

HUMAN EMOTION RECOGNITION SYSTEM

Project Report submitted in partial fulfillment of the requirement for the

degree of

Bachelor of Technology

In

Information Technology
Under the Supervision of

Dr.Pooja Jain

 By

Vivek Nagrath(091415)

 Akshay Raj(091422)

 to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

 Certificate

This is to certify that project report entitled “HUMAN EMOTION

RECOGNITION SYSTEM”, submitted by Vivek Nagrath(091415) & Akshay

Raj(091422) in partial fulfillment for the award of degree of Bachelor of

Technology in Information Technology to Jaypee University of Information

Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or

Institute for the award of this or any other degree or diploma.

Date:13 May 2013 Dr. Pooja Jain

 Assistant Professor

ACKNOWLEDGEMENT

We owe a great many thanks to a great many people who have been helping and

supporting us during this project. Our deepest thanks to Dr.Pooja Jain, the Guide

of the project for guiding and correcting us at every step of our work with

attention and care. She has taken pain to go through the project and make

necessary correction as and when needed. Thanks and appreciation to the helpful

people at college, for their support. We would also thank our Institution and my

faculty members without whom this project would have been a distant reality.

We also extend our heartfelt thanks to our family and well wishers.

 SUMMARY

Objective

Affect recognition from body Gestures

Description of the work

Detection and recognition of the Human Body Composition and extraction their features
(width, length and all measures of human body) in the Images are important field in Image,
Signal and Vision Computing in recent years. We have tried to recognize body gestures in real
time using human motion capturing techniques.
We have implemented hand and face tracking algorithms which track the movements of face
and hands in real time. We intend to perform affect recognition from frame human body
gestures.

Why we chose this topic?

Rapid growth in computer vision and image processing applications has been evident in recent
years. One area of interest in vision and image processing is automated identification of objects
in real-time or recorded video streams and analysis of these identified objects. An important
topic of research in this context is identification of humans and interpreting their actions.
Emotion recognition via body movements and gestures has only recently started attracting the
attention of computer science and HCI communities.

Milestones and expected Results

 These are the milestones to be achieved for
 Silhouette outlining- using background subtraction
 Skin Segmentation- using skin color information
 Retrieving the contours- using Connected Component Analysis
 Tracking of individual body parts- using CamShift Tracking
 Shoulder detection and Tracking
 Building a classifier for affect recognition
 Training the classifier
 Affect Recognition from body gestures

List of Figures

Fig 1. Weighted Hough Transform 11

Fig 2. Detect edges using Sobel Operator 12

Fig 3. Linear SVM 14

Fig 4. System Design 22

Fig 5. Use Case Diagram 23

Fig 6. Activity Diagram 24

Fig 7. Background Subtraction 27

Fig 8. Skin Segmentation 28

Fig 9. Connected Component Analysis 29

Fig 10 Tracking 30

Fig11 Shoulder Detection and Tracking 31

Fig12 Emotion Classification 32

Fig13 Weighted Interrelationship graph for project risk 36

List of Tables

Table 1 Risk Area Wise total weighting Factor 37

Table 2 Risk Statement Table 38

Table 3 Confusion Matrix 40

Table of Contents

Certificate from Supervisor I

Acknowledgement II

Summary III

List of Figures IV

List of Tables V

Chapter 1 : Introduction 1-3

1.1 General

1.2 Problem Statement

Chapter 2 : Background Material 4-18

2.1 Annotated Bibliography

2.2 Literature Review

Chapter 3 : Analysis, Design, and Modeling 19-25

3.1 Overall description of the project

3.2 Specific requirements

3.2.1 External interfaces

3.2.2 Functions

3.2.3 Performance Requirements

3.2.4 Logical database requirements

3.2.5 Design constraints

3.2.6 Software system attributes

3.3 Design

3.4 Modelling

3.4.1 Use Case Diagram

3.4.2 Activity Diagram

Chapter 4: Implementation Testing and Result 26-41

4.1 Implementation

4.1.1 Implementation

4.1.2 Debugging

4.1.3 Error and Exception Handling

 4.2 Risk Management

 4.3 Testing

 4.2.1 Test plan identifier

 4.2.2 Test items

 4.2.3 Features to be tested

 4.2.4 Features not to be tested

 4.2.5 Strategy to be used for writing test cases

 4.2.6 Test cases

 4.4 Results

Chapter 5: Conclusion and Future Work 42-45

5.1 Conclusions

5.2 Future Work

Chapter 6: Code Implementation 46-88

 6.1 Project Code

 6.1.1 CAM Shift Implementation

6.1.2 Skin Segmentation Implementation

6.1.3 Segmentation Analysis

6.1.4 Hough Transform

6.1.5 Classifier

6.1.6 CCA Implementation

6.1.7 SVM

References

Appendices

Appendix A Description of Tools

Appendix B Quality Assurance

Appendix C Test Cases

1 | P a g e

 Chapter 1: INTRODUCTION

2 | P a g e

Chapter 1: INTRODUCTION

1.1 General

Gesture Recognition

Gesture recognition is a topic in computer science and language technology with the goal of

interpreting human gestures via mathematical algorithms. Gestures can originate from any

bodily motion or state but commonly originate from the face or hand. Current focuses in the

field include emotion recognition from the face and body gesture recognition.

Gesture recognition can be seen as a way for computers to begin to understand human body

language, thus building a richer bridge between machines and humans than primitive text user

interfaces or even GUIs (graphical user interfaces), which still limit the majority of input to

keyboard and mouse.

Gesture recognition enables humans to interface with the machine (HMI) and interact naturally

without any mechanical devices. Gesture recognition is conducted with techniques

from computer vision and image processing.

Uses

Gesture recognition is useful for processing information from humans which is not conveyed

through speech or type. As well, there are various types of gestures which can be identified by

computers.

 Sign language recognition : Just as speech recognition can transcribe speech to text, certain

types of gesture recognition software can transcribe the symbols represented throughsign

language into text.

 For socially assistive robotics : By using proper sensors (accelerometers and gyros) worn on

the body of a patient and by reading the values from those sensors, robots can assist in

patient rehabilitation. The best example can be stroke rehabilitation.

 Directional indication through pointing : Pointing has a very specific purpose in

our[clarification needed] society, to reference an object or location based on its position

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Language_technology
http://en.wikipedia.org/wiki/Gesture
http://en.wikipedia.org/wiki/Algorithms
http://en.wikipedia.org/wiki/Face
http://en.wikipedia.org/wiki/Hand
http://en.wikipedia.org/wiki/Body_language
http://en.wikipedia.org/wiki/Body_language
http://en.wikipedia.org/wiki/Text_user_interface
http://en.wikipedia.org/wiki/Text_user_interface
http://en.wikipedia.org/wiki/GUI
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Sign_language
http://en.wikipedia.org/wiki/Sign_language
http://en.wikipedia.org/wiki/Wikipedia:Please_clarify

3 | P a g e

relative to ourselves. The use of gesture recognition to determine where a person is

pointing is useful for identifying the context of statements or instructions. This application is

of particular interest in the field of robotics.

 Control through facial gestures : Controlling a computer through facial gestures is a useful

application of gesture recognition for users who may not physically be able to use a mouse

or keyboard. Eye tracking in particular may be of use for controlling cursor motion or

focusing on elements of a display.

 Alternative computer interfaces : Foregoing the traditional keyboard and mouse setup to

interact with a computer, strong gesture recognition could allow users to accomplish

frequent or common tasks using hand or face gestures to a camera.

 Immersive game technology : Gestures can be used to control interactions within video

games to try and make the game player's experience more interactive or immersive.

 Virtual controllers : For systems where the act of finding or acquiring a physical controller

could require too much time, gestures can be used as an alternative control mechanism.

Controlling secondary devices in a car, or controlling a television set are examples of such

usage.

 Affective computing : In affective computing, gesture recognition is used in the process of

identifying emotional expression through computer systems.

 Remote control : Through the use of gesture recognition, "remote control with the wave of

a hand" of various devices is possible. The signal must not only indicate the desired

response, but also which device to be controlled.

1.2 Problem Statement

What are we going to do?

We have used body gesture recognition for affect recognition in our project. AFFECTIVE

computing aims to equip computing devices with the means to interpret, understand, and

respond to human emotions, moods, and, possibly, intentions without the user’s conscious

orintentional input of information–similar to the way humans rely on their senses to assess

each other’s affective state.

http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Eye_tracking
http://en.wikipedia.org/wiki/Affective_computing
http://en.wikipedia.org/wiki/Remote_control

4 | P a g e

 Chapter 2: LITERATURE SURVEY

5 | P a g e

 Chapter 2: LITERATURE SURVEY

Background

The existing approaches for hand or body gesture recognition and analysis of human motion, in

general, can be classified into three major categories: (1) model-based (i.e.,modeling the body

parts or recovering 3-D configuration of articulated body parts); (2)appearance-based(i.e.,based

on 2-Dinformation such as color/gray scale images or body silhouettes and edges); and

(3)motion-based (i.e.,directly using the motion in formation without any structural information

about the physical body).

Basic Procedure

Our work focuses on communicative affective gestures generated with one hand or two hands,

head, shoulders, or combinations of these. The feature extraction, analysis, and tracking

procedures presented in this section are applied on the videos obtained from the body camera

only. The main steps can be summarized as follows:

 The static background model of the observed space is created before detection can

start, the head region is extracted from the images using cascaded classifiers, skin

colored regions are extracted from the images using skin-region segmentation and

connected component labeling, and tracking of each ROI is obtained with the CamShift

technique. We chose to use the CamShift tracker, because it is one of the best single-

cue trackers, it is quite efficient and robust when the object color remains the same, and

there is no similar color in the background. Compared to typical particle filters, its

computational requirements are less intense.

 The body model employed is a combination of silhouette-based and color-based body

models to determine the image location of the main body parts while the person is in a

sitting posture. The height of the bounding box of the silhouette is taken as the height

of the body model. Then, fixed vertical scales are used to determine the initial

approximate location (boundingbox) of individual body parts. The height of the initial

bounding box for the head is set to be two fifth times the body silhouette height. The

height of the initial bounding box for the torso is set to be three fifth times the body

6 | P a g e

silhouette height. The width of the bounding boxes of the head and torso are calculated

by finding the median width (horizontal linewidths) inside their initial bounding boxes.

In addition to finding sizes and locations, the principal axis of the foreground Pixels

inside the initial bounding boxes is computed in order to estimate the pose of the body

parts.The torso is located first, followed by head, shoulders, and hands. For each video

frame, the raw image is converted to a color probability distribution via the color

histogram model of the skin region being tracked. CamShift calculates the centroid of

the color probability distribution, recenters the window, and then calculates the area for

the next window size. If the region cannot be tracked, the algorithm is reinitialized.

 When two hands merge or when the hands touch the facial region, due to their skin

colors being similar, they are segmented as a single foreground region by the CamShift

algorithm. The merged region is tracked until it splits back into its constituent objects

(face and hands, or hand and hand). When the merged region splits, the localization

procedure is run again to obtain and reinitialize the current location of each region. An

important point to note is that, when the hands move closer to the head region, the

CamShift algorithm operates under a special condition called “tracking in the presence

of distractions”.

 We extract the ROI rectangles for the extracted body features, which it later uses to

calculate the following: (1) General change within the feature (e.g., how the centroid,

rotation, length, width, and area of the feature increased or decreased); (2)

texture/motion; and (3) optical flow in this region with respect to a neutral frame.

Body feature extraction

In each frame a segmentation process based on a background subtraction method is applied

in order to obtain the silhouette of the upper body. We then apply thresholding, noise

cleaning and morphological filtering. After thresholding, one iteration of 3*3 dilation is applied

on the binary image. Then, a binary connected component operator is used to find the

foreground regions, and small regions are eliminated. Since the remaining region is bigger

than the original one it is restored to its original size by the erosion procedure. We then

7 | P a g e

generate a set of features for the detected foreground object, including its centroid,

area, bounding box and expansion/contraction ratio for comparison purpose.

Segmentation and tracking of the body parts: We first locate the face and the hands

exploiting skin color information. Among the detected candidate regions, the largest

connected component gives the face region; the second and third largest connected

components give the hands, respectively. We then calculate the centroid of these

regions in order to use them as reference points for the body movement. We employ

color since we need to detect the hands even if they are located within the silhouette.

Hand displacement is computed as the motion of the centroid coordinate. We employ

Camshift technique for tracking the hands and comparison of bounding rectangles is

used to predict their locations in subsequent frames.

Locating shoulders: We locate shoulders based on the model knowledge of where they

usually occur with respect to the face, upper body and hands. According to our upper-

body model, in the neutral frame, shoulders are the widest point of the upper half of the

silhouette. First, we compute the 1D horizontal projections of the silhouette. We then assume

that most people present a narrower row in skin blob at neck level and a much wider row

at the shoulder level, compared to the neck level. Thus, starting from the face centroid, we

search for the widest row in the upper body blob. We also compute the 1D vertical

projection of the silhouette and locate the shoulders as two minimums on left and right hand

side of the bounding rectangle for the head. For recognizing “shoulder shrug”, we compare

the horizontal position of the shoulders with respect to the neutral frame.

Region merging: When two hands merge or when the hand(s) cover the face region due to

their skin color, they might be segmented as one foreground region by the Camshift

algorithm. Camshift applies a simple analysis of the predicted bounding boxes of the tracked

objects and the bounding box of the detected foreground. When the merged region splits,

the localization procedure is run again to obtain and re-initialize the current location of

each region.

Hand pose and orientation estimation: Orientation feature helps to discriminate between

different poses of the hand. On convergence, the Camshift algorithm returns orientation,

length and width of the bounding rectangle for the hand, hence, enabling the estimation of

8 | P a g e

hand rotation. Using this information we decide if the hand is in vertical or horizontal

position. After estimating the initial pose of the hand it is possible to find out the position

of the fingers. Edges have proven useful features for discriminating between different poses

of the hand. We define four categories for finger position estimation: up, down, right

and left. We use this information when classifying the feature vectors into various BAUs

(e.g. arms crossed, hands touching the head etc).

Object Tracking using Camshift Algorithm

The CamShift Algorithm

The CamShift algorithm[5] can be summarized in the following steps :

1. Set the region of interest (ROI) of the probability distribution image to the entire image.

2. Select an initial location of the Mean Shift search window. The selected location is the

target distribution to be tracked.

3. Calculate a color probability distribution of the region centered at the Mean Shift search

window.

4. Iterate Mean Shift algorithm to find the centroid of the probability image. Store the zeroth

moment (distribution area) and centroid location.

5. For the following frame, center the search window at the mean location found in Step 4

and set the window size to a function of the zeroth moment.

Continuously Adaptive Distributions

In order to generate the PDF, an initial histogram is computed at Step 1 of the CamShift

algorithm[5] from the initial ROI of the filtered image. The histogram consists of the hue

channel in HSV color space; however multidimensional histograms from any color space may be

used. The histogram is quantized into bins, which reduces the computational and space

complexity and allows similar color values to be clustered together. The histogram bins are

then scaled between the minimum and maximum probability image intensities using following

equation:

9 | P a g e

{ u =

 }u=1..m

Histogram Back-Projection

The back-projection[5] of the target histogram with any consecutive frame generates a

probability image where the value of each pixel characterizes probability that the input pixel

belongs to the histogram that was used.

Given that m-bin histograms are used, we define the n image pixel locations i=1..n and the

histogram { } u=1..m. We also define a function c: R2 → { 1…m } that associates to the pixel at

location
 the histogram bin index c(

). The unweighted histogram is computed as

In all cases the histogram bin values are scaled to be within the discrete pixel range of the 2D

probability distribution image using

{ u =

 }u=1..m

That is, the histogram bin values are rescaled from [0,max(q)] to the new range [0, 55], where

pixels with the highest probability of being in the sample histogram will map as visible

intensities in the 2D histogram back-projection image.

Mass Centre Calculation[5]

The mean location (centroid) within the search window of the discrete probability image

computed in Step 3 is found using moments. Given that is the intensity of the discrete

probability image at within the search window.

a) Compute the zeroth moment

M00 =

b) Find the first moment for x and y

M10 =

10 | P a g e

M01 =

c) Compute the mean search window location

xc =

 ; yc =

Mean Shift Convergence Criteria

The Mean Shift component of the algorithm is implemented by continually recomputing new

values of (xc, yc) for the window position computed in the previous frame until there is no

significant shift in position. The maximum number of Mean Shift iterations is usually taken to be

10-20 iterations. Since sub-pixel accuracy cannot be visually observed, a minimum shift of one

pixel in either of the x and y directions is selected as the convergence criteria. Furthermore,

the algorithm must terminate in the case where is zero, which corresponds to a window

consisting entirely of zero intensity.

Shoulder detection and Tracking

After the face is located by the face detector, the range of possible shoulder position is set as a

bounding box of 3 × 1.5 relative to the face size. The shoulder position is then detected by

fitting a parabola to the nearby approximately horizontal edge using weighted Hough

Transform.

The procedure is as follows:

1) Determine the searching region of the shoulders. After face is detected, the shoulders are

assumed to be confined to the rectangle under the face center with 3 × 1.5 times of the face

size.

2) Select shoulder candidate points. The candidate points is the top n maximum y-gradients

from each column of the searching region, in total 3×n×face width points. The y-gradients are

calculated by convolving the searching region with y-direction Sobel operator. We do not use x-

gradients for two reasons: one is to avoid the disturbance of the y-direction edges which are

not candidates of the shoulders; the other is to save computational cost which is critical for a

real time system.

11 | P a g e

3) Vote by weighted Hough transform[2]. We use a weighted Hough Transform with the

parameters a, b, c as its dimensions. The accumulator is updated for each candidate point. A

small difference from the standard Hough transform is that the y-gradient associated with each

candidate point is used as weight (instead of 1 for all candidates) to update the accumulator, so

that the real edge points on the shoulder are emphasized.

4) Find the parabola parameters a, b, c. The value a, b, c associated with the highest peak in the

accumulator is the estimated parabola parameters. Other local maxima are not considered in

this paper because the parameterizing scheme (SP and TP) itself is able to smooth out most of

the outliers.

 Fig 1: Weighted Hough Transform

(a) Searching region of the shoulder and candidate points

(b) Parabola fitted to the shoulders by weighted Hough Transform

Sobel Operator

The Sobel operator is used in image processing, particularly within edge detection algorithms.

Technically, it is a discrete differentiation operator, computing an approximation of the

gradient of the image intensity function. At each point in the image, the result of the Sobel

operator is either the corresponding gradient vector or the norm of this vector. The Sobel

operator is based on convolving the image with a small, separable, and integer valued filter in

horizontal and vertical direction and is therefore relatively inexpensive in terms of

12 | P a g e

computations. On the other hand, the gradient approximation which it produces is relatively

crude, in particular for high frequency variations in the image.

In simple terms, the operator calculates the gradient of the image intensity at each point, giving

the direction of the largest possible increase from light to dark and the rate of change in that

direction. The result therefore shows how "abruptly" or "smoothly" the image changes at that

point, and therefore how likely it is that part of the image represents an edge, as well as how

that edge is likely to be oriented. In practice, the magnitude (likelihood of an edge) calculation

is more reliable and easier to interpret than the direction calculation.

Mathematically, the gradient of a two-variable function (here the image intensity function) is at

each image point a 2D vector with the components given by the derivatives in the horizontal

and vertical directions. At each image point, the gradient vector points in the direction of

largest possible intensity increase, and the length of the gradient vector corresponds to the rate

of change in that direction. This implies that the result of the Sobel operator at an image point

which is in a region of constant image intensity is a zero vector and at a point on an edge is a

vector which points across the edge, from darker to brighter values.

Fig 2: Detect edges using

Sobel method

Hough Transform

The Hough Transform uses (xi, yi) points in the original 2D image space to generate

 (rho, theta) points in the Hough transform space for lines,

 (x0, y0, radius) points in the Hough transform space for circles,

 (p, q, r1, r2, theta) points in the Hough transform space for ellipses,

 and (xv, yv, phi, p) points in the Hough transform space for parabolas.

13 | P a g e

The Hough transform is a technique which is used to determine and isolate features of a

particular shape within an image. The classical Hough transform requires that the desired

shapes be specified in some parametric form. It is most commonly used for the detection of

simple curves such as lines, circles, and ellipses within a given image.

The algorithm is as follows:

1. Define the range of angles [θb, θe] and the number M of sections in the range.

2. Split [θb, θe] into M sections. Let the split sections be θi , I ε{1,…,M}. Define the center

of section θi as the representative value of the section.

3. Define the range of distances between the text line to be detected and the origin as

[0,δ], where δ is the length of the diagonal line of the input image, and define the

number of sections in the range as N.

4. Split [0, δ] by N. Let the split sections be ρi , I ε{1,…,M}, j ε{1,…,N} to zero.

5. Initialize the counters c (i, j), I ε {1,…,M}, j ε{1,…,N} to zero.

6. Choose a point (x, y) among the unprocessed sample points. If all sample points have

been processed, jump to step 10.

7. Repeat the following process for all sections of angles θ in the detection range.

8. Increment the counter c(i,j) by 1 if the value of ρ given b

ρ = x cos θi + y sin θi

is included in section ρj .

9. Return to step 6.

10. Sort the counters c(i,j), i ε { 1,…,M}, j ε {1,…,N} in descending order.

11. The detection result is the most frequent angle θi in the highest Q counters.

The numbers of sections of angles, M, and of distance, N, are determined on the basis of

the required range and resolution. The number of counters to be examined, 6, is set at

close to the expected number of text lines.

Building a Classifier for Affect recognition

Classifiers which can be used for training and classification :

14 | P a g e

 SVM (Support Vector Machine)

 C4.5

SVM

Introduction

A Support Vector Machine (SVM) performs classification by constructing an N-dimensional

hyperplane that optimally separates the data into two categories. The standard SVM takes a set

of input data and predicts, for each given input, which of two possible classes the input is a

member of, which makes the SVM a non-probabilistic binary linear classifier. Given a set of

training examples, each marked as belonging to one of two categories, an SVM training

algorithm builds a model that assigns new examples into one category or the other. An SVM

model is a representation of the examples as points in space, mapped so that the examples of

the separate categories are divided by a clear gap that is as wide as possible. New examples are

then mapped into that same space and predicted to belong to a category based on which side

of the gap they fall on.

Implementation of Linear SVM

We are given some training data D, a set of n points of the form

D =

where the yi is either 1 or -1, indicating the class to which the point xi belongs. Each xi is a p-

dimensional real vector. We want to find the maximum-margin hyperplane that divides the

points having yi=1 from those having yi=-1. Any hyperplane can be written as the set of points x

satisfying

 ,

http://en.wikipedia.org/wiki/Probabilistic
http://en.wikipedia.org/wiki/Binary_classifier
http://en.wikipedia.org/wiki/Linear_classifier

15 | P a g e

Where ‘.’ denotes the dot product. The vector w is a normal vector: it is perpendicular to the

hyperplane. The parameter

 determines the offset of the hyperplane from the origin along

the normal vector w.

We want to choose the w and b to maximize the margin, or distance between the parallel

hyperplanes that are as far apart as possible while still separating the data. These hyperplanes

can be described by the equations:

 ,

and

 .

If the training data are linearly separable, we can select the two hyperplanes of the margin in a

way that there are no points between them and then try to maximize their distance. By using

geometry, we find the distance between these two hyperplanes is

 , so we want to minimize

||w||. As we also have to prevent data points from falling into the margin, we add the

following constraint: for each i either

 . For xi of the first class

or

 . For xi of the second.

This can be rewritten as:

 , for all 1 ≤ i ≤ n

We can put this together to get the optimization problem:

Minimize (in w, b)

||w||

subject to (for any i = 1,…,n)

yi (w. xi – b) ≥ 1.

Example:

 Vs.

http://en.wikipedia.org/wiki/Linearly_separable

16 | P a g e

Suppose we have 50 photographs of elephants and 50 photos of tigers.

We digitize them into 100 x 100 pixel images, so we have x ε Rn where n = 10,000

Now, given a new (different) photograph we want to answer the question:

Is it an elephant or a tiger? [We assume it is one or the other.]

Our aim is to learn the mapping: X→Y, where x ε X is some object and y ε Y is a class label. Let’s

take the simplest case: 2-class classification. So: x ε Rn , y ε { ±1 }.

Training Sets and prediction Models

 We provide training set (x1,y1),…,(xm,ym) for training.

 When training is performed, we give x ε X, and get y ε Y as output where x is image

vector and y is its class (y ε { elephant, tiger }).

 We want to learn a classifier y = f (x,α), where α are the parameters of the function.

 If we are choosing our model from the set of hyperplanes in Rn, then we have:

f (x, {w,b}) = sign (w.x + b)

C4.5

Introduction

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan[1]. C4.5 is an

extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used

for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

Algorithm

C4.5 adopts a greedy (i.e., non backtracking) approach in which decision trees are constructed in a top-

down recursive divide-and-conquer manner.

C4.5 builds decision trees from a set of training data in the same way as ID3, using the concept

of information entropy. The training data is a set S = s1,s2,... of already classified samples. Each

sample si = x1,x2,... is a vector where x1,x2,... represent attributes or features of the sample.

The training data is augmented with a vector C = c1,c2,... where c1,c2,...represent the class to

which each sample belongs.

http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Ross_Quinlan
http://en.wikipedia.org/wiki/Ross_Quinlan
http://en.wikipedia.org/wiki/ID3_algorithm
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/ID3_algorithm
http://en.wikipedia.org/wiki/Entropy_(information_theory)

17 | P a g e

At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits its

set of samples into subsets enriched in one class or the other. Its criterion is the

normalized information gain (difference in entropy) that results from choosing an attribute for

splitting the data. The attribute with the highest normalized information gain is chosen to make

the decision. The C4.5 algorithm then recurs on the smaller sublists.

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data

partition D.

Input:

 Data partition, D, which is a set of training tuples and their associated class labels;

 attribute list, the set of candidate attributes;

 Attribute_selection_method, a procedure to determine the splitting criterion that

“best” partitions the data tuples into individual classes. This criterion consists of a

splitting attribute and, possibly, either a split point or splitting subset.

Output: A decision tree.

Method:Create a node N;

If tuples in D are all of the same class, C then

Return N as a leaf node labeled with the class C;

If attribute list is empty then

Return N as a leaf node labeled with the majority class in D; // majority voting

Apply Attribute selection method (D, attribute list) to find the “best” splitting criterion;

Label node N with splitting criterion;

If splitting attribute is discrete-valued and

http://en.wikipedia.org/wiki/Information_gain

18 | P a g e

multiway splits allowed then

 attribute_list ← attribute_list - splitting attribute; // remove splitting attribute

For each outcome j of splitting criterion

//partition the tuples and grow subtrees for each partition

 Let Dj be the set of data tuples in D satisfying outcome j; // a partition

 If Dj is empty then

 Attach a leaf labeled with the majority class in D to node N;

 Else attach the node returned by Generate_decision_tree (Dj, attribute_list) to node N;

Endfor

return N;

19 | P a g e

Chapter 3: Analysis, Design, and Modeling

20 | P a g e

3.1 Overall Description of the project

a) Product Perspective

The project is an attempt to use techniques available for body gesture recognition for real time

and classification of emotions with high accuracy rate .For this purpose we have studied various

algorithms (discussed above) and experimented with various libraries available.

b) Product Functions

 Taking video of face and upper body with the help of camera.

 Tracking the face and upper body movements and outline detection of face, hands,

shoulders arms and torso.

 Using the 2D frames from the video for feature extraction, temporal segment detection

and finally emotion classification and recognition.

c) User Characteristics

The project does not have any constraints on who can use it; it can be used by anyone and

everyone, from researcher, teacher, and student to developer any one can use the product in

accordance to his needs or build application on it. The user can be any human body facing the

camera with its upper part in camera view and face and hands uncovered. The background

should be of any color other than skin color.

d) Design and Implementation Constraints

 All the programming code is written in Open CV 2.1.0.

 Visual Studio is required for the program to run.

 A decent webcam is required and should not be used in darkness.

 The project is supposed to run in both Windows and Linux environment.

e) Assumptions and dependencies

 The background should be of any color other than skin color.

 The face and hands should be uncovered for detection.

21 | P a g e

3.2 Specific Requirements

3.2.1 External Interfaces

User Interface: User Interface will have one start button to start emotional classification

displaying on frame basis emotions displayed by user. There will be a stop button to stop the

above process.

Hardware Interface: There is a webcam + computer interaction the only hardware used is

webcam.

Software Interface: We have used OpenCv library and the programming language is “C”. Visual

Studio ir required to run the application.

Communication Interface: WebCam is the only communication interface.

3.2.2 Functions

 Trainer: take images from database and use them to find feature points and store

emotion to train the classifier for emotion detection .

 The main program: takes in live feed from webcam and detects upper body (face, hands,

shoulders and torso) and classifies emotions. The next frame shot and constrained

windows are used for searching based on trained values

3.2.3 Performance Requirements

The basic requirement for running of the application is

 Webcam connected

 OpenCV installed

Dynamic requirements

 Memory Available

3.2.4 Design Constraints

 The results are better on more efficient computers as the search process gets fast.

22 | P a g e

 Constantly (the faster the better) moving objects are better segmented from the

background.

3.2.5 Software System Attributes

a) Reliability: Result should be reliable as the application further working depends on it.

Feature vector points have to be accurate for best working of the application.

b) Robust: As it takes lots of computation and memory resources it’s a necessary point that

software must be a robust one and free memory resources used and gradually degrade there

by not annoying the user .

d) Maintenance: Training is an important phase for Classification for better and efficient

classification one needs to have a very rich database so that it covers nearly all the gestures

that can be generated by all varied body postures.

e) Portability: The software is portable, i.e. can be installed anywhere

3.3 Design

Fig 4. System Design

• Gaussian
Mixture
Model

background
subtraction

 • Skin color
Exploitati
on

Skin
Segmen
tation

• Contour
finding
Algorithm

Connected
Component

Analysis

• Camshift
Algorith
m

Trackin
g

•SVM
classifier

Emotion
Classification

23 | P a g e

3.4 Modelling

Fig5 Use Case Diagram

User

Developer

Skin detection

Face, Hands,

Shoulder, Torso

movement Tracking

Gesture

Recognition

Emotion

Classification

Start

Stop

Train

<<extends>>

<<extends>>

<<extends>>

<<extends>>

24 | P a g e

Fig6 Activity Diagram

25 | P a g e

26 | P a g e

Chapter 4 : Implementation

27 | P a g e

4.1 Implementation

4.1.1 Implementation

BACKGROUND SUBTRACTION (SILHOUETTE EXTRACTION)

This is the first step of our implementation.

Moving objects are classified as foreground objects and a gray scale image is produced which

consists of foreground (white) and background (black) pixels. Assuming the user is in a sitting

posture he/she is identified itself in the first step.

We have used adaptive background mixture model as the background subtraction algorithm.

Fig 7. Background Segmentation

SKIN SEGMENTATION

Skin region was extracted from the silhouette exploiting color information. The extracted region

included face and hands of the user.

Skin region is extracted by using the Y, Cr, Cb values of every pixel and checking if they lie within

a standard region which can be expected to be a skin.

The image can be eroded and dilated as per the requirement.

28 | P a g e

Fig 8. Skin Segmentation

CONNECTED COMPONENT ANALYSIS

 Connected component analysis is done on the extracted skin region. First the image is

thresholded and then contours are extracted from the image.

 We assign a bounding box to each contour and then compare the size of the bounding

box to calculate the three largest components.

 Among the detected candidate regions, the largest connected component gives the face

region; the second and third largest connected components give the hands,

respectively.

29 | P a g e

Fig 9. Connected Component Analysis

TRACKING

These contours are passed onto the tracker which represents each component in a histogram

format to apply camshift tracking. The connected components just gives the camshift the initial

Bounded boxes of face and hands and then camshift tracks these components using the camshift

algorithm described in Chapter 2.

30 | P a g e

 Fig 10. Tracking

SHOULDER DETECTION & TRACKING

 The next step was to detect shoulders from the video frame and track their position. For

this we first defined a region of Interest where shoulders are assumed to be confined. This

is a rectangle under the face center with 3 X 1.5 times the face size.

 We then extracted shoulder candidate points which are the points with y- gradients more

than a certain threshold value. These y- gradient points are calculated by convolving the

shoulder ROI with the y- direction sobel operator.

 Then we apply Weighted Hough Transform technique to detect the shoulder from the

candidate points. We use Hough Transform with a, b, c as its dimensions and the

accumulator is updated for each candidate point. A small difference from the standard

Hough transform is that the y-gradient associated with each candidate point is used as

weight (instead of 1 for all candidates) to update the accumulator, so that the real edge

points on the shoulder are emphasized.

 The value a, b, c associated with the highest peak in the accumulator is the estimated

parabola parameters.

31 | P a g e

 Fig 11. Shoulder Detection and tracking

EMOTION DETECTION AND CLASSIFICATION

We implemented a SVM classifier for emotion classification. We perform affect recognition by

frame based classification.

SVM Training

The parameters used for classification are as follows:

 Shoulder Parameters:

o a, b, c of shoulder equation: ax
2
 + bx + c

 Distance of face centroid from hand1 centroid.

 Distance of face centroid from hand2 centroid.

The SVM tracker is trained to detect the following emotions:

 Neutral

 Tiredness

 Puzzlement

32 | P a g e

 Uncertainty

The SVM tracker is trained for 50 tuples of each type of emotion. All these tuples are stored in a

file “train.txt”. The svm-train function then uses this train file for training of the classifier.

SVM Prediction

The subject has to sit in front of the camera and then the system after all the preprocessing steps

the SVM classifier identifies the emotional state of the subject. The support vector is extracted

from the current frame and then sends to the classifier algorithm where it is first parsed to extract

the current values of the parameters.

It also displays an emoticon corresponding to the affective state of the subject.

 (A)

33 | P a g e

 (B)

Fig 12. Emotion Classification : (A) Tense (B) Tired

4.1.2 Debugging

Identify the Bug: A bug is unexpected and undesirable behaviour by a program. Some specific

bugs encountered by us in our program were:

Bug#1: The working of background subtraction is not good as the functionality provided by the

OpenCV platform is useful in detecting fast moving object and not sitting human beings.

Bug#2: Camshift algorithm sometimes looses track because of mergers of two or more

components.

Bug#3: Sometimes only left or right shoulder is detected and the other one is not due to changes

in luminosity of the scene.

Bug#4: Inaccurate classification by SVM

Replicate the Bug: The first step in fixing a bug is to replicate it. This means to recreate the

undesirable behaviour under controlled conditions. The goal is to find a precisely specified set of

steps which demonstrate the bug. In many cases this is straightforward. You run the program on

a particular input, or you press a particular button on a particular dialog, and the bug occurs.

34 | P a g e

Locate the bug: We used the debugging functionality of Microsoft Visual Studio to locate

several bugs in our code. We used the break point functionality to exactly locate the code

area or the statement causing the undesirable behaviour. We also used the print statement

of our coding language.

Locate the error: Once we have found the code which causes the bad behaviour, we need to

identify the actual coding error. Often they are the same code--that is, the coding error

directly causes the bad behaviour.

Fix the bug: The final step in the debugging process is, of course, to fix the bug.

Bug#1: Fixed by developing a background subtraction algorithm and not using the

functionality provided by OpenCV.

Bug#2: Cannot be fixed.

Bug#3: bug active only in extreme cases. The program is made more robust by making it

indifferent to changes in lightning.

Bug#4: most dangerous bug. This bug was due to difference in ranges of the values of

parameters. This bug was fixed by scaling both training and testing data and using scaling

parameters.

4.1.3 Error and Exception Handling

Error#1: Source and destination images not compatible.

This error is due to difference in number of channels of both the images fixed by accessing

individual channels.

Error#2: Memory index out of range.

This error was addressed by dynamic allocation of memory.

Error #3:

35 | P a g e

4.2 Risk Management

Risk Statements

 RS1: Personnel and Performance: Irregularity in the work

 RS2: Performance: System as delivered might be hard to maintain

 RS3: Software Process: Time for implementing Hough Transform algorithm is high

 RS4: Software Process: Unpredictable Camshift algorithm

 RS5: Hardware and Performance: Insufficient processing speed on small memory systems

 RS6: Hardware and Performance: Dependence on camera quality

 RS7: External Input and Performance: Malfunction due to the effect of intensity of light and

light effects along with the video input on Tracking algorithm

 RS8: Budget (Time / Cost) : Schedule: Total Time of 1 year

 RS9: Budget (Time / Cost) : Since this is an academic project, Budget is limited

 RS10: Budget: Requirements are only partly known, when the project starts

 RS11: Project Scope: Features listed may be beyond what team can build in time

 RS12: Project Scope: Operating System Dependent

 RS13: Personnel: Team members don’t agree for the same thing during project

Risk of our project as follows:

 Performance: Every risk is related to the performance of the project. For example, if

there is problem with skewed data or the time taken for clustering and some of the

personnel issues also affect the performance of the project.

 Budget: A high budget would helps to get access to latest updated hardware. If the

hardware used is good, the performance of the system automatically increases. For

example, the camera used is not of very good quality which limits project performance.

 External Input: The input video should satisfy the necessary constraints in order for the

project to function efficiently.

 Hardware: Our project is highly hardware dependent. It requires efficient Camera and

system with high memory capacity and processing speed.

 Personnel: Every project is very dependent on personal skills of people who implement

it.

 Project Scope

36 | P a g e

 Software Process

 Fig 13. Weighted Interrelationship Graph of Project Risks

Performance

Budget External Input

Software Process Hardware

Project Scope Personnel

2

3

8

9

9 8

5

1
7 4

6

37 | P a g e

Risk Area Wise Total Weighting Factor

S.

no.

Risk Area # of Risk

Statement

Risk

Statements

Weights

(In + Out)

Total

Weight

Priority

1 Performance 5 RS1,RS2,RS5,

RS6,RS7

3+9+8+7+4+9 40 1

2 External Input 1 RS7 2+8+9 19 2

3 Software

Process

2 RS3,RS4 8+9 17 3

4 Hardware 2 RS5,RS6 5+8+1 14 4

5 Personnel 2 RS1,RS13 7+6 13 5

6 Budget 3 RS8,RS9,RS10 2+5+3 10 6

7 Project Scope 2 RS11,RS12 1+4 5 7

38 | P a g e

Risk Statement Table

Risk ID Risk Statement Risk Area Priority of Risk Area

in IG

1 Irregularity in the work Personnel and

Performance

1 and 5

2 System as delivered might be hard

to maintain

Performance 1 and 5

3 Time for implementing Hough

Transform algorithm is high

Software Process 3

4 Unpredictable Camshift algorithm Software Process 3

5 Insufficient processing speed on

small memory systems

Hardware and

Performance

4 and 1

6 Dependence on camera quality Hardware and

Performance

4 and 1

7 Malfunction due to the effect of

intensity of light and light effects

along with the video input on

Tracking algorithm

External Input and

Performance

2 and 1

8 Schedule: Total Time of 5 months Budget (Time / Cost) 6

9 Since this is an academic project,

Budget is limited

Budget (Time / Cost) 6

10 Requirements are only partly

known, when the project starts

Budget 6

11 Features listed may be beyond what

team can build in time

Project Scope 7

12 Operating System Dependent Project Scope 7

13 Team members don’t agree for the

same thing during project

Personnel 5

39 | P a g e

4.3 Testing

4.3.1 Test Plan Identifier

 Webcam working properly

 Real time face tracking

 Real time face and hands tracking

 Handling Mergers

 Accurate Emotion Classification

 Accurate output

4.3.2 Test Items

 Camera

 Memory

 Human present

 Face in the frame

 Face and hands in the frame

 Real time movement tracking

 Pose variance

 Light variance

 Shrug

 Mood/Emotion

4.3.3 Features to be tested

 Proper skin segmentation

 Proper contour extraction

 Real time movement tracking

 Pose variance

 Shrug

 Accurate Emotion Detection

 Accurate output

40 | P a g e

 4.3.4 Features not to be tested

 Camera

 Memory

 Human present

 Face in the frame

 Light variance

4.3.5 Test cases

Refer to Appendix C.

4.4 Results

The camshift algorithm could track face and hand movements in real time.

Shoulder detection algorithm could detect shoulder in real time.

SVM- classifier could classify and accurately recognize 5 emotions viz. – Neutral, Positive

surprise, Uncertainty, Puzzlement/ Tension, Tiredness.

To calculate accuracy, We used 250 frames for training and 375 frames for testing.

Confusion Matrix

S.

No.

Emotions Time

(s)

No. of frames

input

No. of

frames / s

No. of frames

correctly classified

1 Neutral 10.26 80 7.79 76

2 Shrug/ Uncertainty 10.27 68 6.62 63

3 Tension 10.25 72 7.02 68

 4 Tired 10.30 74 7.18 71

41 | P a g e

Calculating Accuracy

Neutral: 76/80 * 100 = 95 %

Shrug/ Uncertainty: 63/68 * 100 = 92.64 %

Tension: 68/72 * 100 = 94.44%

Tired: 71/74 * 100 = 95.94%

42 | P a g e

Chapter 5: Conclusion and Future Work

43 | P a g e

5.1 Conclusion

The following are the findings of the work we have done so far:

 In case of computer vision projects it is often better to use optimized libraries rather than

writing codes our self.

 Even small differences in the face orientation can cause significant change in the detection

process.

 It is a redundant to apply light dependant algorithms like optical flow because light

independent algorithms already cover all the conditions.

 Light dependant algorithms are very unpredictable.

 The background and environment of the user can significantly hamper the detection process

if not controlled properly.

 Stauffer’s Background subtraction available in OpenCV works well for constantly moving

objects.

 Tracking algorithms are very computationally expensive and hence have limited utility in

real-time applications, for example, the “camshift” algorithm is the least computationally

expensive and still is managed to hang our system several times.

 For an automated system based on vision, it is easier to model and recognize affective states

from global body and head region movements and their relationship between each other.

 The proposed shrug detector is able detect the shrug action correctly and efficiently, but

sometimes it fails to tolerate the large in-class variation caused by different subjects different

action speed, illumination, partial occlusion, and background clutter. Therefore the proposed

real-time shrug detector is promising in video analysis under a controlled environment.

 The real-time processing ability of the system based on the proposed architectural framework

opens up its applicability to a wide range of applications where the proposed framework can

be customized based on specific performance requirements in speed of processing, noise

tolerance, fuzzy interpretation, etc.

 This work presented preliminary results of a vision-based system that extracts features

automatically from expressive upper-body display. This is an attempt towards recognizing

expressive face and upper-body gesture for affective Human Computer Interaction.

 CamShift can be used for general-purpose object tracking using a background- weighted

histogram and arbitrary quantized color features of the target.

44 | P a g e

 An interface analyzing body gestures will find use in a range of areas such as video

surveillance, monitoring of human activity and virtual environments and help in transmitting

video for teleconferencing and improve man-machine interaction. However, due to being a

fairly new research area, there still exist problems to be solved and issues to be considered in

order to develop a robust, adaptive, context -sensitive analyzer of body gestures using

computer vision and machine learning techniques.

5.2 Future Work

 Following constraints are there in the project which need to be removed:

 Presence of a dark background behind the human body.

 Absence of noisy circumstances for camshift to track properly.

Consequently, future investigations towards more robust detection and tracking of the

upper body and hands, possibly by using dynamic programming for tracking, which also

allows partial trackbacks (e.g., one or two frames),are necessary yet possible.

 In natural Human Computer Interaction settings, gestures are continuous. Due to this,

gesture recognition requires spotting of the gesture (i.e., determining the start and

endpoints of a meaningful gesture pattern from a continuous stream or time

segmentation. Our system currently does not perform spotting of the gesture due to the

particular nature of the data at. However, the system could be extended to analyze a

gesture continuum, determine the start and endpoints of a meaningful gesture pattern, and

subsequently apply recognition.

 If dynamic cameras could be adopted, the range of applications the proposed framework

can support will be even higher.

 The project can be extended to multimodal feature extraction by fusing body features

with face features from monomodal feature extraction. Multimodal systems provide the

possibility of combining different modalities that occur together to function in a more

efficient and reliable way in diverse human-computer interaction applications.

 The proposed framework can be customized and optimized to various applications:

45 | P a g e

 Monitoring of public gathering places such as supermarkets, airports,

sportsvenues, etc and identifying abnormal (or suspicious) behavior through

gesture recognition and interpretation.

 Monitoring of hospital wards and in homes of disabled people to monitor them

and taking care of their needs.

 Designing of safety systems for building such as factories. Assume a scenario

where a fire breaks out in a factory and as it is quite difficult to individually notify

all workers of details of the accident a warning alarm is used. To activate warning

alarms and open safe exists, relevant operators will have to enter the building

inspite of the fire. There may be instances where damage would occur very fast as

in chemical factories before alarm is activated. In such scenarios, it will be

extremely useful to have warning alarms and protective measures activated based

on human gestures such as rapid waving the hands over the head while quickly

running away from a location.

46 | P a g e

Chapter 6: Code Implementation

6.1 Camshift Analysis

 Camshift.cpp

#include "cv.h"
#include <stdio.h>

// Parameters
int nHistBins = 30; // number of histogram bins
float rangesArr[] = {0,180}; // histogram range
int vmin = 65, vmax = 256, smin = 55; // limits for calculating hue

// File-level variables
IplImage * pHSVImg = 0; // the input image converted to HSV color mode
IplImage * pHueImg = 0; // the Hue channel of the HSV image
IplImage * pMask = 0; // this image is used for masking pixels
IplImage * pProbImg = 0; // the face probability estimates for each pixel
CvHistogram * pHist = 0; // histogram of hue in the original face image

IplImage * h1HSVImg = 0; // the input image converted to HSV color mode
IplImage * h1HueImg = 0; // the Hue channel of the HSV image
IplImage * h1Mask = 0; // this image is used for masking pixels
IplImage * h1ProbImg = 0; // the hand probability estimates for each pixel
CvHistogram * h1Hist = 0; // histogram of hue in the original hand image

IplImage * h2HSVImg = 0; // the input image converted to HSV color mode
IplImage * h2HueImg = 0; // the Hue channel of the HSV image
IplImage * h2Mask = 0; // this image is used for masking pixels
IplImage * h2ProbImg = 0; // the hand probability estimates for each pixel
CvHistogram * h2Hist = 0; // histogram of hue in the original hand image

CvRect prevFaceRect; // location of face in previous frame
CvBox2D faceBox; // current face-location estimate

CvRect prevHand1Rect; // location of face in previous frame
CvBox2D hand1Box; // current face-location estimate

CvRect prevHand2Rect; // location of face in previous frame
CvBox2D hand2Box; // current face-location estimate

47 | P a g e

int nFrames = 0;
// Declarations for internal functions
void updateHueImage(const IplImage * pImg);
//////////////////////////////////
// createTracker()
//
int createTracker(const IplImage * pImg)
{
 // Allocate the main data structures ahead of time
 float * pRanges = rangesArr;
 pHSVImg = cvCreateImage(cvGetSize(pImg), 8, 3);
 pHueImg = cvCreateImage(cvGetSize(pImg), 8, 1);
 pMask = cvCreateImage(cvGetSize(pImg), 8, 1);
 pProbImg = cvCreateImage(cvGetSize(pImg), 8, 1);

 pHist = cvCreateHist(1, &nHistBins, CV_HIST_ARRAY, &pRanges, 1);

 float * h1Ranges = rangesArr;
 h1HSVImg = cvCreateImage(cvGetSize(pImg), 8, 3);
 h1HueImg = cvCreateImage(cvGetSize(pImg), 8, 1);
 h1Mask = cvCreateImage(cvGetSize(pImg), 8, 1);
 h1ProbImg = cvCreateImage(cvGetSize(pImg), 8, 1);

 h1Hist = cvCreateHist(1, &nHistBins, CV_HIST_ARRAY, &h1Ranges, 1);

 float * h2Ranges = rangesArr;
 h2HSVImg = cvCreateImage(cvGetSize(pImg), 8, 3);
 h2HueImg = cvCreateImage(cvGetSize(pImg), 8, 1);
 h2Mask = cvCreateImage(cvGetSize(pImg), 8, 1);
 h2ProbImg = cvCreateImage(cvGetSize(pImg), 8, 1);

 h2Hist = cvCreateHist(1, &nHistBins, CV_HIST_ARRAY, &h1Ranges, 1);

 return 1;
}
//////////////////////////////////
// releaseTracker()
//
void releaseTracker()
{
 // Release all tracker resources
 cvReleaseImage(&pHSVImg);
 cvReleaseImage(&pHueImg);
 cvReleaseImage(&pMask);
 cvReleaseImage(&pProbImg);

48 | P a g e

 cvReleaseHist(&pHist);
 cvReleaseImage(&h1HSVImg);
 cvReleaseImage(&h1HueImg);
 cvReleaseImage(&h1Mask);
 cvReleaseImage(&h1ProbImg);

 cvReleaseHist(&h1Hist);

 cvReleaseImage(&h2HSVImg);
 cvReleaseImage(&h2HueImg);
 cvReleaseImage(&h2Mask);
 cvReleaseImage(&h2ProbImg);

 cvReleaseHist(&h2Hist);

}
//////////////////////////////////
// startTracking()
//
void startTracking(IplImage * pImg, CvSeq* ROIs)
{
 float maxVal = 0.f;
 CvSeqReader reader;
 cvStartReadSeq(ROIs, &reader,0);
 CvRect pFaceRect, h1Rect, h2Rect;
 //memcpy(pFaceRect, reader->ptr, ROIs->elem_size);
 CV_READ_SEQ_ELEM(pFaceRect, reader);
 CV_READ_SEQ_ELEM(h1Rect, reader);
 CV_READ_SEQ_ELEM(h2Rect, reader);

 // Make sure internal data structures have been allocated
 if(!pHist||!h1Hist) createTracker(pImg);

 // Create a new hue image
 updateHueImage(pImg);

 // Create a histogram representation for the face
 cvSetImageROI(pHueImg, pFaceRect);
 cvSetImageROI(pMask, pFaceRect);
 cvCalcHist(&pHueImg, pHist, 0, pMask);
 cvGetMinMaxHistValue(pHist, 0, &maxVal, 0, 0);
 cvConvertScale(pHist->bins, pHist->bins, maxVal? 255.0/maxVal : 0, 0);
 cvResetImageROI(pHueImg);
 cvResetImageROI(pMask);

49 | P a g e

 // Store the previous face location
 prevFaceRect = pFaceRect;
 cvSetImageROI(h1HueImg, h1Rect);
 cvSetImageROI(h1Mask, h1Rect);
 cvCalcHist(&h1HueImg, h1Hist, 0, h1Mask);
 cvGetMinMaxHistValue(h1Hist, 0, &maxVal, 0, 0);
 cvConvertScale(h1Hist->bins, h1Hist->bins, maxVal? 255.0/maxVal : 0, 0);
 cvResetImageROI(h1HueImg);
 cvResetImageROI(h1Mask);

 // Store the previous face location
 prevHand1Rect = h1Rect;

 cvSetImageROI(h2HueImg, h2Rect);
 cvSetImageROI(h2Mask, h2Rect);
 cvCalcHist(&h2HueImg, h2Hist, 0, h2Mask);
 cvGetMinMaxHistValue(h2Hist, 0, &maxVal, 0, 0);
 cvConvertScale(h2Hist->bins, h2Hist->bins, maxVal? 255.0/maxVal : 0, 0);
 cvResetImageROI(h2HueImg);
 cvResetImageROI(h2Mask);

 // Store the previous face location
 prevHand2Rect = h2Rect;

}
//////////////////////////////////
// track()
//
CvRect trackFace(IplImage * pImg)
{
 CvConnectedComp componentsf;

 // Create a new hue image
 updateHueImage(pImg);

 // Create a probability image based on the face histogram
 cvCalcBackProject(&pHueImg, pProbImg, pHist);
 cvAnd(pProbImg, pMask, pProbImg, 0);

 // Use CamShift to find the center of the new face probability
 cvCamShift(pProbImg, prevFaceRect,
 cvTermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1),

50 | P a g e

 &componentsf, &faceBox);

 // Update face location and angle
 prevFaceRect = componentsf.rect;

 faceBox.angle = -faceBox.angle;
 return prevFaceRect;
}

CvRect trackHand1(IplImage * pImg)
{

 CvConnectedComp componentsh;

 // Create a new hue image
 updateHueImage(pImg);

 cvCalcBackProject(&h1HueImg, h1ProbImg, h1Hist);
 cvAnd(h1ProbImg, h1Mask, h1ProbImg, 0);

 // Use CamShift to find the center of the new hand probability
 cvCamShift(h1ProbImg, prevHand1Rect,
 cvTermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1),
 &componentsh, &hand1Box);

 // Update location and angle
 prevHand1Rect = componentsh.rect;

 hand1Box.angle = hand1Box.angle;

 return prevHand1Rect;
}
CvRect trackHand2(IplImage * pImg)
{
 CvConnectedComp componentsh2;

 // Create a new hue image
 updateHueImage(pImg);

 cvCalcBackProject(&h2HueImg, h2ProbImg, h2Hist);
 cvAnd(h2ProbImg, h2Mask, h2ProbImg, 0);

 // Use CamShift to find the center of the new hand probability
 cvCamShift(h2ProbImg, prevHand2Rect,

51 | P a g e

 cvTermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1),
 &componentsh2, &hand2Box);

 // Update location and angle
 prevHand2Rect = componentsh2.rect;
 hand2Box.angle = -hand2Box.angle;

 return prevHand2Rect;
}
//////////////////////////////////
// updateHueImage()
//
void updateHueImage(const IplImage * pImg)
{
 // Convert to HSV color model
 cvCvtColor(pImg, pHSVImg, CV_BGR2HSV);

 cvCvtColor(pImg, h1HSVImg, CV_BGR2HSV);

 cvCvtColor(pImg, h2HSVImg, CV_BGR2HSV);

 // Mask out-of-range values
 cvInRangeS(pHSVImg, cvScalar(0, smin, MIN(vmin,vmax), 0),
 cvScalar(180, 256, MAX(vmin,vmax) ,0), pMask);

 // Mask out-of-range values
 cvInRangeS(h1HSVImg, cvScalar(0, smin, MIN(vmin,vmax), 0),
 cvScalar(180, 256, MAX(vmin,vmax) ,0), h1Mask);

 // Mask out-of-range values
 cvInRangeS(h2HSVImg, cvScalar(0, smin, MIN(vmin,vmax), 0),
 cvScalar(180, 256, MAX(vmin,vmax) ,0), h2Mask);

 // Extract the hue channel
 cvSplit(pHSVImg, pHueImg, 0, 0, 0);

 // Extract the hue channel
 cvSplit(h1HSVImg, h1HueImg, 0, 0, 0);

 // Extract the hue channel
 cvSplit(h2HSVImg, h2HueImg, 0, 0, 0);
}
//////////////////////////////////
// setVmin()

52 | P a g e

//
void setVmin(int _vmin)
{ vmin = _vmin; }
//////////////////////////////////
// setSmin()
//
void setSmin(int _smin)
{ smin = _smin; }

 6.2 Skin Segmentation Analysis

 Skin.cpp

#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <conio.h>
#include "cxcore.h"
void GetSkinMask(IplImage * src_RGB, IplImage * mask_BW, int erosions=1, int dilations=7)
{
 CvSize size;

 CvSize sz = cvSize(src_RGB->width & -2, src_RGB->height & -2);
 //get the size of input_image (src_RGB)

 IplImage* pyr = cvCreateImage(cvSize(sz.width/2, sz.height/2), 8,3); //create 2 temp-
images

 IplImage* src = cvCreateImage(cvGetSize(src_RGB), IPL_DEPTH_8U ,3);
 cvCopyImage(src_RGB, src);

 IplImage* tmpYCR = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U , 3);

 cvPyrDown(src, pyr, 7);
 //remove noise from input
 cvPyrUp(pyr, src, 7);

 cvCvtColor(src ,tmpYCR , CV_RGB2YCrCb);
 uchar Y;
 uchar Cr;
 uchar Cb;
 CvPixelPosition8u pos_src;
 CvPixelPosition8u pos_dst;

53 | P a g e

 int x =0;
 int y =0;

 CV_INIT_PIXEL_POS(pos_src,(unsigned char *) tmpYCR->imageData, tmpYCR-
>widthStep,cvGetSize(tmpYCR),x,y,tmpYCR->origin);

 CV_INIT_PIXEL_POS(pos_dst,(unsigned char *) mask_BW->imageData, mask_BW-
>widthStep, cvGetSize(mask_BW), x,y,mask_BW->origin);

 uchar * ptr_src;
 uchar * ptr_dst;
 for(y=0;y<src-> height; y++)
 {
 for (x=0; x<src->width; x++)
 {
 ptr_src = CV_MOVE_TO(pos_src,x,y,3);
 ptr_dst = CV_MOVE_TO(pos_dst,x,y,3);

 Y = ptr_src[0];
 Cb= ptr_src[1];
 Cr= ptr_src[2];

 If
(Cr > 138 && Cr < 178 && Cb + 0.6 * Cr >200 && Cb + 0.6 * Cr <215)
 {
 ptr_dst[0] = 255;
 ptr_dst[1] = 255;
 ptr_dst[2] = 255;
 }
 else
 {
 ptr_dst[0] = 0;
 ptr_dst[1] = 0;
 ptr_dst[2] = 0;
 }
 }
 }

 if(erosions>0) cvErode(mask_BW,mask_BW,0,erosions);
 if (dilations>0) cvDilate(mask_BW,mask_BW,0,dilations);
 cvReleaseImage(&pyr);

 cvReleaseImage(&tmpYCR);
 cvReleaseImage(&src);
}

54 | P a g e

int apple(int argc, char** argv)
{
 IplImage *img, *imgSkin;
 img = cvLoadImage("mikki2.jpg"); /* loads the image from the command line */
 imgSkin = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3);
 GetSkinMask(img, imgSkin, 1, 7);
 cvSaveImage("result2.jpg", imgSkin);
 return 0;
}

6.3 Segmentation Analysis

Segmentation.cpp

#include "cv.h"
#include "highgui.h"
#include <ctype.h>
#include "cxcore.h"
#include "cvaux.h"
#include "CamShift.h"
#include <stdio.h>
#include "Houghtransform.cpp"
#include "svm-predict-new.c"
//#include "Classifier.cpp"

#define maxBins 512
#define PI 3.1415

int ConnectedComponent[640*480][2];
int i =0, j =0;

int checkForSkinColor(int x, int y, IplImage *img);
int connectedComp(int x, int y, IplImage *img);

extern void GetSkinMask(IplImage * src_RGB, IplImage * mask_BW, int erosions, int dilations);
extern void on_trackbar(IplImage* original, IplImage* originalThr,IplImage* displayedImage,
int param1 = 0,int param2 = 1000);
extern CvSeq* CCA(IplImage *I1, IplImage* I2, CvMemStorage *mem);
//extern double svmpredict(char *s);
void getROIFrame(IplImage *vFrame, IplImage* frame, CvRect R);
void updateFrame(IplImage* vFrame, IplImage *frame, CvBox2D box);
int minimum(int a, int b);
int maximum(int a, int b);

55 | P a g e

void Print(IplImage *I, char *string);

void main(int argc, char ** argv)
{
 CvCapture* capture = cvCreateCameraCapture(0);
 assert(capture);

 /* print a welcome message, and the OpenCV version */

 // CV_VERSION,
 // CV_MAJOR_VERSION, CV_MINOR_VERSION, CV_SUBMINOR_VERSION);

 /* Capture 1 video frame for initialization */
 IplImage* videoFrame = NULL;
 IplImage* BGFrame = NULL;
 //BGFrame = cvQueryFrame(capture);
 videoFrame = cvQueryFrame(capture);

 if(!videoFrame)
 {
 printf("Bad frame \n");
 exit(0);
 }
 // Create windows

 // Select parameters for Gaussian model.
 /*CvGaussBGStatModelParams* params = new CvGaussBGStatModelParams;

 params->win_size=2;
 params->n_gauss=3;
 params->bg_threshold=0.9;
 params->std_threshold=.5;
 params->minArea=15;
 params->weight_init=0.05;
 params->variance_init=30;

 CvBGStatModel* bgModel = cvCreateGaussianBGModel(videoFrame ,params);
 */

 IplImage *skinFrame, *skinFrameGray, *ccImage, * originalThr, *skinFrameRGB,
*sobelFrame, *sobelFrameConverted ;
 IplImage* faceFrame, * hand1Frame,* hand2Frame, *videoFramecopy;
 skinFrame = cvCreateImage(cvGetSize(videoFrame), IPL_DEPTH_8U, 3);
 videoFramecopy = cvCreateImage(cvGetSize(videoFrame), IPL_DEPTH_8U, 3);

56 | P a g e

 sobelFrame = cvCreateImage(cvGetSize(videoFrame), IPL_DEPTH_16S, 1);
 sobelFrameConverted = cvCreateImage(cvGetSize(videoFrame), IPL_DEPTH_8U, 1);
 skinFrameRGB = cvCreateImage(cvGetSize(skinFrame), IPL_DEPTH_8U, 3);
 skinFrameGray = cvCreateImage(cvGetSize(skinFrame), IPL_DEPTH_8U, 1);
 ccImage = cvCreateImage(cvGetSize(skinFrame), IPL_DEPTH_8U, 3);
 originalThr = cvCreateImage(cvGetSize(skinFrame), IPL_DEPTH_8U, 1);
 faceFrame = cvCreateImage(cvGetSize(videoFrame), IPL_DEPTH_8U, 3);
 hand1Frame = cvCreateImage(cvGetSize(videoFrame), IPL_DEPTH_8U, 3);
 hand2Frame = cvCreateImage(cvGetSize(videoFrame), IPL_DEPTH_8U, 3);
 CvMemStorage *mem, *mem2;
 CvSeq* RegionOfInterests = NULL;
 CvSeq* RegionOfInterests2 = NULL;
 mem = cvCreateMemStorage(0);
 mem2 = cvCreateMemStorage(0);
 int key=-1;
 cvNamedWindow("BG", 1);
 cvNamedWindow("VideoFrame", 1);
 while(1)
 {
 // Grab a frame
 videoFrame = cvQueryFrame(capture);
 cvShowImage("BG", videoFrame);
 if(!videoFrame)
 break;
 if('b'==cvWaitKey(1))
 {
 videoFrame = cvQueryFrame(capture);
 cvSaveImage("videoFrame.jpg", videoFrame);
 cvDestroyWindow("BG");
 cvReleaseCapture(&capture);
 break;
 }
 }
 capture = cvCreateCameraCapture(0);
 assert(capture);
 while(1)
 {
 BGFrame = cvQueryFrame(capture);//Update model(Background subtraction)
 if('c'==cvWaitKey(1))
 break;
 }

 //cvCvtColor(backg,backg,CV_RGB2YCrCb);

 cvNamedWindow("FG", 1);

57 | P a g e

 cvNamedWindow("Image",1);
 cvNamedWindow("SkinFrame", 1);
 while(1)
 {
 BGFrame = cvQueryFrame(capture);//Update model(Background subtraction)
 cvSaveImage("BGFrame.jpg",BGFrame);
 //cvCvtColor(BGFrame,BGFrame,CV_RGB2YCrCb);

 //cvUpdateBGStatModel(videoFrame,bgModel);
 IplImage *img1 = cvLoadImage("BGFrame.jpg",FALSE);
 IplImage *img2 = cvLoadImage("videoFrame.jpg",FALSE);

 //code to extract the byte array of the pixels from the image

 //initialize byte array as zero
 BYTE *Pixel1=0;
 BYTE *Pixel2=0;
 //extract pixels using the OpenCV function cvGetRawData
 cvGetRawData(img1,&Pixel1,0,0);
 cvGetRawData(img2,&Pixel2,0,0);

 //get height and width using OpenCV functions
 const int &rows = img1->height;
 const int &cols = img2->width;

 //register int to increase the speed
 register int r,ri,c;

 //to find diffrence of 2 images by pixel to pixel comparision
 for(r = 0, ri = 0; r < rows; r++, ri += cols)
 {
 for(c = 0; c < cols; c++)
 {
 //get the difference in pixels
 Pixel1[ri + c] = Pixel1[ri + c] - Pixel2[ri + c];

 //set threshold value as 100 for comparision, it can be changed to
values between 50 and 200, for getting binary image
 if(Pixel1[ri + c] < 100)
 {
 Pixel1[ri + c]=0;
 }
 else
 Pixel1[ri + c]=255;

58 | P a g e

 }//for c

 }//for r, ri*/

 //create a named window to display the image with only foreground
 cvShowImage("Image",img1);
 cvSaveImage("sub.jpg", img1);
 //Detect The Skin
 GetSkinMask(BGFrame, skinFrame, 1, 7);
 cvShowImage("SkinFrame", skinFrame);
 cvCvtColor(skinFrame, skinFrameRGB, CV_YCrCb2BGR);
 cvCvtColor(skinFrameRGB, skinFrameGray, CV_BGR2GRAY);
 cvThreshold(skinFrameGray, skinFrameGray, 155, 255, CV_THRESH_BINARY);
 BYTE *Pixel3=0;
 BYTE *Pixel4=0;
 //extract pixels using the OpenCV function cvGetRawData
 cvGetRawData(img1,&Pixel3,0,0);
 cvGetRawData(skinFrameGray,&Pixel4,0,0);

 //get height and width using OpenCV functions
 const int &rows2 = img1->height;
 const int &cols2 = skinFrameGray->width;

 //register int to increase the speed
 register int r2,ri2,c2;

 //to find diffrence of 2 images by pixel to pixel comparision
 for(r2 = 0, ri2 = 0; r2 < rows2; r2++, ri2 += cols2)
 {
 for(c2 = 0; c2 < cols2; c2++)
 {
 //get the difference in pixels

 //set threshold value as 100 for comparision, it can be changed to values between 50
and 200, for getting binary image
 if(Pixel3[ri2 + c2]!=255||Pixel4[ri2+c2]!=255)
 {
 Pixel4[ri2 + c2]=0;
 }
 else
 Pixel4[ri2 + c2]=255;

 }//for c

 }//for r, ri*/

59 | P a g e

 if((char)27==cvWaitKey(1)) exit(0);

 //Find the first Connected Component
 RegionOfInterests = CCA(skinFrameGray, ccImage, mem);

 // Display results
// cvShowImage("BG", bgModel->background);
 cvShowImage("FG", skinFrameGray);

 cvShowImage("VideoFrame", BGFrame);

 if(&RegionOfInterests)
 break;
 }
 cvReleaseImage(&skinFrame);
 cvReleaseImage(&ccImage);
 cvReleaseImage(&skinFrameGray);
 cvReleaseImage(&skinFrameRGB);
 cvDestroyWindow("BG");
 cvDestroyWindow("FG");
 cvDestroyWindow("ConnectedComponent");
 cvDestroyWindow("SkinFrame");

 cvNamedWindow("Tracking", 1);
 videoFrame = cvQueryFrame(capture);
 //Initialize Tracking
 startTracking(videoFrame, RegionOfInterests);
 //FILE *fp = fopen("tired.txt","w");
 FILE *fptest = fopen("test.txt","w");
 FILE *fpout = fopen("output.txt","w");
 //Classifier *classifier = new Classifier();
 int count =0;
 //cvNamedWindow("emotion");
 while(1)
 {
 CvRect faceBox, hand1Box, hand2Box, shoulderBox;
 double output;
 //cvShowImage("Tracking2", faceFrame);
 //cvShowImage("Tracking4", hand1Frame);
 // Grab a frame
 videoFrame = cvQueryFrame(capture);
 videoFramecopy = cvCloneImage(videoFrame);
 faceBox = trackFace(videoFrame);
 //cvShowImage("Tracking3", faceFrame);

60 | P a g e

 hand1Box = trackHand1(videoFrame);
 //cvShowImage("Tracking5", hand1Frame);
 //hand2Box = trackHand2(videoFrame);
 // outline face ellipse
 cvRectangle(videoFrame,cvPoint(faceBox.x,faceBox.y),
 cvPoint(faceBox.x+faceBox.width,
 faceBox.y+ faceBox.height),
 cvScalar(0,255,0),0);

 cvRectangle(videoFrame,cvPoint(hand1Box.x,hand1Box.y),
 cvPoint(hand1Box.x+hand1Box.width,
 hand1Box.y+ hand1Box.height),
 cvScalar(0,255,0),0);
 /*cvRectangle(videoFrame,cvPoint(hand2Box.x,hand2Box.y),
 cvPoint(hand2Box.x+hand2Box.width,
 hand2Box.y+ hand2Box.height),
 cvScalar(0,255,0),0);
 /* Shoulder Detection */
 shoulderBox = cvRect(faceBox.x - faceBox.width, faceBox.y+(0.5*faceBox.height),
3 * faceBox.width, 1.5* faceBox.height);
 cvRectangle(videoFrame,cvPoint(shoulderBox.x,shoulderBox.y),
 cvPoint(shoulderBox.x+shoulderBox.width,
 shoulderBox.y+ shoulderBox.height),
 cvScalar(0,255,0),0);
 IplImage *shoulderFrame = cvCreateImage(cvGetSize(videoFrame),
IPL_DEPTH_8U, 1);

 /** Extracting ShoulderFrame ****/

 CvPixelPosition8u pos_src;
 CvPixelPosition8u pos_dst;

 int x =0;
 int y =0;

 CV_INIT_PIXEL_POS(pos_src,(unsigned char *) videoFramecopy->imageData,
 videoFramecopy->widthStep,cvGetSize(videoFramecopy),x,y,videoFramecopy->origin);

 CV_INIT_PIXEL_POS(pos_dst,(unsigned char *) shoulderFrame->imageData,
 shoulderFrame->widthStep, cvGetSize(shoulderFrame), x,y,shoulderFrame->origin);

 uchar * ptr_src;
 uchar * ptr_dst;

 for(y=0;y<videoFramecopy-> height; y++)

61 | P a g e

 {
 for (x=0; x<videoFramecopy->width; x++)
 {
 ptr_src = CV_MOVE_TO(pos_src,x,y,3);
 ptr_dst = CV_MOVE_TO(pos_dst,x,y,1);

 if(x>shoulderBox.x&&x<=shoulderBox.x+shoulderBox.width&&y>shoulderBox.y&&y<=s
houlderBox.y+shoulderBox.height)
 {
 ptr_dst[0] = ptr_src[0];
 // ptr_dst[1] = ptr_src[1];
 // ptr_dst[2] = ptr_src[2];
 }
 else
 {
 ptr_dst[0] = 0;
 // ptr_dst[1] = 0;
 // ptr_dst[2] = 0;
 }
 }
 }
 cvSobel(shoulderFrame, sobelFrame, 0, 1);
 cvConvertScaleAbs(sobelFrame, sobelFrameConverted);
 cvThreshold(sobelFrameConverted, sobelFrameConverted,100, 255,
CV_THRESH_BINARY);

 Hough* hough = new Hough(sobelFrameConverted);
 IplImage *parabola = hough->HoughTransform(sobelFrameConverted,
shoulderBox, videoFrame);
 cvShowImage("Tracking", videoFrame);
 // cvShowImage("Shoulder", sobelFrameConverted);
 cvSaveImage("resultShoulder1.jpg", sobelFrameConverted);
 float centroid_diff_x_h1 = abs((faceBox.x+faceBox.width/2) -
(hand1Box.x+hand1Box.width/2));
 float centroid_diff_y_h1 = abs((faceBox.y+faceBox.height/2) -
(hand1Box.y+hand1Box.height/2));
 float centroid_diff_x_h2 = abs((faceBox.x+faceBox.width/2) -
0);//(hand2Box.x+hand2Box.width/2));
 float centroid_diff_y_h2 = abs((faceBox.y+faceBox.height/2) -
0);//(hand2Box.y+hand2Box.height/2));
 //cvSaveImage("resultShoulder.jpg", parabola);
 /* if(count<50&&'a'==cvWaitKey(1))
 {

62 | P a g e

 fprintf(fp, "%d\t1:%f\t2:%f\t3:%f\t4:%f\t5:%f\t6:%f\t7:%f\n",5, hough-
>getAmax(), hough->getBmax(), hough->getCmax(), centroid_diff_x_h1 , centroid_diff_y_h1,
centroid_diff_x_h2 , centroid_diff_y_h2);
 count++;
 }
 else if(count>=50)
 {
 fclose(fp);
 cvReleaseCapture(&capture);
 break;
 }
 */
 char str[200];
 int n;
 n = sprintf(str, "0\t1:%f\t2:%f\t3:%f\t4:%f\t5:%f\t6:%f\t7:%f", hough-
>getAmax(), hough->getBmax(), hough->getCmax(), centroid_diff_x_h1 , centroid_diff_y_h1,
centroid_diff_x_h2 , centroid_diff_y_h2);
 output = svmpredict(str);
 //output = classifier->classify(videoFramecopy,hough->getAmax(), hough-
>getBmax(), hough->getCmax(), centroid_diff_x, centroid_diff_y);
 count++;
 printf("%d\n", count);
 //fprintf(fptest, "0\t1:%f\t2:%f\t3:%f\t4:%f\t5:%f\t6:%f\t7:%f\n", hough-
>getAmax(), hough->getBmax(), hough->getCmax(), centroid_diff_x_h1 , centroid_diff_y_h1,
centroid_diff_x_h2 , centroid_diff_y_h2);

 if(output==2)
 {
 IplImage *shock = cvLoadImage("shock-4.jpg");
 cvShowImage("emotion", shock);
 //Print(videoFrame, "Positive Surprised");
 printf("shrug\n");
 fprintf(fptest, "%s\n","shrug");
 }

 else if(output==1)
 {
 IplImage *neutral = cvLoadImage("Neutral.jpg");
 cvShowImage("emotion", neutral);
 printf("neutral\n");
 fprintf(fptest, "%s\n","neutral");
 }
 else if(output==3)
 {
 //IplImage *neutral = cvLoadImage("Neutral.jpg");

63 | P a g e

 //cvShowImage("emotion", neutral);
 printf("positive\n");
 fprintf(fptest, "%s\n","surprise");
 }
 else if(output==4)
 {
 IplImage *emotion = cvLoadImage("tensed.jpg");
 cvShowImage("emotion", emotion);
 printf("tensed\n");
 fprintf(fptest, "%s\n","tense");
 }
 else if(output==5)
 {
 IplImage *emotion = cvLoadImage("tired.jpg");
 cvShowImage("emotion", emotion);
 printf("tired\n");
 fprintf(fptest, " %s\n","tired");
 }

 if((char)27==cvWaitKey(1))
 {
 cvReleaseCapture(&capture);
 cvReleaseImage(&videoFrame);
 fclose(fptest);
 //cvReleaseBGStatModel(&bgModel);
 break;
 }
 }
}

void Print(IplImage* I, char* string)
{
 cvPutText(I, string, cvPoint(250, 80), &cvFont(10), cvScalar(0, 0, 255));

}

6.4 Hough Transform

hough.cpp

#include "cv.h"

#include <stdio.h>

64 | P a g e

#include "highgui.h"

class Hough

{

private:

 double aMin, bMin, cMin, aMax, bMax, cMax;

 int n1, n2, n3;

 double *aArray ;

 double *bArray ;

 double *cArray ;

 int ***HoughSpace;

 int maxR ,maxL, maxM, maxV;

 double aBin ;

 double bBin;

public:

 Hough(IplImage * I)

{ aMin = 0.0010;

 aMax = 0.0500;

 bMin = 0;

 bMax = -I->width/100;

 aBin = 0.001;

 bBin = 0.1;

 n1= (int)((aMax - aMin)/ aBin);

65 | P a g e

 n2 = (int)((bMin - bMax)/bBin);

 n3 = I->height;

 aArray = new double[n1];

 bArray = new double[n2];

 cArray = new double[n3];

 HoughSpace = new int**[n1];

 for(int l=0; l<n1; l++)

 {

 HoughSpace[l] = new int*[n2];

 for(int m=0; m<n2;m++)

 {

 HoughSpace[l][m] = new int[n3];

 for(int v=0; v<n3; v++)

 {

 HoughSpace[l][m][v] = 0;

 }

 }

 }

 maxR=0;

 maxL=0;

66 | P a g e

 maxM=0;

 maxV=0;

 }

 IplImage* HoughTransform(IplImage* I, CvRect Rect, IplImage *result)

 {

 // IplImage *result = cvCreateImage(cvGetSize(I), IPL_DEPTH_8U, 1);

 uchar R;

 CvPixelPosition8u pos_src;

 CvPixelPosition8u pos_dst;

 int x =0;

 int y =0;

 int i=0;

 CV_INIT_PIXEL_POS(pos_src,(unsigned char *)I->imageData, I-

>widthStep, cvGetSize(I), x, y, I->origin);

 CV_INIT_PIXEL_POS(pos_dst,(unsigned char *)result->imageData,

result->widthStep, cvGetSize(result), x, y, result->origin);

 double a = 0, b =0, xcenter;

 int c = 0, value = 0;

 uchar * ptr_src;

 uchar * ptr_dst;

67 | P a g e

 for(y=0;y<I->height; y++)

 {

 for (x=0; x<I->width; x++)

 {

 ptr_src = CV_MOVE_TO(pos_src,x,y,1);

 ptr_dst = CV_MOVE_TO(pos_dst,x,y,1);

 R = ptr_src[0];

 if(R==255&& y>Rect.y + 5 && y< Rect.y+Rect.height -

5)

 {

 a = aMin;

 i =0;

 while(a<=aMax&&i<n1)

 {

 aArray[i] = a;

 a = a + aBin;

 i++;

 }

 //n1 = i;

 b = bMin;

 i=0;

 while(b>=bMax&&i<n2)

68 | P a g e

 {

 bArray[i] = b;

 b = b - bBin;

 i++;

 }

 i=0;

 while(c<I->height)

 {

 cArray[i] = c;

 c= c+1;

 i++;

 }

 // = i;

 for(int j=0; j< n1; j++)

 {

 for(int k=0; k<n2; k++)

 {

 value=(int)(y - aArray[j]*x*x -

bArray[k]*x);

 xcenter = -bArray[k]/(2*aArray[j]);

 if(value>0&&value<I-

>height&&(xcenter>Rect.x)&&(xcenter<Rect.x+Rect.width))

 {

69 | P a g e

 HoughSpace[j][k][value] =

HoughSpace[j][k][value]+ R;

 }

 }

 }

 }

 }

 }

 for(int l=0; l<n1; l++)

 {

 for(int m=0; m<n2; m++)

 {

 for(int v=0; v<n3; v++)

 {

 if(maxR<HoughSpace[l][m][v])

 {

 maxR = HoughSpace[l][m][v];

 maxL= l;

 maxM = m;

 maxV = v;

 }

 }

70 | P a g e

 }

 }

 for(int x=0; x<result->width; x++)

 {

 y = (int)(aArray[maxL]*x*x + bArray[maxM]*x +

cArray[maxV]);

 if(y>Rect.y&&y<Rect.y+Rect.height&&x>Rect.x&&x<Rect.x+Rect.width)

 cvSet2D(result, y, x, cvScalar(255));

 }

 return result;

 }

 double getAmax()

 {

 return aArray[maxL];

 }

 double getBmax()

 {

 return bArray[maxM];

 }

double getCmax()

 {

 return cArray[maxV];

71 | P a g e

 }

 int main4(int argc, char *argv[])

 {

 IplImage *imgThr; /*IplImage is an image in OpenCV*/

 CvCapture* capture = cvCreateCameraCapture(0);

 assert(capture);

 /* print a welcome message, and the OpenCV version */

 // CV_VERSION,

 // CV_MAJOR_VERSION, CV_MINOR_VERSION, CV_SUBMINOR_VERSION);

 /* Capture 1 video frame for initialization */

 IplImage* img = NULL;

 img = cvQueryFrame(capture);

 imgThr = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3);

 cvThreshold(img, imgThr, 155, 255, CV_THRESH_BINARY);

 //IplImage *parabola = HoughTransform(imgThr,);

 // cvSaveImage("resultShoulder.jpg", parabola);

 return 0;

72 | P a g e

 }

};

6.5 Classifier

Classifier.cpp

#include "cv.h"

#include <stdio.h>

#include "highgui.h"

extern double svmpredict(char *s);

class Classifier {

private:

public:

 void train(FILE *fp,double a, double b, double c, double rcx, double rcy)

 {

 fprintf(fp, "%d\t%lf\t%lf\t%lf\t%lf\t%lf\n", 1, a, b, c, rcx, rcy);

 }

 double classify(IplImage *I, double a, double b, double c, double cdx, double cdy)

 {

73 | P a g e

 char s[200];

 int n;

 n = sprintf(s, "0\t1:%f\t2:%f\t3:%f\t4:%f\t5:%f", a, b, c, cdx, cdy);

 double d = svmpredict(s);

 return d;

 }

};

/*int main6(int argc, char** argv)

{

 char *argv1[3] = {"", "train.txt", "model.txt"};

 main0(3,argv1);

 return 0;

}*/

6.6 Connected component Analysis

Cca.cpp

#include "cv.h"

#include "highgui.h"

#include <stdio.h>

#include <conio.h>

74 | P a g e

// Main blob library include

//#include "BlobResult.h"

char wndname[] = "Blob Extraction";

char tbarname1[] = "Threshold";

char tbarname2[] = "Blob Size";

// The output and temporary images

//int param1 = 0,param2 = 1000;

// threshold trackbar callback

/*void on_trackbar(IplImage* original, IplImage* originalThr,IplImage*

displayedImage, int param1 = 255,int param2 = 1000)

{

 if(!originalThr)

 {

 originalThr = cvCreateImage(cvGetSize(original), IPL_DEPTH_8U,1);

 }

 if(!displayedImage)

 {

 displayedImage = cvCreateImage(cvGetSize(original),

IPL_DEPTH_8U,3);

 }

75 | P a g e

 // threshold input image

 //cvThreshold(original, originalThr, param1, 255, CV_THRESH_BINARY);

 // get blobs and filter them using its area

 CBlobResult blobs;

 int i;

 CBlob *currentBlob;

 // find blobs in image

 blobs = CBlobResult(original, NULL, 255);

 blobs.Filter(blobs, B_EXCLUDE, CBlobGetArea(), B_LESS, param2);

 // display filtered blobs

 //cvMerge(originalThr, originalThr, originalThr, NULL, displayedImage

);

 cvMerge(original, original, original, NULL, displayedImage);

 for (i = 0; i < blobs.GetNumBlobs(); i++)

 {

 currentBlob = blobs.GetBlob(i);

 currentBlob->FillBlob(displayedImage, CV_RGB(255,0,0));

 }

76 | P a g e

 //cvSaveImage("result5.jpg", displayedImage);

}

int main2(int argc, char **argv)

{

 IplImage* originalThr = 0;

 IplImage* original = cvLoadImage("mikki2.jpg",0);

 IplImage* originalSkin = 0;

 IplImage* displayedImage = 0;

 on_trackbar(original, originalThr, displayedImage);

 return 0;

}

*/

 //int main(int argc, char *argv[])

CvSeq* CCA(IplImage* img, IplImage* cc_color, CvMemStorage *mem)

{

 //cvNamedWindow("Thr",1);

 IplImage *imgThr; /*IplImage is an image in OpenCV*/

 CvSeq *contours, *ptr;

 // img = cvLoadImage("mikki2.jpg", 0); /* loads the image from the command

line */

 cc_color = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3);

77 | P a g e

 imgThr = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);

 cvThreshold(img, imgThr, 155, 255, CV_THRESH_BINARY);

 cvFindContours(imgThr, mem, &contours, sizeof(CvContour), CV_RETR_CCOMP,

CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));

 //CvSeq* result = cvApproxPoly(contours, sizeof(CvContour), mem,

CV_POLY_APPROX_DP, 2, 0);

 double max =0, max2 = 0, max3 = 0;

 CvSeq* c = contours, *c2 = contours, *c3 = contours;

 CvRect boundRect, boundRect2, boundRect3;

 for (ptr = contours; ptr != NULL; ptr = ptr->h_next)

 {

 //CvScalar color = CV_RGB(rand()&255, rand()&255, rand()&255);

 //cvDrawContours(cc_color, ptr, color, CV_RGB(0,0,0), -1,

CV_FILLED, 8, cvPoint(0,0));

 boundRect = cvBoundingRect(ptr,0);

 if(max<boundRect.height*boundRect.width)

 {

 max = boundRect.height*boundRect.width;

 c =ptr;

 }

/* cvRectangle(cc_color,cvPoint(boundRect.x,boundRect.y),

 cvPoint(boundRect.x+boundRect.width,

 boundRect.y+boundRect.height),

78 | P a g e

 cvScalar(255,0,0),0);

*/

 }

 boundRect = cvBoundingRect(c,0);

 for (ptr = contours; ptr != NULL && ptr!=c; ptr = ptr->h_next)

 {

 //CvScalar color = CV_RGB(rand()&255, rand()&255, rand()&255);

 //cvDrawContours(cc_color, ptr, color, CV_RGB(0,0,0), -1,

CV_FILLED, 8, cvPoint(0,0));

 boundRect2 = cvBoundingRect(ptr,0);

 if(max2<boundRect2.height*boundRect2.width)

 {

 max2 = boundRect2.height*boundRect2.width;

 c2 = ptr;

 }

 }

 boundRect2 = cvBoundingRect(c2,0);

 for (ptr = contours; ptr != NULL && ptr!=c &&ptr!=c2; ptr = ptr-

>h_next)

 {

 //CvScalar color = CV_RGB(rand()&255, rand()&255, rand()&255);

 //cvDrawContours(cc_color, ptr, color, CV_RGB(0,0,0), -1,

CV_FILLED, 8, cvPoint(0,0));

79 | P a g e

 boundRect3 = cvBoundingRect(ptr,0);

 if(max3<boundRect2.height*boundRect2.width)

 {

 max3 = boundRect2.height*boundRect2.width;

 c3 = ptr;

 }

 }

 boundRect3 = cvBoundingRect(c3,0);

 cvRectangle(cc_color,cvPoint(boundRect.x,boundRect.y),

 cvPoint(boundRect.x+boundRect.width,

 boundRect.y+boundRect.height),

 cvScalar(0,255,0),0);

 cvRectangle(cc_color,cvPoint(boundRect2.x,boundRect2.y),

 cvPoint(boundRect2.x+boundRect2.width,

 boundRect2.y+boundRect2.height),

 cvScalar(255,0,0),0);

 cvRectangle(cc_color,cvPoint(boundRect3.x,boundRect3.y),

 cvPoint(boundRect3.x+boundRect3.width,

 boundRect3.y+boundRect3.height),

 cvScalar(0,0,255),0);

 CvMemStorage * storage = cvCreateMemStorage(0);

 CvSeqWriter writer;

80 | P a g e

 cvStartWriteSeq(0, sizeof(CvSeq), sizeof(CvRect), storage, &writer);

 CV_WRITE_SEQ_ELEM(boundRect, writer);

 CV_WRITE_SEQ_ELEM(boundRect2, writer);

 CV_WRITE_SEQ_ELEM(boundRect3, writer);

 CvSeq* ROIs = cvEndWriteSeq(&writer);

 cvSaveImage("result.jpg", cc_color);

 //cvReleaseImage(&img);

 //cvReleaseImage(&cc_color);

 return ROIs;

}

6.7 SVM

Svmpredictnew

#include <stdio.h>

#include <ctype.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include "svm.h"

#include <float.h>

struct svm_node *x;

int max_nr_attr = 64;

struct svm_model* model;

int predict_probability=0;

double lower=-1.0,upper=1.0,y_lower,y_upper;

int y_scaling = 0;

double *feature_max;

double *feature_min;

double y_max = -DBL_MAX;

double y_min = DBL_MAX;

int max_index;

long int num_nonzeros = 0;

long int new_num_nonzeros = 0;

static char *line = NULL;

81 | P a g e

static int max_line_len;

#define max(x,y) (((x)>(y))?(x):(y))

#define min(x,y) (((x)<(y))?(x):(y))

static char* readline(FILE *input)

{

 int len;

 if(fgets(line,max_line_len,input) == NULL)

 return NULL;

 while(strrchr(line,'\n') == NULL)

 {

 max_line_len *= 2;

 line = (char *) realloc(line,max_line_len);

 len = (int) strlen(line);

 if(fgets(line+len,max_line_len-len,input) == NULL)

 break;

 }

 return line;

}

void exit_input_error(int line_num)

{

 fprintf(stderr,"Wrong input format at line %d\n", line_num);

 exit(1);

}

double predict(char *string)

//void predict(FILE *input, FILE *output)

{

 int correct = 0;

 int total = 0;

 double error = 0;

 double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;

 int svm_type=svm_get_svm_type(model);

 int nr_class=svm_get_nr_class(model);

 double *prob_estimates=NULL;

 int j;

/* if(predict_probability)

 {

 if (svm_type==NU_SVR || svm_type==EPSILON_SVR)

 printf("Prob. model for test data: target value = predicted

value + z,\nz: Laplace distribution e^(-

|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));

 else

 {

 int *labels=(int *) malloc(nr_class*sizeof(int));

 svm_get_labels(model,labels);

 prob_estimates = (double *)

malloc(nr_class*sizeof(double));

 fprintf(output,"labels");

 for(j=0;j<nr_class;j++)

 fprintf(output," %d",labels[j]);

 fprintf(output,"\n");

 free(labels);

 }

82 | P a g e

 }

*/

 //max_line_len = 1024;

 //line = (char *)malloc(max_line_len*sizeof(char));

 //while(readline(input) != NULL)

 //{

 int i = 0;

 double target_label, predict_label;

 char *idx, *val, *label, *endptr;

 int inst_max_index = -1; // strtol gives 0 if wrong format, and

precomputed kernel has <index> start from 0

 //label = strtok(line," \t\n");

 label = strtok(string," \t\n");

 if(label == NULL) // empty line

 exit_input_error(total+1);

 target_label = strtod(label,&endptr);

 if(endptr == label || *endptr != '\0')

 exit_input_error(total+1);

 while(1)

 {

 if(i>=max_nr_attr-1) // need one more for index = -1

 {

 max_nr_attr *= 2;

 x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct

svm_node));

 }

 idx = strtok(NULL,":");

 val = strtok(NULL," \t");

 if(val == NULL)

 break;

 errno = 0;

 x[i].index = (int) strtol(idx,&endptr,10);

 if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index

<= inst_max_index)

 exit_input_error(total+1);

 else

 inst_max_index = x[i].index;

 errno = 0;

 x[i].value = strtod(val,&endptr);

 if(endptr == val || errno != 0 || (*endptr != '\0' &&

!isspace(*endptr)))

 exit_input_error(total+1);

 ++i;

 }

 x[i].index = -1;

 if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))

 {

 predict_label = svm_predict_probability(model,x,prob_estimates);

 //fprintf(output,"%g",predict_label);

 //for(j=0;j<nr_class;j++)

 // fprintf(output," %g",prob_estimates[j]);

 //fprintf(output,"\n");

 }

 else

 {

 predict_label = svm_predict(model,x);

 //fprintf(output,"%g\n",predict_label);

83 | P a g e

 }

 if(predict_label == target_label)

 ++correct;

 error += (predict_label-target_label)*(predict_label-target_label);

 sump += predict_label;

 sumt += target_label;

 sumpp += predict_label*predict_label;

 sumtt += target_label*target_label;

 sumpt += predict_label*target_label;

 ++total;

 if (svm_type==NU_SVR || svm_type==EPSILON_SVR)

 {

 printf("Mean squared error = %g (regression)\n",error/total);

 printf("Squared correlation coefficient = %g (regression)\n",

 ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/

 ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))

);

 }

 //else

 //printf("Accuracy = %g%% (%d/%d) (classification)\n",

 // (double)correct/total*100,correct,total);

 if(predict_probability)

 free(prob_estimates);

 return predict_label;

}

void exit_with_help()

{

 printf(

 "Usage: svm-predict [options] test_file model_file output_file\n"

 "options:\n"

 "-b probability_estimates: whether to predict probability estimates, 0

or 1 (default 0); for one-class SVM only 0 is supported\n"

);

 exit(1);

}

void calc_max_index(char * restore_filename)

{

 FILE *fp_restore = fopen(restore_filename, "r");

 int idx, c;

 fp_restore = fopen(restore_filename,"r");

 if(fp_restore==NULL)

 {

 fprintf(stderr,"can't open file %s\n", restore_filename);

 exit(1);

 }

 c = fgetc(fp_restore);

 if(c == 'y')

 {

 readline(fp_restore);

 readline(fp_restore);

 readline(fp_restore);

 }

 readline(fp_restore);

 readline(fp_restore);

84 | P a g e

 while(fscanf(fp_restore,"%d %*f %*f\n",&idx) == 1)

 max_index = max(idx,max_index);

 rewind(fp_restore);

 fclose(fp_restore);

}

void calc_feature_range(char * restore_filename)

{

 FILE *fp_restore = fopen(restore_filename, "r");

 int idx, c;

 double fmin, fmax;

 if((c = fgetc(fp_restore)) == 'y')

 {

 fscanf(fp_restore, "%lf %lf\n", &y_lower, &y_upper);

 fscanf(fp_restore, "%lf %lf\n", &y_min, &y_max);

 y_scaling = 1;

 }

 else

 ungetc(c, fp_restore);

 if (fgetc(fp_restore) == 'x') {

 fscanf(fp_restore, "%lf %lf\n", &lower, &upper);

 while(fscanf(fp_restore,"%d %lf %lf\n",&idx,&fmin,&fmax)==3)

 {

 if(idx<=max_index)

 {

 feature_min[idx] = fmin;

 feature_max[idx] = fmax;

 }

 }

 }

 fclose(fp_restore);

}

void output_target(double value, char *str)

{

 int n;

 if(y_scaling)

 {

 if(value == y_min)

 value = y_lower;

 else if(value == y_max)

 value = y_upper;

 else value = y_lower + (y_upper-y_lower) *

 (value - y_min)/(y_max-y_min);

 }

 n = sprintf(str, "%g ",value);

 //printf(" %s", str);

 //printf("%g ",value);

}

void outputfunc(int index, double value, char *str)

{

 /* skip single-valued attribute */

 char *s = (char *)malloc(1024*sizeof(char));

 if(feature_max[index] == feature_min[index])

85 | P a g e

 return ;

 if(value == feature_min[index])

 value = lower;

 else if(value == feature_max[index])

 value = upper;

 else

 value = lower + (upper-lower) *

 (value-feature_min[index])/

 (feature_max[index]-feature_min[index]);

 if(value != 0)

 {

 int n = sprintf(s, "%d:%g ",index, value);

 strcat(str,s);

 // printf("%d ",n);

 new_num_nonzeros++;

 }

 //printf("%s", str);

}

double svmpredict(char *string)

//int main(int argc, char **argv)

{

 FILE *input, *output;

 char * p=string;

 char *scaled_string = (char *)malloc(1024*sizeof(char));

 int i;

 double d;

 int next_index=1, index;

 double target;

 double value;

#define SKIP_TARGET\

 while(isspace(*p)) ++p;\

 while(!isspace(*p)) ++p;

#define SKIP_ELEMENT\

 while(*p!=':') ++p;\

 ++p;\

 while(isspace(*p)) ++p;\

 while(*p && !isspace(*p)) ++p;

 //input = fopen("input", "w");

 //fprintf(input, "%s", string);

 max_index = 0;

 calc_max_index("range");

 feature_max = (double *)malloc((max_index+1)* sizeof(double));

 feature_min = (double *)malloc((max_index+1)* sizeof(double));

 if(feature_max == NULL || feature_min == NULL)

 {

 fprintf(stderr,"can't allocate enough memory\n");

 exit(1);

 }

 for(i=0;i<=max_index;i++)

86 | P a g e

 {

 feature_max[i]=-DBL_MAX;

 feature_min[i]=DBL_MAX;

 }

 calc_feature_range("range");

 /*Scale */

 sscanf(p,"%lf",&target);

 //printf("%s", p);

 SKIP_TARGET

 //output_target(target);

 output_target(target, scaled_string);

 //printf("Scaled_STRING: %s", scaled_string);

 while(sscanf(p,"%d:%lf",&index,&value)==2)

 //sscanf(p,"%d:%lf",&index,&value);

 {

 // printf("\nindex: %d", index);

 //printf("\nvalue: %lf", value);

 for(i=next_index;i<index;i++)

 outputfunc(i,0, scaled_string);

 outputfunc(index,value, scaled_string);

 //outputfunc(index, value);

 SKIP_ELEMENT

 next_index=index+1;

 }

 for(i=next_index;i<=max_index;i++)

 //outputfunc(i, 0);

 outputfunc(i,0, scaled_string);

 //printf("%s\n", scaled_string);

 // parse options

 /*for(i=1;i<argc;i++)

 {

 if(argv[i][0] != '-') break;

 ++i;

 switch(argv[i-1][1])

 {

 case 'b':

 predict_probability = atoi(argv[i]);

 break;

 default:

 fprintf(stderr,"Unknown option: -%c\n", argv[i-

1][1]);

 exit_with_help();

 }

 }

 if(i>=argn-2)

 exit_with_help();

 input = fopen(argv[i],"r");

 if(input == NULL)

 {

 fprintf(stderr,"can't open input file %s\n",argv[i]);

87 | P a g e

 exit(1);

 }

 output = fopen(argv[i+2],"w");

 if(output == NULL)

 {

 fprintf(stderr,"can't open output file %s\n",argv[i+2]);

 exit(1);

 }

 */

 if((model=svm_load_model("model.txt"))==0)

 //if((model=svm_load_model(argv[i+1]))==0)

 {

 printf("can't open model file %s\n");

 exit(1);

 }

 x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node));

 if(predict_probability)

 {

 if(svm_check_probability_model(model)==0)

 {

 //fprintf(stderr,"Model does not support probabiliy

estimates\n");

 printf("Model does not support probabiliy estimates\n");

 exit(1);

 }

 }

 else

 {

 if(svm_check_probability_model(model)!=0)

 printf("Model supports probability estimates, but disabled

in prediction.\n");

 }

 d = predict(scaled_string);

 svm_free_and_destroy_model(&model);

 free(x);

 free(line);

 //fclose(input);

 //fclose(output);

 return d;

}

/*int main10()

{

 char s[50] = "-1 1:0.002 2:-0.699999 3:221 ";

 double d = svmpredict(s);

 printf("%d", d);

 return 0;

}*/

88 | P a g e

REFERENCES

1. C.A.Bouman, “Digital Image Processing”, January10, 2011

2. Huazhong Ning,Tony X. Han,Yuxiao Hu, Zhenqiu Zhang,Yun Fu, and Thomas S. Huang, “A

Real time Shrug Detector”, Proceedings of the 7th International Conference on

Automatic Face and Gesture Recognition (FGR’06), 2006

3. Hatice Gunes and Massimo Piccardi, “Automatic Temporal Segment Detection and

Affect Recognition From Face and Body Display”, IEEE Transactions on Systems, Man,

and Cybernetics, February 2009

4. C.N.Joseph, S. Kokulakumaran, K. Srijeyanthan, A. Thusyanthan, C. Gunasekara, and C.D.

Gamage, “A Framework for Whole-Body Gesture Recognition from VideoFeeds”, 5th

International Conference on Industrial and Information Systems (ICIIS 2010), Jul 29- Aug

01, 2010

5. John G. Allen, Richard Y. D. Xu, Jesse S. Jin, “Object Tracking Using CamShift Algorithm

and Multiple Quantized Feature Spaces”, Pan-Sydney Area Workshop on Visual

Information Processing VIP2003, 2003

6. Mousa Mojarrad, Mashallah Abbasi Dezfouli, and Amir Masoud Rahmani, “Feature’s

Extraction of Human Body Composition in Images by Segmentation Method”, World

Academy of Science, Engineering and Technology, 2008

7. Hatice Gunes and Massimo Piccardi, “Fusing Face and Body Gesture for Machine

Recognition of Emotions”, IEEE International Workshop on Robots and Human

Interactive Communication, 2005

8. K. Sugawara. Weighted hough transform on a gridded image plane. In ICDAR97, pages

701–704, 1997.

9. D.M. Gavrila and L.S. Davis, “3-D model-based tracking of humans in action: a multi-view

approach”, IEEE Computer Vision and Pattern Recognition, San Francisco, 1996.

10. Chi-Wei Chu, Isaac COHEN, ”Posture and Gesture Recognition using 3D Body Shapes

Decomposition”, IEEE Workshop on Vision for Human-Computer Interaction (V4HCI),June 21,

2005.

V

 APPENDICES

APPENDIX A: Tools Description

OpenCV is a library of programming functions mainly aimed at real time computer vision,

developed by Intel and now supported by Willow Garage. It is free for use under the sources.

The library is cross-platform. It focuses mainly on real-time image processing. If the library finds

Intel's Integrated Performance Primitives on the system, it will use these commercial optimized

routines to accelerate it.

OpenCV's application areas include:

o 2D and 3D feature toolkits

o Egomotion estimation

o Facial recognition system

o Gesture recognition

o Human-Computer Interface (HCI)

o Mobile robotics

o Motion understanding

o Object Identification

o Segmentation and Recognition

o Stereopsis Stereo vision: depth perception from 2 cameras

VI

o Structure from motion (SFM)

o Motion tracking

To support some of the above areas, OpenCV includes a statistical machine learning library

that contains:

o Boosting

o Decision tree learning

o Expectation-maximization algorithm

o k-nearest neighbor algorithm

o Naive Bayes classifier

o Artificial neural networks

o Random forest

Microsoft Visual Studio 2008

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It can

be used to develop console and graphical user interface applications along with Windows

Forms applications, web sites, web applications, and web services in both native code together

with managed code for all platforms supported by Microsoft Windows, Windows

Mobile, Windows CE, .NET Framework, .NET Compact Framework and Microsoft Silverlight.

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Console_application
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Windows_Forms
http://en.wikipedia.org/wiki/Windows_Forms
http://en.wikipedia.org/wiki/Web_site
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Native_code
http://en.wikipedia.org/wiki/Managed_code
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/Microsoft_Silverlight

VII

Visual Studio supports different programming languages by means of language services, which

allow the code editor and debugger to support (to varying degrees) nearly any programming

language, provided a language-specific service exists. Built-in languages

include C/C++ (via Visual C++), VB.NET (via Visual Basic .NET), C# (via Visual C#), and F# (as of

Visual Studio 2010). Support for other languages such as M,Python, and Ruby among others is

available via language services installed separately. It also

supports XML/XSLT, HTML/XHTML, Java Script and CSS. Individual language-specific versions of

Visual Studio also exist which provide more limited language services to the user: Microsoft

Visual Basic, Visual J#, Visual C#, and Visual C++.

LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression

(epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class

classification.

Since version 2.8, it implements an SMO-type algorithm proposed in this paper:

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for

training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005. You can also find a

pseudo code there. (how to cite LIBSVM)

Their goal is to help users from other fields to easily use SVM as a tool. LIBSVM provides a

simple interface where users can easily link it with their own programs. Main features of

LIBSVM include

 Different SVM formulations

 Efficient multi-class classification

 Cross validation for model selection

 Probability estimates

 Various kernels (including precomputed kernel matrix)

 Weighted SVM for unbalanced data

 Both C++ and Java sources

 GUI demonstrating SVM classification and regression

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Visual_C%2B%2B
http://en.wikipedia.org/wiki/VB.NET
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Visual_C_Sharp
http://en.wikipedia.org/wiki/F_Sharp_(programming_language)
http://en.wikipedia.org/wiki/M_(programming_language)
http://en.wikipedia.org/wiki/IronPython
http://en.wikipedia.org/wiki/IronRuby
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XHTML
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone
http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f203
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#java
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#GUI

VIII

 Python, R, MATLAB, Perl, Ruby, Weka, Common LISP, CLISP, Haskell, LabVIEW, and PHP

interfaces. C# .NET code and CUDA extension is available.

It's also included in some data mining environments: Rapid Miner and PCP.

 Automatic model selection which can generate contour of cross valiation accuracy.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/#python
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#R
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#matlab
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#perl
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#ruby
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#weka
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#lisp
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#clisp
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#haskell
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#labview
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#PHP
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#csharp
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#cuda
http://rapid-i.com/
http://pcp.sourceforge.net/

IX

APPENDIX B: Quality Assurance

Quality assurance, or QA for short, is the systematic monitoring and evaluation of the various
aspects of a project, service or facility to maximize the probability that minimum standards of
quality are being attained by the production process. QA cannot absolutely guarantee the
production of quality products. Two principles included in QA are: "Fit for purpose" - the
product should be suitable for the intended purpose; and "Right first time" - mistakes should be
eliminated.

Fit for purpose:

Our project is fit for the purpose of developing a conversational agent which can interact with
an individual. It can accurately recognize the emotions of the individual and respond
accordingly. It is a step forward to make computers emotionally intelligent so that they behave
more like humans and become an integral part of our lives.

Right first Time:

Our project gives accurate results under appropriate conditions such as:

 The camshift works accurately only when the background does not have skin colored
elements.

 The subject should be wearing full- sleeves for effective output.

Failure testing:

The project fails under the following conditions:

 If the background has skin coloured elements.

 Training of the classifier is not proper.

Programming style and testing

Various types of testing such as functional, white box and unit testing were carried out using
debugging features of Microsoft Visual Studio 2008 (break point) and language tools such as
printing the values of the variables.

Example:

while(sscanf(p,"%d:%lf",&index,&value)==2)

 {

 // printf("\nindex: %d", index);

X

 //printf("\nvalue: %lf", value);

 for(i=next_index;i<index;i++)

 outputfunc(i,0, scaled_string);

 outputfunc(index,value, scaled_string);

 //outputfunc(index, value);

 SKIP_ELEMENT

 next_index=index+1;

 }

Apart from the above concepts we used the following tools and methods to for quality
assurance:

 Extensive research work to know the detailed process of development

 Use of a log book to ensure proper requirements and documentation

 Make some policies of not to mix professionalism with other casual things.

 Invite feedbacks from student users to eliminate minor difficulties which were not
visible to us as a developer.

 Learn from the mistake of other fellow students.

 Keep project on schedule to prevent haywire in the later stages.

XI

APPENDIX C: Test cases

S.N

O.

OBJECTIV

E

PASS/

FAIL

DATA

INPUT

EXPECT

ED

OUTPUT

ACTUAL

RESULT

REMARK

1 Proper skin

segmentation

Pass

Video Frame

Black and

white

image

consisting

of skin

component

Black and white

image consisting

of skin

components

Proper skin

segmentatio

n achieved

2 Proper

contour

extraction

Pass

Skin segmented

image

Bounding

boxes for

head and

hands

Bounding boxes

for head and

hands

Proper

contour

extraction

achieved

3 Pose

Variance

Pass Captured Frame Detected

face from

every angle

Detected face

from every angle

Pose

Variance

achieved

4 Real time

movement

tracking

Pass Captured Frame All

component

s tracked

efficiently

 All components

tracked

Accurate

tracking

5 Shoulder

Detection and

Tracking

Pass Captured Frame All

component

s tracked

efficiently Shoulder tracked

efficiently

Accurate

tracking

XII

6 Light

Intensity

Variance

Fail Captured Frame All

Componen

ts Tracked

Efficiently

No effective

tracking

No

Effective

tracking

7 Skin

Segmentation

with non

uniform

background

Pass

Skin

Segmented

effectively

Skin

Segmented

effectively

8 Tracking

with non

uniform

background

Pass Captured Frame Accurate

Tracking

Accurate

Tracking

9 Tracking

with non

uniform

background

Fail Captured Frame Accurate

Tracking

Program break Haphazard

Tracking

10 Tensed

Emotion

classification

Pass

Emotion

classified

as Tension

Correct

classificatio

n

11 Tired

Emotion

classification

Pass

Emotion

classified

as Tired

Correct

Classificati

on

