IP address (if using IPv4) for 

targets, effectively scanning the entire Internet indiscriminately. 

• Within a randomly selected address range - Randomly choose only the first 8 or 16 bits of 

the IP address, then iterate from .0.0 through .255.255 in that address range. This tends to scan 

single networks, or groups of networks, at a time. 

• Using a hitlist - Take a small list of network blocks that are "target rich" and preferentially 

scan them, while ignoring any address range that appears to be empty or highly secured. This 

speeds things up tremendously, as well as minimizing time wasted scanning large unused 

address ranges. 

• Using information found on the infected machine - Upon infecting a machine, the worm 

examines the machine's log files that detail communication activity, looking for addresses to 

scan. For instance, a Web browser log contains addresses of recently visited Web sites, and a 

file known hosts contains addresses of destinations contacted through the SSH (Secure Shell) 

protocol. 

 



14 

 

b.) Breaking into Vulnerable Machines 

The attacker needs to exploit vulnerability in the machines that she is intending to recruit in order to 

gain access to them. You will find this referred to as "owning" the machine. The vast majority of 

vulnerabilities provide an attacker with administrative access to the system, and she can 

add/delete/change files or system settings at will. 

Once one or more vulnerabilities have been identified, the attacker incorporates the exploits for those 

vulnerabilities into his DDoS toolkit. Some DDoS tools actually take advantage of several 

vulnerabilities to propagate their code to as many machines as possible. These are often referred to as 

propagation vectors. 

c.)  Malware Propagation Methods: 

The attacker needs to decide on a propagation model for installing his malware. A simple model is the 

central repository, or cache, approach: The attacker places the malware in a file repository (e.g., an 

FTP server) or a Web site, and each compromised host downloads the code from this repository. One 

advantage of the caching model for the defender is that such central repositories can be easily 

identified and removed. Attackers installing trinoo [Ditf] and Shaft [DLD00] agents used such 

centralized approaches in the early days. Figure below illustrates propagation with central repository: 

 

 

Fig2- 6 Propagation with central repository 

Another model is the back-chaining, or pull, approach, wherein the attacker carries his tools from an 

initially compromised host to subsequent machines that this host compromises. Figure below 

illustrates propagation with back-chaining: 



15 

 

 

 

Fig2- 7 Propagation with back-chaining 

 

 Finally, the autonomous, push, or forward propagation approach combines propagation and exploit 

into one process. The difference between this approach and back chaining is that the exploit itself 

contains the malware to be propagated to the new site, rather than performing a copy of that malware 

after compromising the site. The worm carries a DDoS tool as a payload, and plants it on each infected 

machine. Recent worms have incorporated exploit and attack code, protected by a weak encryption 

using linear feedback shift registers. The encryption is used to defeat the detection of well-known 

exploit code sequences by antivirus or personal firewall software. Once on the machine, the code self-

decrypts and resumes its propagation. Figure 2.8 illustrates autonomous propagation: 

 

 

Fig2- 8 Autonomous Propagation 

 

2.2.4  Semantic Levels of DDoS Attacks 

There are several methods of causing a denial of service. Creating a DoS effect is all about breaking 

things or making them fail. There are many ways to make something fail, and often multiple 

vulnerabilities will exist in a system and an attacker will try to exploit (or target) several of them until 

she gets the desired result: The target goes offline. 



16 

 

a.) Exploiting a Vulnerability 

Vulnerability attacks involve sending a few well-crafted packets that take advantage of an existing 

vulnerability in the target machine. For example, there is a bug in Windows 95 and NT, and some 

Linux kernels, in handling improperly fragmented packets. Generally, when a packet is too large for a 

given network, it is divided into two (or more) smaller packets, and each of them is marked as 

fragmented. The mark indicates the order of the first and the last byte in the packet, with regard to the 

original. At the receiver, chunks are reassembled into the original packet before processing. The 

fragment marks must fit properly to facilitate reassembly. The vulnerability in the above kernels 

causes the machine to become unstable when improperly fragmented packets are received, causing it to 

hang, crash, or reboot. This vulnerability can be exploited by sending two malformed UDP packets to 

the victim. There were several variations of this exploit—fragments that indicate a small overlap, a 

negative offset that overlaps the second packet before the start of the header in the first packet, and so 

on. These were known as bonk, boink, teardrop, and new tear exploits. 

b.) Attacking a Protocol 

An ideal example of protocol attacks is a TCP SYN flood attack. We first explain this attack and then 

indicate general features of protocol attacks. 

TCP session starts with negotiation of session parameters between a client and a server. The client 

sends a TCP SYN packet to the server, requesting some service. In the SYN packet header, the client 

provides his initial sequence number, a unique per-connection number that will be used to keep count 

of data sent to the server (so the server can recognize and handle missing, disordered, or repeated 

data). Upon SYN packet receipt, the server allocates a transmission control block (TCB), storing 

information about the client. It then replies with a SYN-ACK, informing the client that its service 

request will be granted, acknowledging the client's sequence number and sending information about 

the server's initial sequence number. The client, upon receipt of the SYN-ACK packet, allocates a 

transmission control block. The client then replies with an ACK to the server, which completes the 

opening of the connection. This message exchange is called a three-way handshake and is depicted in 

figure 2.9: 



17 

 

 

Fig2- 9 Three-way Handshake 

The potential for abuse lies in the early allocation of the server's resources. When the server allocates 

his TCB and replies with a SYN-ACK, the connection is said to be half-open. The server's allocated 

resources will be tied up until the client sends an ACK packet, closes the connection (by sending an 

RST packet) or until a timeout expires and the server closes the connection, releasing the buffer space. 

During a TCP SYN flooding attack, the attacker generates a multitude of half-open connections by 

using IP source spoofing. These requests quickly exhaust the server's TCB memory, 

and the server can accept no more incoming connection requests. Established TCP connections usually 

experience no degradation in service, though, as they naturally complete and are closed, the TCB 

records spaces they were using will be exhausted by the attack, not replaced by other legitimate 

connections. In rare cases, the server machine crashes, exhausts its memory, or is otherwise rendered 

inoperative. In order to keep buffer space occupied for the desired time, the attacker needs to generate 

steady stream of SYN packets toward the victim (to reserve again those resources that have been freed 

by timeouts or completion of normal TCP sessions). 

c.) Attacking Middleware 

Attacks can be made on algorithms, such as hash functions that would normally perform its operations 

in linear time for each subsequent entry. By injecting values that force worst-case conditions to exist, 

such as all values hashing into the same bucket, the attacker can cause the application to perform their 

functions in exponential time for each subsequent entry. 



18 

 

As long as the attacker can freely send data that is processed using the vulnerable hash function, she 

can cause the CPU utilization of the server to exceed capacity and degrade what would normally be a 

sub second operation into one that takes several minutes to complete. It does not take a very large 

number of requests to overwhelm some applications this way and render them unusable by legitimate 

users. 

d.) Attacking an Application 

The attacker may target a specific application and send packets to reach the limit of service requests 

this application can handle. For example, Web servers take a certain amount of time to serve normal 

Web page requests, and thus there will exist some finite number of maximum requests per second that 

they can sustain. If we assume that the Web server can process 1,000 requests per second to retrieve 

the files that make up a company's home page, then at most 1,000 customers' requests can be processed 

concurrently. For the sake of argument, let's say the normal load a Web server sees daily is 100 

requests per second (one tenth of capacity). 

e.) Pure Flooding 

Given a sufficiently large number of agents, it is possible to simply send any type of packets as fast as 

possible from each machine and consume all available network bandwidth at the victim. This is a 

bandwidth consumption attack. The victim cannot defend against this attack on her own, since the 

legitimate packets get dropped on the upstream link, between the ISP and the victim network. Thus, 

frequently the victim requests help from its ISP to filter out offending traffic. 

2.2.5 Attack Toolkits 

While some attackers are sophisticated enough to create their own attack code, far more commonly 

they use code written by others. Such code is typically built into a general, easily used package called 

an attack toolkit. 

2.3 Intrusion Detection System 

Intrusion detection systems (IDSs) are software or hardware systems that automate the process of 

monitoring the events occurring in a computer system or network, analyzing them for signs of security 

problems. As network attacks have increased in number and severity over the past few years, intrusion 

detection systems have become a necessary addition to the security infrastructure of most 

organizations. Intrusions are caused by attackers accessing the systems from the Internet, authorized 



19 

 

users of the systems who attempt to gain additional privileges for which they are not authorized, and 

authorized users who misuse the privileges given them. 

2.3.1 Need for IDS 

Intrusion detection allows organizations to protect their systems from the threats that come with 

increasing network connectivity and reliance on information systems.  Given the level and nature of 

modern network security threats, the question for security professionals should not be whether to use 

intrusion detection, but which intrusion detection features and capabilities to use. IDSs have gained 

acceptance as a necessary addition to every organization’s security infrastructure.  Despite the 

documented contributions intrusion detection technologies make to system security, in many 

organizations one must still justify the acquisition of IDSs. There are several compelling reasons to 

acquire and use IDSs: 

1.) To prevent problem behaviors by increasing the perceived risk of discovery and punishment for 

those who would attack or otherwise abuse the system. 

2.) To detect attacks and other security violations those are not prevented by other security measures. 

3.) To detect and deal with the preambles to attacks (commonly experienced as network probes and 

other “doorknob rattling” activities) 

4.) To document the existing threat to an organization. 

5.) To provide useful information about intrusions that do take place, allowing improved diagnosis, 

recovery, and correction of causative factors. 



20 

 

2.3.2 Classification of IDS 

 

Fig2- 10 Classification of IDS 

 

Intrusions can be divided into 6 main types: 

1. Attempted break-ins, which are detected by atypical behavior profiles or violations of security 

constraints.  

2. Masquerade attacks, which are detected by atypical behavior profiles or violations of security 

constraints.  

3. Penetration of the security control system, which are detected by monitoring for specific 

patterns of activity.  

4. Leakage, which is detected by atypical use of system resources.  

5. Denial of service, which is detected by atypical use of system resources.  

6. Malicious use, which is detected by atypical behavior profiles, violations of security 

constraints, or use of special privileges.  

INTRUSION DETECTION SYSTEM 

Intrusion 

Detection 

Approach 

Protected 

System 

Structure 
Behavior 

after an 

Attack 

Analysis 

Timing 

Anomaly 

Detection 

Misuse 

Detection 

HIDS 

Hybrid 

NIDS 

Centralized 

Distributed 

Active 

Passive 

Real 

Time 

Interval 

Based 



21 

 

There are two primary approaches to analyzing events to detect attacks: 

Misuse detection and anomaly detection. Misuse detection, in which the analysis targets something 

known to be “bad”, is the technique used by most commercial systems. Anomaly detection, in which 

the analysis looks for abnormal patterns of activity, has been, and continues to be, the subject of a 

great deal of research. Anomaly detection is used in limited form by a number of IDSs. There are 

strengths and weaknesses associated with each approach, and it appears that the most effective IDSs 

use mostly misuse detection methods with a smattering of anomaly detection components. 

2.4 Behavior after attacks 

Active Responses 

Active IDS responses are automated actions taken when certain types of intrusions are detected. There 

are three categories of active responses. 

Collect additional information 

The most innocuous, but at times most productive, active response is to collect additional information 

about a suspected attack. Each of us has probably done the equivalent of this when awakened by a 

strange noise at night. The first thing one does in such a situation is to listen more closely, searching 

for additional information that allows you to decide whether you should take action. 

In the IDS case, this might involve increasing the level of sensitivity of information sources. This 

option also allows the organization to gather information that can be used to support investigation and 

apprehension of the attacker, and to support criminal and civil legal remedies. 

Change the Environment 

Another active response is to halt an attack in progress and then block subsequent access by the 

attacker. Typically, IDSs do not have the ability to block a specific person’s access, but instead block 

Internet Protocol (IP) addresses from which the attacker appears to be coming. It is very difficult to 

block a determined and knowledgeable attacker, but IDSs can often deter expert attackers or stop 

novice attackers by taking the following actions: 

• Injecting TCP reset packets into the attacker’s connection to the victim system, thereby 

terminating the connection 



22 

 

• Reconfiguring routers and firewalls to block packets from the attacker’s apparent location (IP 

address or site), 

• Reconfiguring routers and firewalls to block the network ports, protocols, or services being 

used by an attacker, and 

• In extreme situations, reconfiguring routers and firewalls to sever all connections that use 

certain network interfaces. 

Take Action against the Intruder 

Some who follow intrusion detection discussions, especially in information warfare circles, believe 

that the first option in active response is to take action against the intruder. The most aggressive form 

of this response involves launching attacks against or attempting to actively gain information about the 

attacker’s host or site. However tempting it might be, this response is ill advised. Due to legal 

ambiguities about civil liability, this option can represent a greater risk than the attack it is intended to 

block. The first reason for approaching this option with a great deal of caution is that it may be illegal. 

Furthermore, as many attackers use false network addresses when attacking systems, it carries with it a 

high risk of causing damage to innocent Internet sites and users. Finally, strike back can escalate the 

attack, provoking an attacker who originally intended only to browse a site to take more aggressive 

action.  Should an active intervention and trace back of this sort be warranted (as in the case of a 

critical system) human control and supervision of the process is advisable. We strongly recommend 

that you obtain legal advice before pursuing any of these “strike-back” options. 

Passive Responses 

Passive IDS responses provide information to system users, relying on humans to take subsequent 

action based on that information. Many commercial IDSs rely solely on passive responses. 

Alarms and Notifications: 

Alarms and notifications are generated by IDSs to inform users when attacks are detected. Most 

commercial IDSs allow users a great deal of latitude in determining how and when alarms are 

generated and to whom they are displayed. 



23 

 

The most common form of alarm is an onscreen alert or popup window.  This is displayed on the IDS 

console or on other systems as specified by the user during the configuration of the IDS. The 

information provided in the alarm message varies widely, ranging from a notification that an intrusion 

has taken place to extremely detailed messages outlining the IP addresses of the source and target of 

the attack, the specific attack tool used to gain access, and the outcome of the attack. 

3.2 FIREWALLS 

Internet connectivity is no longer optional for organizations. The information and services available 

are essential to the organization. Moreover, individual users within the organization want and need 

Internet access, and if this is not provided via their LAN, they will use dial-up capability from their PC 

to an Internet service provider (ISP). However, while Internet access provides benefits to the 

organization, it enables the outside world to reach and interact with local network assets. This creates a 

threat to the organization. While it is possible to equip each workstation and server on the premises 

network with strong security features, such as intrusion protection, this is not a practical approach. 

Consider a network with hundreds or even thousands of systems, running a mix of various versions of 

UNIX, plus Windows. When a security flaw is discovered, each potentially affected system must be 

upgraded to fix that flaw. The alternative, increasingly accepted, is the firewall. The firewall is inserted 

between the premises network and the Internet to establish a controlled link and to erect an outer 

security wall or perimeter. The aim of this perimeter is to protect the premises network from Internet-

based attacks and to provide a single choke point where security and audit can be imposed. The 

firewall may be a single computer system or a set of two or more systems that cooperate to perform the 

firewall function. 

2.6.1 Types of Firewalls 

There are three common types of firewalls:  

A.)Packet-Filtering Router 

A packet-filtering router makes a permit/deny decision for each packet that it receives. The router 

examines each datagram to determine whether it matches one of its packet-filtering rules. The filtering 

rules are based on the packet header information that is made available to the IP forwarding process. 

This information consists of the IP source address, the IP destination address, the encapsulated 

protocol (TCP, UDP, ICMP, or IP Tunnel), the TCP/UDP source port, the TCP/UDP destination port, 



24 

 

the ICMP message type, the incoming interface of the packet, and the outgoing interface of the packet. 

If a match is found and the rule permits the packet, the packet is forwarded according to the 

information in the routing table. If a match is found and the rule denies the packet, the packet is 

discarded. If there is no matching rule, a user-configurable default parameter determines whether the 

packet is forwarded or discarded 

 

Fig2- 11 Packet-filtering Router 

 

Some typical filtering rules include:  

• Permit incoming Telnet sessions only to a specific list of internal hosts  

• Permit incoming FTP sessions only to specific internal hosts  

• Permit all outbound Telnet sessions  

• Permit all outbound FTP sessions  

• Deny all incoming traffic from specific external networks  

B.) Application-level gateways  

An application-level gateway, also called a proxy server, acts as a relay of application-level traffic. 

The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the gateway 

asks the user for the name of the remote host to be accessed. When the user responds and provides a 

valid user ID and authentication information, the gateway contacts the application on the remote host 

and relays TCP segments containing the application data between the two endpoints. If the gateway 

does not implement the proxy code for a specific application, the service is not supported and cannot 



25 

 

be forwarded across the firewall. Further, the gateway can be configured to support only specific 

features of an application that the network administrator considers acceptable while denying all other 

features. 

Application-level gateways tend to be more secure than packet filters. Rather than trying to deal with 

the numerous possible combinations that are to be allowed and forbidden at the TCP and IP level, the 

application-level gateway need only scrutinize a few allowable applications. In addition, it is easy to 

log and audit all incoming traffic at the application level. 

 

Fig2- 12 Application-level Gateway 

 

A prime disadvantage of this type of gateway is the additional processing overhead on each 

connection. In effect, there are two spliced connections between the end users, with the gateway at the 

splice point, and the gateway must examine and forward all traffic in both directions. 

C.) Circuit-level gateways 

A third type of firewall is the circuit-level gateway .This can be a stand-alone system or it can be a 

specialized function performed by an application-level gateway for certain applications. A circuit-level 

gateway does not permit an end-to-end TCP connection; rather, the gateway sets up two TCP 

connections, one between itself and a TCP user on an inner host and one between itself and a TCP user 

on an outside host. Once the two connections are established, the gateway typically relays TCP 

segments from one connection to the other without examining the contents. The security function 

consists of determining which connections will be allowed. 

A typical use of circuit-level gateways is a situation in which the system administrator trusts the 

internal users. The gateway can be configured to support application-level or proxy service on inbound 



26 

 

connections and circuit-level functions for outbound connections. In this configuration, the gateway 

can incur the processing overhead of examining incoming application data for forbidden functions but 

does not incur that overhead on outgoing data. 

 

 

Fig2- 13 Circuit-level Gateway 

 

2.6.2 Applications of Firewall 

A firewall is primarily used to provide security to the computer network of an organization. Since a 

firewall may be used to prevent a large class of network attacks, we may classify the applications of 

firewall as follows: 

1.) Filtering: Firewalls can filter a data packet at various layers of the Internet protocol hierarchy. A 

firewall is generally deployed at the perimeter of the computer network of an organization. It can, 

therefore, examine every data packet that goes in or comes out of the computer network. This feature 

allows a firewall to deny the malicious data packets from entering the computer network of the 

organization.  

 

2.) DOS prevention: A firewall is often used to prevent Denial-of-Service attacks launched against the 

hosts in the computer network of the organization. Such a firewall enforces a maximum on the number 

of simultaneous connections that can be opened on any host at a given point of time. At this stage, if a 



27 

 

user in the outside Internet desires to open a new connection on the host, the firewall simply rejects the 

data packet from entering the computer network.  

 

3.) Detection of IP address spoofing: A firewall can be configured to detect and filter a data packet 

that has an incorrect source IP address. In order to check the legitimacy of the source IP address, the 

firewall connects to the DHCP server of the source host and verifies that the hardware address i.e. the 

MAC address of the source host corresponds to its IP address 

2.6.3 Capabilities of Firewall 

The following capabilities are within the scope of a firewall: 

1. A firewall defines a single choke point that keeps unauthorized users out of the protected 

network, prohibits potentially vulnerable services from entering or leaving the network, and 

provides protection from various kinds of IP spoofing and routing attacks. The use of a single 

choke point simplifies security management because security capabilities are consolidated on a 

single system or set of systems. 

2. A firewall provides a location for monitoring security-related events. Audits and alarms can be 

implemented on the firewall system. 

3. A firewall is a convenient platform for several Internet functions that are not security related. 

These include a network address translator, which maps local addresses to Internet addresses, 

and a network management function that audits or logs Internet usage. 

2.6.4 Limitations 

Firewalls have their limitations, including the following: 

1. The firewall cannot protect against attacks that bypass the firewall. Internal systems may have 

dial-out capability to connect to an ISP. An internal LAN may support a modem pool that 

provides dial-in capability for traveling employees and telecommuters. 

2. The firewall does not protect against internal threats, such as a disgruntled employee or an 

employee who unwittingly cooperates with an external attacker. 



28 

 

3. The firewall cannot protect against the transfer of virus-infected programs or files. Because of 

the variety of operating systems and applications supported inside the perimeter, it would be 

impractical and perhaps impossible for the firewall to scan all incoming files, e-mail, and 

messages for viruses. 

 

 

 



29 

 

 

CHAPTER 3: HONEYPOT SYSTEM 

3.1 Honey Pot Systems 

Several novel additions to the intrusion detection product line are under development and may soon 

become available. It is important to understand how these products differ from traditional IDSs and to 

realize that they are not yet widely used. 

Honey pots are decoy systems that are designed to lure a potential attacker away from critical systems. 

Honey pots are designed to: 

• Divert an attacker from accessing critical systems, 

• Collect information about the attacker’s activity, and 

• Encourage the attacker to stay on the system long enough for administrators to respond. 

 

These systems are filled with fabricated information designed to appear valuable but that a legitimate 

user of the system wouldn’t access. Thus, any access to the honey pot is suspect. The system is 

instrumented with sensitive monitors and event loggers that detect these accesses and collect 

information about the attacker’s activities. 

• An expert attacker, once diverted into a decoy system, may become angry and launch a more 

hostile attack against an organization’s systems. 

• A high level of expertise is needed for administrators and security managers in order to use 

these systems. 

(Note: Discussed in Detail in later Chapter 2.5) 

3.2 Honeypots 

A honeypot is an information system resource whose value lies in unauthorized or illicit use of that 

resource. The strategy behind honeypots is to shut intruders safely from production systems and to 

obtain information about the intruders by logging their actions. Honeypots do not replace firewalls and 

IDS but are used in conjunction with them.  



30 

 

 

3.3 Purposes of Honeypot 

1) The first purpose of Honeypots is to enable the controller to view the hacker and see where and 

how the hacker is breaking in.  

2) The second purpose of Honeypots is to trap and stop the hacker while he is breaking into the 

system.  

3) The third purpose of Honeypots is to enable the controllers to make better and more secure 

systems.  

3.4 Classification of Honeypots 

Honeypots are broadly classified via three methods: 

1.Based on  implementation 

A virtual honeypot is basically an emulated server. There are both hardware and software 

implementations of virtual honeypots. For example, if a network administrator was concerned that 

someone might try to exploit an FTP server, the administrator might deploy a honeypot appliance that 

emulates an FTP server. 

Real honeypots run on real operating systems (usually Windows or Linux) and real server software i.e. 

they work on real components rather than emulating an environment. 

2. Based on usage 

Production honeypots are used to protect organizations. Production honeypots can significantly reduce 

the risk of intrusion by uncovering vulnerabilities and alert administrators of attacks. They add value to 

security measures of an organization. Commercial organizations used production honeypots to help 

protect their network. 

Research honeypots are used to research the threats organizations face, and how to better protect 

against those threats. These types of honeypots are more focused on researching the actions of intruder 

by using a number of different configurations to lure them in. The Honeypot Project, for example is a 

volunteer, non-profit security research organization that uses honeypots to collect information to cyber 

threats. 



31 

 

 

3. Based on level of involvement 

Low Interaction Honeypots would be characterized by its minimal interaction with the hacker. These 

types of honeypots typically emulate a specific service like ftp or http. They are much simpler to 

deploy and maintain, but bog only a limited amount of information regarding the hacker’s activities. 

High Interaction Honeypot gives a real operating system to attack upon. This exposes the 

system to ample of risk and complexity. At the same time the possibility to accumulate information 

about the attack as well as the attractiveness of the honeypot increases a lot, so they are specially used 

for research purposes. 

 

Low interaction High interaction 

• Solution emulates operation 

systems and services. 

• Minimal risk, as the emulated 

services control what attackers can 

and cannot do. 

• Captures limited amounts of 

information, mainly transactional 

data and some limited interaction 

 

• No emulation, real operating 

systems and services are provided 

• Can capture far more information, 

including new tools, 

communications, or attacker 

keystrokes. 

• Can be complex to install or deploy 

(commercial versions tend to be 

much simpler). 

• Increased risk, as attackers are 

provided real operating systems to 

interact with 

 

Fig3- 1 Low interaction and High interaction Honeypot 

 



32 

 

3.5 Placement of Honeypots 

 

Fig3- 2 Placement of Honeypot 

 

Honeypots can be placed externally as well as internally. Conceptually they can be placed at three 

main locations in an organization: 

A honeypot does not need a certain surrounding environment as it is a standard server with no special 

needs. A honeypot can be placed anywhere a server could be placed. But certainly, some places are 

better for certain approaches as others. A honeypot can be used on the Internet as well as the intranet, 

based on the needed service.  

Placing a honeypot on the intranet can be useful if detecting some bad guys inside a private network is 

wished. It is especially important to set the internal thrust for a honeypot as low as possible as this 

system could be compromised, probably without immediate knowledge. A honeypot can be placed at 

following locations: 

•  In front of the firewall (Internet) 

•  DMZ 

•  Behind the firewall (intranet) 

Each approach has its advantages as well as disadvantages. 

 



33 

 

Sometimes it is even impossible to choose freely as placing a server in front of a firewall is simply not 

possible or not wished. By placing the honeypot in front of a firewall, the risk for the internal network 

does not increase. The danger of having a compromised system behind the firewall is eliminated. A 

honeypot will attract and generate a lot of unwished traffic like port scans or attack patterns. By 

placing a honeypot outside the firewall, such events do not get logged by the firewall and an internal 

IDS system will not generate alerts. Otherwise, a lot of alerts would be generated on the firewall or 

IDS. Probably the biggest advantage is that the firewall or IDS, as well as any other resources, have 

not to be adjusted as the honeypot is outside the firewall and viewed as any other machine on the 

external network. Running a honeypot does therefore not increase the dangers for the internal network 

nor does it introduce new risks.  

The disadvantage of placing a honeypot in front of the firewall is that internal attackers can not be 

located or trapped that easy, especially if the firewall limits outbound traffic and therefore limits the 

traffic to the honeypot.  

Placing a honeypot inside a DMZ honeypot (B) seems a good solution as long as the other systems 

inside the DMZ can be secured against the honeypot. Most DMZs are not fully accessible as only 

needed services are allowed to pass the firewall. In such a case, placing the honeypot in front of the 

firewall should be favored as opening all corresponding ports on the firewall is too time consuming 

and risky.  

3.6 Advantages and Disadvantages of Honeypots 

If knowledge is power to the attacker, so is it to the security practitioner. Knowing both the advantages 

and the disadvantages of honeypots is a must-know. By knowing the inherent risks in honeypots, we 

can use this knowledge to mitigate these risks and circumvent the disadvantages. We highlight some of 

these disadvantages and advantages below: 

Advantages 

• Simplicity of the honeypot. 

• They do not include any actual production services, so no one in the organization will need 

to access the honeypot. For this reason, any connection to the honeypot is likely scan or 

attack. 



34 

 

• Unlike intrusion detection systems, which only identify when and how an attacker got into 

the network, a honeypot is a distraction as well. 

• Small data sets of high value: Honeypots reduce ‘noise’ by collecting only small data sets, 

but information of high value, as it is only the bad guys. This means its much easier (and 

cheaper) to analyze the data a honeypot collects an derive value from it. They provide a lot 

of useful information on attacker’s movement within the system. 

• A honeypot can also be used as an early warning system, alerting administrators of any 

hostile intent before the real system is compromised. 

• Minimal resources: Honeypots require minimal resources, they only capture bad activity. 

• Information: Honeypots can collect in-depth information that few, if any other technologies 

can match. 

Disadvantages 

• Honeypots are worthless if no one attacks them. 

• Honeypots can be used as a launching platform to attack other machines. 

• Honeypots encourage an aggressive atmosphere and add risk to a network. 

• If a honeypot is successfully broken into, the attacker can use this to begin other attacks. 

• If the honeypot is attacked, the administrator should prevent major changes to the honeypot, 

because any noticeable changes will make the attacker more suspicious. 



35 

 

 

CHAPTER 4: DETECTION ALGORITHM 

 

At the heart of the system lies our DDoS detection algorithm. Without a detection mechanism in place, 

we can only demonstrate a live DDoS and the affect  that it has over a server. This has been explored 

before and so implementation of an algorithm was very crucial for our project. In the following section 

we give a brief overview of the various ways of detecting a DDoS and the ones that we have used to 

do so. 

 

4.1 Detection Mechanisms 

 

There are a number of mechanisms which have been developed to detect a Distributed Denial of 

Service Attack. Each  of these is based on a unique technique such as monitoring of all packets which 

arrive at a particular node, analyzing the data contents and header values of a packet, traffic flow 

analysis, use of traffic fingerprints to detect an abnormal spike in packet volume, etc. We describe the 

various mechanisms which we analyzed briefly.  

 

4.1.1 Packet Data Analysis 

 

In this approach all the data packet which are destined for the server are scrutinized at the firewall 

before they are routed to the internal network. The data part of the packet is analyzed to check if its 

contents are those which match the services provided by the server. Thus a rule based packet filtering 

firewall is required to implement an algorithm based on this approach.  

This detection algorithm works best against flooding attacks which send data packets with garbage 

values. However, it has a serious drawback. It fails miserably against attack which is carried out using 

legitimate traffic.  

An attacker could very easily bring down a server using hundreds of zombies each of which will 

establish multiple connections with the server and pose as legitimate clients. Since the network traffic 

will consist of data packets whose contents are "legitimate" according to rules defined earlier, they will 

be allowed through. The server will be bogged down responding to zombies while not even realizing 

that a DDoS has been launched against it. 



36 

 

 

4.1.2 Use of Traffic Fingerprints 

 

In this approach the traffic data is constantly monitored. A number of different parameters are 

measured such as the number of data packets which arrive at a port, the time in which they arrive, the 

protocol that they were based on, the order in which they arrive, etc. This technique makes use of 

complex mathematical functions to arrive at the fingerprint of the network traffic and then compares 

them with a large database of previously defined fingerprints. This database contains fingerprint of 

previously known attacks. 

This approach has a number of drawbacks: 

• It requires frequent update of the fingerprint database to correctly detect an attack. 

• The network traffic needs to be monitored extensively and this adds consider overhead. 

• A new attack is almost always missed by the detection mechanism as there doesn't exist a 

fingerprint in the database which is same as the fingerprint of the attack. 

• For attacks which take place over long durations and are distributed over thousands of 

machines the detection mechanism fails miserably. This is because during the beginning stages 

the attack traffic is hidden under normal traffic and so detection fails. 

 

4.1.3 Traffic Flow Analysis 

 

In this mechanism, the traffic flow is analyzed and important parameters such as the originating IP 

Address of each packet, the traffic volume which  

 

4.2 Our Approach 

 

Of the numerous algorithms available we have used Source IP Address Monitoring algorithm 

developed by Tao Peng, Christopher Leckie and Kotagiri Ramamohanarao. 

It is a traffic flow analysis algorithm and the parts of it which we have implemented are detailed 

below. 

The proposes scheme is called Source IP address Monitoring(SIM) to detect the Distributed Denial of 

Service. It uses huge number IP addresses in the attack traffic to the victim. 



37 

 

SIM contains two parts: off-line training, and detection and learning. In off-line training  a learning 

engine adds legitimate IP addresses (IAD) and keeps  the IAD updated by adding  new legitimate IP 

address and deleting expired  IP addresses. A simple rule can be used to decide whether a new IP 

address is legitimate or not. 

Second part is detection and learning. During this period , we collect several statistics of incoming 

traffic for the current time interval. In our detection engine, a hash table is used to record the IP 

addresses that appeared in the current time interval. Every hash table entry contains two fields, the 

number of IP packets and the time stamp of the most recent packet for that IP address, which is 

illustrated in the following diagram. 

 

 

 

Fig4- 1 Hash Table for Detection Engines 

 

Let Anormal, Aflash, Aattack represent the number of packets, and Bnormal, Bflash, Battack represent the number 

of new IP addresses for normal traffic conditions, flash crowds and DDoS attacks respectively in a 

certain time period ∆n. Now we have made the following assumptions: 

• Anormal<< Aflash≈ Aattack 

• Bnormal<< Bflash≈ Battack 



38 

 

For a typical DDoS attack, since the attack traffic from each “zombie” is randomly spoofed, almost 

every packet will be new to the monitoring point. Hence Battack will be large. 

 

4.2.1 The detection feature 

 

We collect the IP addresses during each time slot ∆n (n=1, 2, 3, ...), which determines the detection 

resolution. We assume ∆1 =∆2 = ::: = ∆n, which means the time slots are of equal length. The choice 

of ∆n is a compromise between making ∆n small so that the detection engine can quickly detect an 

attack, and making ∆n large so that the detection engine has less computation load because it checks 

the traffic less often. 

Let Tn represent the set of unique IP addresses and Dn represent the items of IP Address Database 

(IAD) at the end of the time interval ∆n (n = 1; 2; 3; :::). As has been discussed before, |Tn-Tn∩Dn| , 

which represents the number of new IP addresses in ∆n, is used to detect the DDoS attack. 

This is the proposed architecture of our algorithm. 

 

 

Fig4- 2 DDos attack detection and history-based IP source address filtering 



39 

 

CHAPTER 5: PROPOSED DESIGN AND IMPLEMENTATION 

 

5.1 Proposed Design of Project 

There are three main modules in this project. Each of this corresponds to a specific functionality which 

is required for the running of the system. We needed a robust firewall, a light weight server based 

application and a low interaction honeypot system. 

 

 

 

Fig5- 1 Proposed design of Web Server system for detection of DDoS attacks 

 

 

 

 



40 

 

 

 

5.1.1 Firewall 
 

A firewall has been introduced to insure that all outgoing traffic was generated from the web server 

and is a response to a legit request made by the remote client. This ensures that just in case the system 

is compromised, it cannot be used to launch attacks against other computers. 

A very unique feature of the firewall is that it allows all incoming traffic but restricts the outgoing 

traffic. 

The firewall runs on a computer other than a honeypot system and is keeps a record of all incoming 

requests by storing the IP Address of each incoming packet in an array. 

It then matches the IP Address of all outgoing packets to the list of stored Addresses and rejects all 

those which haven’t been mapped before. 

 

5.1.2 Server 

 

We need a simple server based light application. The reason for choosing a simple light weight 

application is that we will have to launch a massive attack to disrupt the communication of our server 

application.  

For this purpose, we have used as simple chat room application. In this system, multiple clients 

connect to the server which runs at a particular port and IP Address. It listens to the message sent by 

each of the application and the broadcasts the simple message to the remaining clients. 

The program running on server end makes minimal use of the underlying processor power and 

network resources available to it and so is perfect for studying a how a Distributed Denial of Service 

Attack affects the functioning of a networked application. 

 

5.1.3 Honeypot 

 

The honeypot we intend to use is a low interaction port monitoring device. It emulates a telnet service 

and runs at port 23 (just like a real telnet service). It has been added to study what steps does an 

intrudertake to exploit vulnerability in a system. The honeypot records the key strokes which an 

attacker makes.  

It allows the attacker to log in using the user-name, password pair guest, guest or user, user and then 

doesn't respond to any of the command issued to it. Any skilled attacker will very easily determine that 



41 

 

the telnet service is fake and will log out but even in that short duration the honeypot would have 

traced the attacker's movements. 

 

5.2 Modular Design 

 

 

 

Fig5- 2 Design of the Project Part 

 

5.3 Hardware and Software Requirements 

 

Hardware Requirements 

1. 5 PC’s or workstations with  Pentium IV processor or above 

2. Each PC having at least 1 Gb of RAM. 

3. One 8 to 1 fast Ethernet switch  

4. 5 LAN wires. 

 

Software Requirements 

1. LOIC v1.07.0– to launch the DDoS attack. 

2. OS - Windows XP SP2 

MODULE 1 

 

PC – 1 to simulate 

and launch a DDoS  

Attack. 

MODULE 2 

 

Firewall 

MODULE 3 

 

Honeypot 

System 

 
MODULE 4 

 

Server 



42 

 

3. Net Beans IDE 

4. 32 bit version of Java Development Kit v 1.6.0_01 and Java Runtime Environment v 1.6.0_01 

5.4 Software Used for Launching Flooding Attack 

 

The software used in the project for launching DDoS attack is LOIC-1.0.7.42 which was taken up from 

the internet, often used by script kiddies for launching attacks. It is used for flooding the destination 

machine with bogus traffic thus soaking up its network connections and disabling it from being able to 

respond in time to its legitimate clients. 

It is a GUI based tool which allows a user to launch an attack against a machine. 

 

 

 

Fig5- 3 GUI of LOIC-1.0.7.42 

 

It has the following fields 

1) Select your target: This allows the user to select the machine to be attacked . It has the following 

options 



43 

 

a) URL: Select the target by specifying the URL of the target machine. 

b) IP Address: Select the target by specifying the IP Address of the target machine. 

Each of these fields allow the option of lock on which lets the tool locate the device and tell the user if 

it can't be found. 

2)    Attack options: These contain a number of option which are provided by the tool. These are                          

described below 

a)   Timeout: Lets the user define the time, in seconds, after which he wants to terminate the    attack. 

b)   Threads: Lets the user specify the number of threads with which he wants to flood the target 

machine. Each new thread creates a new connection with the target machine and sends in more packets 

to it. 

c)   Type: This allows the user to choose which protocol will be used to send the flooding packets. 

They can be either of TCP, UDP or HTTP. 

d)   Port: Specify the port number at which the packets are to be sent. 

e)   HTTP Subtitle: The domain name can be specified here and the tool sends flooding packets to 

here. 

 

 



44 

 

  

Fig5- 4 An attack in progress using LOIC v1.07.0 

 

5.5 Working Mechanism 

 

Consider a scenario where a server of a network had been providing services through some port say 

2222. We set up a honeypot at port 23 and wait for an intruder to try to gain access to. Next we launch 

an attack on port 2222 using the tools described above and see what steps the intruder will take to 

compromise the system. 

1. When the attack takes place against our system it is detected by the DDoS detection algorithm 

and all the malicious traffic is stopped from being routed to the server. 

2. We conduct the attack in absence of the DDoS detection mechanism to find how the server 

responds to this attack and how much the performance of the chat room application suffers. 

3. We record the effectiveness of the DDoS detection mechanism in both detecting the attack and 

then in filtering the malicious traffic from the legitimate ones. This is essential for the smooth 

running of our server application. 



45 

 

4. Even during the attack the packets which are destined for the honeypot are allowed to pass 

through and routed to the firewall. 



46 

 

 

 

5.6 Software Development Life Cycle 

 

The incremental model combines elements of the linear sequential model with the iterative philosophy 

of prototyping. The incremental model applies linear sequences in a staggered fashion as calendar time 

progresses.  

 

Fig5- 5 Incremental model 

 

In the analysis phase of the SDLC, we start with the analysis of the problem statement and then the 

detailed understanding of the objective and the goals of the problem was carried out. For 

understanding of the problem, the basic requirement was the detailed study of the major topics related 

to our project. The topics which required such deep study were DDoS, firewalls and Honeypot 

systems. The issues that were equally dealt with were virus, worms, spy ware and phishing.In the 

designing phase of the life cycle, a number of available designs were studied and hence with proper 

modifications in some the best of them, we came out with the most feasible one.  



47 

 

 

5.7 Data Flow Diagrams 

Level 0 DFD 

 

Fig5- 6 Level 0 DFD 

Level 1 DFD: 

 

Fig5- 7 Level 1 DFD

Internet 

Server 

Packet 

Flow 

 

Packet Data 

Firewall 

Packet 

Flow 

Honeypot 

INTERNET 
HONEYPOT 

SYSTEMS SERVER 

Packet 

Flow 

Erroneous 

Information 

Flow  



48 

 

CHAPTER 6: CODE SNIPPET 

 

A brief overview of the all the classes used in different modules is given below. Apart from the native 

APIs provided in JDK two other libraries have been used. Their functionalities are also briefly 

explained. 

6.1 jpcap Packet Capture Library 

 

Java language doesn't have any native APIs  which allow data to be captured in packet form enabling it 

to be read in the form of an IP packet. It was essential to read data in raw packet form for packet 

filtering firewall to function properly. jpcap implements bindings to the libpcap system library through 

JNI (the Java Native Interface). Jpcap is based on libpcap/winpcap, and is implemented in C and Java. 

jpcap consists of a small shared-library which wraps libpcap plus a collection of Java classes. 

The class jpcap.capture.PacketCapture allows packets to be captured either as a UDP, TCP, DataLink 

or as an IP packet format. This enables extracting of the IP Header and data segment part of the packet 

data by the firewall. 

The jpcap distribution includes both  

• A tool for real-time network traffic capture and analysis  

• An API for developing packet capture applications in Java  

 

6.1.1 NetworkInterfaceAddress 

 

The NetworkInterfaceAddress class is used to store address that is retrieved from a captured packet. 

The fields address, subnet, broadcast and source are all of type InetAddress and store the ip address of 

the destination machine, subnet mask, broadcast value and the ip address of the source of the packet 

respectively 

 



49 

 

6.1.2 Class NetworkInterface 

 

A NetworkInterface object contains some information about the corresponding network interface, such 

as its name, description, IP and MAC addresses, and datatlink name and description. To capture 

packets from a network, the first thing that needs to be done is to obtain the list of network interfaces 

on your machine. To do so, Jpcap provides JpcapCaptor.getDeviceList() method. It returns an array of 

NetworkInterface objects. The fields contained datalink, name and description are of type String while 

the field mac_address is of type byte. As their name suggests the mac_address field stores the 

mac_address of the source device while the name field contains the name of the device. 

 

6.1.3 Class JpcapCaptor 

 

It is used for capturing data packets. Once you obtain an instance of  JpcapCaptor, you can capture 

packets from the interface. There are two major approaches to capture packets using a 

 JpcapCaptor instance: using a callback method, and capturing packets one-by-one. In method callback 

approach, we  implemented a callback method to process captured packets, and then pass the callback 

method to Jpcap so that Jpcap calls it back every time it captures a packet.  

First, we implemented a callback method by defining a new class which implements the 

 PacketReceiver interface. The PacketReceiver interface defines  a  receivePacket() method, so we 

needed to implement a receivePacket() method in our class as well. 

 

6.1.4 Class PacketDispatcher 

 

This class encapsulates a mechanism for dispatching network data and packets to a listener who has 

subscribed to such events. 

Since this class doesn't contain an implementation for handling real network data, it is abstract.The 

following functions were utilised. 

 



50 

 

dispatchPacket()  

Dispatches a packet to all registered listeners. 

addPacketListener()  

Registers a packet object listener with this capture system. 

removePacketListener()  

Deregisters a packet object listener from this capture system 

 

6.2 Package firewall 

 

The classes contained in this package are Firewall and DetectDDoS. This is the package which 

implements the code for the firewall module. It is here that each incoming packet is rerouted and each 

outgoing packet is scanned. 

6.2.1 Class Firewall 

The Firewall class implements a packet filtering proxy gateway. All incoming traffic packets are either 

forwarded to the Server or to the Honeypot. Since, the use of a honeypot exposes the organization to 

the risk of the Honeypot being compromised and being used for launching an attack against other 

computers, therefore each outgoing packet has to be scanned as well. This class has a number of 

function whose functionalities are explained below. 

displayTrafficData() 

This function calls a method of TrafficData to generate a GUI which displays the various packets 

which have been  received by the firewall and how the firewall 

connectToHoneypot() 

This function creates a new connection to the honeypot for each malicious socket connection which is 

made to it by an attacker. 

connectToServer() 

This function is invoked only once for each new connection which a client establishes with the server. 

It creates a new connection for every inbound socket connection from the client. 



51 

 

forwardPacket() 

This function forwards a packet to one of the previously established connections. It sends the packet 

either to the client or to the server. It makes use of the APIs present in jpcap.net to do so. 

terminateConnection() 

This function terminates a connection. Since the connection is terminated at the firewall, therefore it 

has to break two connections: one to the client and the other to the server or to the honeypot. 

forwardToClient() 

This function serves two purposes 

• Checks all outbound packets to see if they are being sent as a response to some previously 

made request. 

• Forwards the packets which arrive from the server or the honeypot to the client at the other end 

of the firewall. 

The first functionality safeguards against the likelihood of the honeypot being compromised and being 

used to launch attacks against other devices. 

genrateRecord() 

This function creates a record of all the connections that were made and stores parameters such as the 

IP address from which they originated, the time at which a packet from a certain connection appeared 

at the firewall, the number of packets which originated from a certain connection, etc. These values are 

then used by DetectDDoS class. 

6.2.1.1 Class AllConnections 

 

This class is an inner class of Firewall. It implements the interface Runnable. It has functions which 

listen for new connections and respond to them accordingly. It allows for listening to new connections 

to take place in a new thread.It has two functions. 

 



52 

 

run() 

This function is the implementation of the function run of interface Runnable required to run the code 

in a separate thread. It contains the code for reading from each of the new connection which is 

established from a device. It reads from both types of connections: incoming ones as well as outgoing 

ones. 

listenForConnections() 

Through this function the class listens to all inbound connections. It initializes some of the parameters 

and arrays and then calls upon the function run. It is called upon only once after which the function 

run() is invoked every time. 

6.2.1.2 Class TrafficData 

This is another inner class. It allows for creation of a GUI tool which lets the administrator look athe 

connections made to the proxy gateway graphically. It implements the Interface Runnable. 

run() 

This is the function which repaints the window which gives out the details of the traffic. 

createGUI() 

This function initializes data which is required to render the graphics. It creates the frame, adds 

buttons, initializes the default values and creates the window. It is called only once. 

updateTrafficData() 

This function is called to read from the records generated by generateRecord() function and the update 

the values in the window. Thus it periodically updates the number of connections made to the gateway, 

the number of incoming packets from each connection and the time at which a client connected to the 

gateway. 

 

 

 

 



53 

 

6.2.2 Class DetectDDoS 

 

This class implements our version of the Source IP Address Monitoring algorithm. It contains several 

functions for record generation, creation of hash table and detecting the attack. It makes use of the 

records which were generated by class Firewall. The following are the functions contained in this 

class. That is why this class has been declared in the same package as the class firewall.  

It also has two inner classes: DetectDDoS.ScanList , which generates relevant data, and 

DDoS.PacketPrinter, which is implemented for testing purposes. 

run() 

It is in this class that the SIM (Source IP Address Monitoring Scheme) is implemented. 

It is implementation of run method of interface Runnable and describes the algorithm which needs to 

be run on a separate code stack. On discovering that the traffic from a particular IP Address is false, it 

designates it as hostile and invokes blockConnection(). 

blockConnection() 

This function adds to the list of connections which must be blocked. It invokes 

Firewall.terminateConnection() and sends to it the network Address of the connection which has been 

recognized as hostile. 

stopThread() 

All that this function does is that it changes the state of boolean variable continue_running to false. 

Since it is a public function, it can be invoked from outside the class as well. 

6.2.2.1 Class ScanList 

 

Its an inner class of DetectDDoS. It is in this class that a DDoS is actually detected. The class extends 

the interface Runnable. 

 

 



54 

 

run() 

This is the method which scans all the connection data that is collected by Firewall.generateRecord() 

and comes up with values for Tn, Dn and ∆n. The detection algorithm works on the basis of the values 

generated here. 

6.2.2.2 Class PacketPrinter 

This class is implemented for testing purposes. It is used to track the problems in the code. The sole 

function in this class is receivePacket(). The reason that it is an inner class is that it also accesses data 

members of class DetectDDoS such as the packet data values, source IP Address of the packet and 

other relevant data. 

receivePacket() 

This function simply extracts all the information from the header and the data section of the packet 

which it receives and the prints those on the console output. It extracts values such as source network 

address, header length, data value, etc. and prints them to the screen. 

 

6.3 Package faketelnetserver 

 

This is the package where honeypot is implemented. As mentioned before the honeypot is a low 

interaction one and needs to be safeguarded against compromise by an intruder. 

6.3.1 Class EngageClient 

 

This is the class where the code for capturing an intruder's key strokes are present. It has three 

functions and implements the Ruunable interface. This is required to ensure that even if a honeypot 

crashes a file has been generated which can tell about the attacker's mechanisms. 

stopClinet() 

This function is invoked to terminate a connection. It does so by logging out client and sending the 

message, "Unexpected Error At Remote Server." 

 

 



55 

 

run() 

This is the implementation of the Runnable.run() function. It contains the code which responds to each 

command of the intruder with the message, "Server Busy: Please Wait". It calls the function 

recordKeyStrokes(). 

recordKeyStrokes() 

This function implements the code for reading the user's keystrokes and recording them. It writes each 

of the keystroke to a text file and updates it every time user hits enter key. 

6.3.2 Class FakeTelnetServer  

 

This is the class where the code for honeypot is implemented. The honeypot allows the user to login 

but then doesn't respond to any other command. The intruder tries to take advantage of some 

vulnerability which is recorded by the honeypot. 

go() 

This function implements the code for the honeypot. It creates instances of  EngageClient and 

FetchPassword. It then calls the functions of these instances to simulate the login process of a real 

telnet server. 

6.3.3 Class FetchPassword 

 

This class makes the user feel that he is logging into a real telnet server. If this doesn't happen, then the 

intruder will know that the telnet server is a fake and will try other ways to gain entry into the system. 

readPassword() 

This function reads the password and calls upon MaskCharacter.run(). It does so by creating a new 

instance of MaskCharacters and invoking start(). 

6.3.4 Class MaskCharacters 

 

This class is invoked to mask the characters which are input by the user while entering his or her 

password. It implements Runnable.  

 



56 

 

stopMasking() 

It only changes the value of boolean variable continue_masking to false and stops the ruuning of the 

thread. 

run() 

Each character is read and then it is deleted. So it appears that the character can't be typed on the telnet 

screen. It is run on a separate stack as long as value of continue_masking is true. 

6.4 Package chatserver 

 

This package contains the code for server and a chat room application. The server itself is very simple 

and connects to all the clients. 

6.4.1 Class ChatServer 

 

This class contains the code for the chat room application. It receives the data sent to it by all the 

clients connected to it and regularly update their values. So all the clients can communicate to each 

other. It has an inner class which handles the connection with all the clients. 

go() 

It creates a single socket for listening to the requests coming from the various client. It next instantiates 

a new thread with an object of HandleClients and calls start() over it. 

sendToAllClients() 

It sends to all the clients connected to the message which was received from any one of them. Thus it 

carries out a multicast. 

6.4.1.1 Class HandleClients 

 

This class is an inner class of ChatServer. It extends Runnable interface. Its task is to read from the 

socket and forward the String to sendToAllClients(). 

run() 

This is the function which reads from the socket to which all the clients write. It is required to keep the 

server multithreaded. 



57 

 

CHAPTER 7 :  APPENDIX 

7.1 List of Abbreviations 

 

 

1. DoS: Denial of Service 

2. DDoS: Distributed Denial of Service 

3. IDS: Intrusion Detection System 

4. RAT: Remote Administration Tool 

5. DNS: Domain Name System 

6. FTP: File Transfer Protocol 

7. URL: Uniform Resource Locator 

8. HTTP: Hyper Text Transfer Protocol 

9. IP: Internet Protocol 

10. UDP: User Datagram Protocol 

11. TCP: Transmission Control Protocol 

12. SYN: Synchronous 

13. ACK: Acknowledge 

14. TCB: Transmission Control Block 

15. ISP: Internet Service Provider 

16. SMTP: Simple Mail Transfer Protocol 

17. DFD: Data Flow Diagram 

 

 

 



58 

 

CHAPTER 8: BIBLOGRAPHY 

 

1.  Know Your Enemy http://project.honeynet.org 

 

2.  Honeypots: Tracking Hackers By Lance Spitzner 

 

3.  http://www.wikipedia.org/worms 

 

4. http://www.wikipedia.org/virus 

 

5. Lance Spitzner Definitions and Value of Honeypots.  

 

6. http://www.trackinghackers.com/papers/honeypots.html 

 

7.  Honeynet tutorial-Honeypots –Advantages and disadvantages 

http://homes.cerias.purdue.edu/~kaw/research/honeynet/honeynettutorial/honeypots 

 

8. Tutorial on use of jpcap library http://www.eden.rutgers.edu/~muscarim/jpcap/tutorial/ 

 

9. Jpcap documentation Pages available at 

http://jpcap.sourceforge.net/javadoc/net/sourceforge/jpcap/capture/PacketCapture.html 

 

10. Detecting Distributed Denial of Service Attacks Using Source IP Address Monitoring: 

Research Paper by Tao Peng Christopher Leckie Kotagiri Ramamohanarao 

 

11. Honeypots: Concepts, Approaches, and Challenges by Iyatiti Mokube and Michele Adams 

 


