
RAY TRACING USING JAVA

Submitted in partial fulfillment of the Degree of

Bachelor of Technology

Computer Science and Engineering

MAY-2014

Under the Supervision of

Dr. Pardeep Kumar

By

Mayank (101243)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

i

TABLE OF CONTENTS

Chapter no. Topics Page No.

 Certificate………………………………………………………….ii

 Acknowledgement…………………………………………………iii

 Summary…………………………………………………………..iv

 List of figures………………………………………………………v

1. Introduction………………………………………………………..1

2. Brief survey of ray tracing………………………………………...2

3. Mathematics Involved……………………………………………..9

4. Components of lighting……………………………………………13

5. Implementation in Java…………………………………………...20

6. Result…………………………………………………………….....36

7. Conclusion……………………………………………………….....43

8. References………………………………………………………….45

ii

CERTIFICATE

This is to certify that the work titled “RAY TRACING USING JAVA” submitted by

Mayank in partial fulfilment for the award of degree of B.Tech Computer Science and Engineering

of Jaypee University of Information Technology, Waknaghat has been carried out under my

supervision. This work has not been submitted partially or wholly to any other University or Institute for

the award of this or any other degree or diploma.

Signature of Supervisor ………………………

Name of Supervisor ……………………..

 Designation ……………………..

Date ……………………..

iii

ACKNOWLEDGEMENT

I express sincere appreciation to Dr. Pardeep Kumar for his guidance throughout the research and

preparation of the thesis. I would like to thank him for his helpful comments, suggestions and giving me

chance to work together.

Signature of the student ……………………..

Name of Student ……………………..

Date ……………………..

iv

SUMMARY

Objective:

To develop a platform for ray tracing where we create a scene using a text file and then our java

application will create a realistic image of the scene.

Description:

Ray tracing is a technique to produce a realistic image virtually. This method converts a 3 dimensional

image to 2 dimensional image to make it suitable for display on the computer screen. Ray tracing takes

a lot of time in rendering the image, so it makes this technique suitable for applications where image can

be generated before its actual use, for example television animation.

In this project I have developed a Java application for ray tracing in which we define a scene in a text

file. This text file serves as an input to the application which then decodes this scene into the various

individual objects and lights. Then we take a simple camera as our viewer that defines our image plane.

We render the continuous image pixel by pixel by shooting a ray from each pixel to the image plane and

then we check for the intersections. Finally we calculate the colour at that pixel and display it.

v

LIST OF FIGURES

S.No. Description Page no.

1. The basic rendering method……………………………………..5

2. Illustration of rays, vectors and angles required in ray tracing….6

3. Ambient Light…………………………………………………...14

4. Diffuse light scattering…………………………………………..15

5. The Diffuse Term………………………………………………..15

6. Calculating diffuse lighting……………………………………...16

7. The specular term………………………………………………..16

8. Example of different shininess exponents……………………….17

9. Calculating specular term………………………………………..18

10. Lighting effect of the three components…………………………18

11. Putting the lighting terms together……………………………….19

12. The Original Scene before applying lighting and shadows………40

13. Scene after applying lighting…………………………………….41

14. Final rendered image…………………………………………….42

1

CHAPTER 1: INTRODUCTION

2

Ray tracing is a method to produce virtually realistic images and is based on global

illumination rendering method. This method traces rays of light from the eye (the camera)

to the image plane into the scene. Then these rays are checked against all objects present in

the scene to determine if they intersect any of these. If the ray passes through the scene

without any intersection, then that pixel is shaded with the background colour. Ray

tracing’s primary advantage is that it is relatively straightforward to compute shadows and

reflections.

Ray tracing was first developed in 1960s by scientists of Mathematical Applications Group

and is a point sampling algorithm where we sample a continuous image by producing one

or more rays from each pixel. Hence, leading to one of the disadvantage – aliasing.

Aliasing is corroborated in computer graphics by spiky edges.

This method is capable of rendering a very high degree of visual realism as it simply

captures the natural method of image generation through the eye but at a great

computational cost. This makes ray tracing suitable for applications where the image can

be rendered beforehand, as in television animation, and poorly suited for dynamic

applications like gaming where speed is of utmost importance.

A ray tracing program mathematically identifies the path that each ray follows in reverse

direction i.e. from the eye back to its point of origin. Each path consist of one or more

straight line components and nearly always involves refraction, reflection, or shadow

effects from points within the scene. Rays are assigned a colour based on the pigments the

objects in the scene that the ray passes through and each pixel on the display corresponds

to a ray.

In the last decade or so the efficiency and the quality of computer graphics has increased

significantly. However the need for a higher quality interactive graphics still persists. We

need high quality interactive graphics effects such as reflections, shadows, refractions etc.

The complex implementations of these effects can only be an approximation due to

limitations of the rendering methods. Ray tracing has been a standard for non-interactive

computer graphics. Recent research has shown that ray tracing is also possible for

interactive applications too. In this thesis we discover more about ray tracing and its

implementation in Java.

3

CHAPTER 2: BRIEF SURVEY OF RAY TRACING

4

It necessary to be introduced with few terms before going into depth of ray tracing. “Ray

tracing” actually covers a huge area in field of computer graphics, ranging from the basic

concept of efficiently finding an intersection between a ray and set a primitives (plane and

sphere in this project) to recursively tracing the images for realistic reflections. In computer

graphics we typically want to know how our three dimensional image looks through a

virtual camera. The process of computing image that such a virtual camera produces is

called a rendering.

The current standard rendering method is a local illumination rendering method known as

rasterization. This means that only the light from the light source is accounted for.

Reflected rays and refracted rays do not contribute to the image.

To make the scene look more real we use ray tracing as it is a global illumination rendering

method i.e. it takes into account the reflected and refracted rays too. This is requires for

advanced effects such as reflection and shadows. Ray tracing works by tracing the path of

light. We follow the path of rays of light

Of all the rays of light that is produced by light sources a lot of rays end up going away

from our virtual camera. We only want to know which light rays enter our virtual camera

and hence contribute to our image, so we follow the light backwards. This means that we

start at our eye (the virtual camera) and trace, the ray determines the colour of the pixel we

want to know about. When we encounter the point where the light is coming from we want

to know the colour at that point. To calculate this colour we need to know what the

incoming light at that point was. We recursively trace the rays from the light that falls on

that point. Remember in a global illumination method the light can originate both from the

light source or light reflected from other objects.

The main problem in ray tracing is to find the nearest intersection of the ray with an object.

Though this is not covered in the implementation, I suggest using spatial index structure.

Using sich structure we can check if a ray is in the vicinity of the object before we can

check for an intersection.

5

Fig 1. The basic rendering method

This simple but flexible rendering method makes ray tracing a much more suitable

environment for advanced effects than rasterization. With rasterization we need complex

and non-intuitive operations for such effects and often these effects are not possible at all

because of the limitations of a local illumination rendering method.

Although ray tracing is a far more suitable environment for advanced effects it is

traditionally known as being slow compared to rasterization rendering. The big difference

between ray tracing and rasterization is that they work the other way around: Rasterization

takes a primitive and draws it on screen, which is a very fast operation. With ray tracing we

look for each pixel which primitive is under it. Suppose for example we would want to

render a simple cube: With rasterization we would simply draw 16 triangles. With ray

tracing we would need more computations as we would need to trace rays for each pixel on

screen. This is why ray tracing is traditionally known as being “slow” compared to

rasterization rendering.

Generate Camera Rays

 Traverse Acceleration Structure

 Calculate Intersections

 Calculate colour at hit point

6

Ray tracing is not actually “slow”, the rendering time being logarithmic with the size of the

scene. It does however have a high initial cost. With a very complex scene with advanced

effects, it would be more efficient to use ray tracing than rasterization. This is because the

rasterization approach would always draw all triangles and overwrite triangles which are

further away. This means a lot of redundant operations. Additionally if the advanced

effects are at all possible they would need multiple rendering passes. With ray tracing we

would simply have no redundant calculations and would not need multiple rendering

passes. With highly complex and high quality graphics the cost of rasterization rendering,

with its redundant calculations and ineffective advanced effects, is higher than the cost of

ray tracing.

Fig 2. Illustration of rays, vectors and angles required in ray tracing

Ray-tracing finds its roots in the works of artists and mathematicians from centuries earlier.

In Alberti’s desire to understand the mathematics behind art and vision, he described sight

and vision in a matter aligned perfectly with computer graphics, and especially ray-tracing.

Alberti states: “Let us imagine the rays, like extended very fine threads gathered… going

back together inside the eye where the sense of sight lines. They are like a trunk of rays

7

from which, like straight shoots, the rays are released and go out towards the surface in

front of them”

According to Shirley and Morley (2003), ray-trace renderers are built upon a series of

simple algorithms that are used, in turn, to generate digital images. In contrast to a

rendering method like scan-line rendering, ray-trace rendering is becoming more-popular

because of increased computing power and the renderers ability to cleanly solve

problematic topics such as realistic material transparencies and object shadows.

Basic Ray-tracing Algorithm:

 for(current pixel width : x)

 for(current pixel height : y)

 set tm = DOUBLEMAX;

 for(every object)

 if(ray intersects object)

 calculate t;

 if(t<tm)

 set tm= t;

 if(tm=DOUBLEMAX)

 draw background colour at pixel x,y

 else

 draw closest shape at pixel x,y

 Draw all pixels to image

8

The algorithmic process of ray-tracing is simple to understand. There exist objects to create

and methods for describing their connections. The base list of required objects to create

are: camera, ray (a position and direction), two dimensional array of pixels (an empty

image), lights, and shapes. All objects in the scene are connected via independently

calculated rays. In order for the renderer to see objects and render them, those objects must

be in the line of sight of the camera. The line of sight is calculated as a ray, whose

originating position is the camera and whose direction is determined by the location of the

empty image. Rays are cast into the scene and wherever these line of sight rays intersect

with various shapes, the renderer calculates which object is hit first and what color that

object is. The color is calculated by casting rays, from a point on the surface, into the

scene. Each surface point is checked for facing direction toward or away from the light

sources. Any surface section facing toward a light whose view of the light is unobstructed

will receive a lighting contribution. This contribution is based also on the amount to which

the surface section points toward the light.

9

CHAPTER 3: MATHEMATICS INVOLVED

10

Equation of the ray,

Our ray can be defined with an origin and a direction. These are 3D vectors i.e. have three

components(x, y, z). It will be useful later when our direction is normalised(whose length

is 1). The path the ray takes can be represented as a parametric equation in t.

 (P is the position, O is the origin, and D is the direction).

As our direction vector is normalised, the distance traveled by the ray from the origin is t.

 Equation of Plane,

We can represent a normal to the plane using a vector(3D), and also a value to denote the

distance to the origin (in the direction of the normal). Rather than the origin of the ray

mentioned above, this is the distance to the origin at (0, 0, 0). E.g. if we look in the positive

direction down the Z-axis from 0, we can amount to a wall 10 units away with a plane with

a distance of 10 and a normal of (0, 0,-1).

The general equation for a plane is:

Where d is the distance to the origin and a, b and c are the x, y and z components of the

normal. To make the later equation more incisive, we can rewrite the plane equation in

vector form as:

(P is the position, N is the normal, and d is the distance from the origin. Also the dot is the

dot product)

From the above equations we know that t is the distance the ray has travelled from the

origin. Now we want to find out how far the ray has travelled if it intersects our plane.

Solving the ray and plane equations simultaneously will lead us to the required result.

11

The plane equation:

Taking P from the ray equation:

The dot product is distributive, so we simplify:

Further:

Now arranging it,

A bit more…

When the ray hits the plane, we can easily calculate the distance travelled by the ray using

this formula. We can substitute this value into the ray equation to get the intersection point

in 3D coordinates too.

The numerator and denominator are 0 in case the ray does not hit the plane.

After implementing what we have discussed so far, we will have a screen with half white

(for the intersection hits) and half black (for the misses).

Equation of Sphere,

Sphere’s Parametric form :

(P-C).(P-C) = R2

P is the point on sphere, R is radius and C is the centre of sphere

12

Ray Equation in parametric form:

P = O + Dt

Substituting ray equation in sphere equation:

(O+Dt-C).(O+Dt-C) - R2 = 0

Expanding :

(D.D) t2 + 2D.(O-C)t + (O-C).(O-C) - R2 = 0

This a quadratic equation in t which gives us two roots which signifies two intersection

point on sphere.

Rewriting the equation as:

at2 + bt +e = 0

Where:

a = D2

b = 2D.(O-C)

e = (O-C).(O-C) - R2

First we need to check whether ray is intersection with the sphere or not:

Determinant =

 < 0 ⇒ No intersection

 > 0 ⇒ Two solutions (enter and exit)

 = 0 ⇒ One solution (ray grazes sphere)

13

CHAPTER 4: COMPONENTS OF LIGHTING

14

Different types of light sources are used to give different effect:

1. Ambient part

This represents a fixed- intensity and also a fixed light source that affects each and every

object in the scene equally. Ambient light is mainly used to give the scene a basic view of

different objects present. It is very simple to implement and models how light is scattered

or reflected many times producing a uniform effect.

Fig 3. Ambient Light

The Mathematical term for ambient term,

ambient = Ka x GA

Where:

 Ka is the ambient reflectance of the material and

 GA is the Global Ambient i.e. the color of the incoming ambient light

2. Diffuse Part

The diffuse term is used for accounting the directed light reflected off a surface evenly in

all the directions. Generally, diffuse surfaces are uneven on a minuscule scale, which

reflect light in many directions. When incoming rays of light hit these aberrations, the light

reflects in every directions.

15

Fig 4. Diffuse Light Scattering

The intensity of light reflected directly depends on the angle of incidence of the light

striking the surface. Surfaces having a dull finish, are said to be diffuse. The contribution

of diffuse component at any particular point on a surface does not change, regardless of

where the viewpoint is.

Fig 5. The Diffuse Term

The Mathematical term for diffuse term,

diffuse = Kd x LC x maximum(0, N.L)

Where:

 Kd is the diffuse colour of the material,

 LC is the light colour i.e. the colour of the incoming diffuse light,

16

 N represents the normalized surface normal,

 L denotes the normalized vector toward the light source

Fig 6. Calculating Diffuse Lighting

The angle between vectors N and L is calculated by taking the dot product. The greater the

dot product, the smaller the angle will be between the vectors, and the surface will receive

more incident light. Negative dot product denotes surfaces that faces away from the light,

so the maximum(0,N.L) in the equation makes sure that these surfaces show no diffuse

lighting.

3. Specular Part

The specular term represents the light scattered from a surface mostly around the mirror

direction. On very smooth and shiny surfaces, such as polished metals the specular term is

most prominent. Figure 7 illustrates the concept of specular reflection

Fig 7. The Specular term

17

Unlike the diffuse and ambient lighting terms, the contribution of specular depends on the

camera placement. If the camera is on a location that does not receive the reflected rays,

the camera will not be able to see a specular highlight on the surface. The specular term

also affected by the shininess component of the material and not only the specular colour

component of the material. Less shiny surfaces have highlighted component spread on a

larger area than compared to the shinier material where the highlight is tighter and to a

point. We can see the difference between the different shininess components of material in

the following figure.

Fig 8. Example of different shininess exponents

The Mathematical term for specular term,

specular = Ks x LC x facing x (maximum(0, N · H)) shininess

Where:

 Ks is the specular colour of the material,

 LC is light colour i.e. the the incoming specular light’s colour,

 N represents the normalized surface normal,

 V denotes the normalized vector toward the viewpoint,

 L represents the normalized vector toward the light source,

 H denotes the normalized vector that is halfway between V and L,

 P is the point that is to be shaded, and

 facing is 0 if N · L is less than 0, and 1 otherwise.

18

Fig 9. Calculating the Specular term

The specular appearance of the material becomes evident when the angle between the view

vector V and the half-angle vector H is small. As H and V move farther apart, the

exponentiation of the dot product of N and H makes sure that the specular appearance falls

off quickly.

Also, if the diffuse term is zero the specular term is forced to zero because N · L (from

diffuse part) is negative. This makes sure that specular highlights is not visible on surfaces

that faces away from the light.

Adding the terms(Ambient, Diffuse and Specular) together,

Fig 10. Lighting effect of the three components

19

A. Specular effect

B. Diffuse effect

C. Ambient effect

The individual effects are captured gain in Fig 9.

Fig 11. Putting the lighting terms together

Combining the ambient, diffuse, and specular terms gives the final lighting, as shown in

Figure 10. Phong Reflection is the resulting Light effect.

20

CHAPTER 5: IMPLEMENTATION IN JAVA

21

Classes created:

1. SimpleCamera - SimpleCamera implements the viewer where the COP is on Z. A

viewport is specified on the XY plane.

2. Vector – This class stores the 3D vector components and contains methods to

manipulate the vectors.

3. Colour - Colour stores a RGB component and supports several methods to

manipulate colour values

4. Sphere - Sphere represents a spherical object

5. DirectionalLight - DirectionalLight represents a light source that illuminates along

parallel rays.

6. SimpleRay - SimpleRay implements the framework for the ray-tracing. It operates

as an applet. It also implements a thread which periodically forces a screen repaint

so that the user is kept aware of how far the ray-tracing has proceeded.

7. Light – This is superclass that each type of light must extend.

8. Material - Material describes the surface properties of an object using ambient,

diffuse and specular components.

9. SceneReader - A class to read values from a file

10. SceneWriter - A simple output class to write values to a file.

11. Scene – Scene creates the scene and stores the different components in its

respective classes

12. Point - Point stores and manipulates xyz triples representing 3 space points.

13. PointLight - PointLight represents a light sources that illuminates from a fixed

origin

14. Object - Object superclass each type of object must extend and implement this

class.

22

15. Plane - Plane represents an infinite plane object

16. Ray - Ray stores a ray origin point and direction vector.

Class SimpleCamera

Constructor

SimpleCamera()

 Creates a camera with resolution of 200 by 200

SimpleCamera(int a, int b)

 Creates a camera with width, a and height, b.

Methods

void initBasic(int a, int b)

 Ray ray(int x, int y)

 Returns the ray number x, y from the model of camera

 void setCOP(double cent)

 Sets the centre of projection equal to cent on the Z axis

 void setResolution(int x, int y)

 Set the resolution of the camera in terms of the number of rays to cast.

 void setVPWindow(double xmin, double xmax, double ymin, double ymax)

 Set the viewport window on the XY plane

Class Vector

Variables

 double X

 Holds the X component

 double Y

 Holds the Y component

 double Z

 Holds the Z component

23

Constructor

Vector()

 Creates a vector and initializes it to zero

Vector(double s, double b, double c)

 Creates a vector with the given a,b and c values

Vector(Point p)

 Point object is converted to a new vector

Vector(Vector v)

 Creates a vector by imitating an existing vector

Methods

 void add(Vector a)

 This vector is added to the given vector

Vector add(Vector a, Vector b)

 The two vectors are added and written it to a given destination

vector.

void add(Vector vd, Vector v1, Vector v2)

 Two vectors are added and written it to a given destination

vector.

 void copy(Vector a)

 An existing vector is copied to this vector

 void cross(Vector a)

 Cross product is calculated with this vector

Vector cross(Vector a, Vector b)

 A new vector is returned with the cross product of the two

given vectors.

void cross(Vector vd, Vector v1, Vector v2)

 Cross product of the two given vectors is written to the given

desination vector.

 double dot(Point p)

 Dot product of point and the vector is calculated.

 double dot(Vector v)

 Dot product of the two vectors

double dot(Vector v1, Vector v2)

 Returns the dot product of the two given vectors.

24

 void negate()

 Vector is negated

Vector negate(Vector a)

 Creates a new vector after negating a given vector.

 double norm()

 Length of this vector is calculated

 void normalise()

 Vector is normalized

 Vector normalised()

 Creates a new vector as the normalization of this vector

 void print(SceneWriter ofs)

 Prints a human readable form of the vector

 void read(SceneReader ifs)

 Read the vector from the given source

 void scale(double sc)

 The vector is scaled by the given factor sc

Vector scale(Vector a, double sc)

 Scale method creates a vector by scaling a existing vector.

void scale(Vector d, Vector a, double sc)

 Scale method that writes a vector after scaling the given

vector.

 Void Set(double a, double b, double c)

 Vector is set to the given a, b and c values

 double squarednorm()

 Squared length of this vector is calculated

Vector subtract(Point a, Point b)

 Creates a vector and initializes as the difference between

points a and b.

 void subtract(Vector a)

 The given vector is subtracted from this vector

void subtract(Vector d, Point a, Point b)

 The difference between two points is calculated and written it

the destination vector.

void subtract(Vector d, Vector a, Vector b)

 The difference between two vectors is calculated and written

to the given destination vector.

 void write(SceneWriter ofs)

 Write the vector to the given destination

25

Class Colour

Field Summary

 double B

 Holds the blue component of the colour

 double G

 Holds the green component of the colour

 double R

 Holds the red component of the colour

Constructor Summary

Colour()

 Create a new colour and set it to the default colour (black)

Colour(Colour c)

 Create a new colour by copying an existing colour

Colour(double r, double g, double b)

 Create a new colour with the given red green and blue values

Method Summary

 void add(Colour c)

 Add the given colour to this colour

Colour add(Colour c1, Colour c2)

 Implementation of colour add function that creates a new colour

object from the result.

 void add(Colour cd, Colour c1, Colour c2)

 Implementation of colour add function that write the result of the

addition to a given colour object.

 void clamp()

 Clamp each component of the colour to lie within the range 0.0

to 1.0

 void copy(Colour c)

 Copying an existing colour to this colour

 boolean isBlack()

 Test if the colour is black

 void mult(Colour c)

 Multiply the given colour to this colour

26

Colour mult(Colour c1, Colour c2)

 Implementation of colour mult function that creates a new colour

object from the result.

void mult(Colour cd, Colour c1, Colour c2)

 Implementation of colour mult function that write the result of

the multiplication to a given colour object.

 void print(SceneWriter os)

 Print a human readable version of the colour definition to the

given destination

 void read(SceneReader is)

 Read the colour from the given source

 void reset()

 Reset the colour to the default colour (black)

void scale(Colour cd, Colour c1, double s)

 Scale function that writes the colour scaled by the given factor to

a given destination

Colour scale(Colour c1, double s)

 Scale function that returns a new colour scaled by the given

factor

 void scale(double s)

 Scale this colour by the given factor

 void write(SceneWriter os)

 Write the colour to the given destination

 Class Sphere

Field Summary

 Point Centre

 Holds the point that defines the sphere centre

 double Radius

 Holds the radius of the sphere

Constructor Summary

Sphere()

 Create a default sphere

Sphere(Material n, Point p, double r)

 Create a sphere with the given material, centre and radius Note values are

referenced not copied in the new object

27

Method Summary

 double intersect(Ray ray)

 Find the intersection of the plane and a given ray.

 Vector normal(Point p)

 Find the normal of an object at the given point on its surface.

 void print(SceneWriter os)

 Print a human readable version of the sphere definition to the given

destination

 void read(SceneReader is)

 Read the sphere from the given source

 void write(SceneWriter os)

 Write the sphere to the given destination

Class DirectionalLight

Field Summary

 Vector Direction

 Stores the direction the light travels in.

Constructor Summary

DirectionalLight()

 Create a default light.

DirectionalLight(Vector v)

 Create a new directional light that shines along given direction vector.

Method Summary

 void print(SceneWriter os)

 Print a human readable version of the light definition to the given destination

 void read(SceneReader is)

 Read the light from the given source.

 void write(SceneWriter os)

 Write the light to the given destination

28

Class SimpleRay

 Method Summary

 void init()

 Method for applet initialize The scene to read is taken from the

"scene" property in the applet tag on the web page.

 void paint(java.awt.Graphics g)

 Paints the screen

 void run()

 Run method is called by the "kicker" thread.

 void start()

 Method called to start an applet after initialization.

 void stop()

 Method called to stop an applet after initialization.

 void update(java.awt.Graphics g)

Class Light

Field Summary

 Colour Intensity

 Holds the colour of this light

Constructor Summary

Light()

Method Summary

abstract void print(SceneWriter os)

 Print a human readable version of the light definition to the given

destination

29

abstract void read(SceneReader is)

 Read the light from the given source

abstract void write(SceneWriter os)

 Write the light to the given destination

Class Material

Field Summary

 Colour Ambient

 Holds the ambient component of this surface

 Colour Diffuse

 Holds the ambient component of this surface

 double Shininess

 Holds the shininess factor this surface

 Colour Specular

 Holds the specular component of this surface

Constructor Summary

Material()

 Create a default material

Material(Material m)

 Create a new material by copying an existing material.

Method Summary

 void print(SceneWriter os)

 Print a human readable version of the material definition to the given

destination

 void read(SceneReader is)

 Read the material from the given source

 void write(SceneWriter os)

 Write the material to the given destination

30

Class SceneReader

Method Summary

 void close()

 Close the file when finished

 boolean eof()

 Return true if the end of file has been reached.

 char readChar()

 Read a char value from file.

 double readDouble()

 Read a double value from file.

 float readFloat()

 Read a float value from file.

 int readInt()

 Read an int value from file.

 long readLong()

 Read a long value from file.

Class SceneWriter

Constructor Summary

SceneWriter(java.io.File f)

 Construct SceneWriter object given a file.

SceneWriter(java.io.OutputStream os)

 Create a SceneWriter from a stream

Method Summary

 void flush()

 Flush the writer

 void writeChar(char c)

 Write a char value to a file.

31

 void writeDouble(double d)

 Write a double value.

 void writeFloat(float f)

 Write a float value.

 void writeInt(int i)

 Write an int value to a file.

 void writeLong(long l)

 Write a long value.

 void writeNewline()

 Write a newline to a file.

 void writeString(java.lang.String s)

 Write a String value to a file.

Class Scene

Field Summary

 Colour Ambient

Method Summary

 int getNumberLights()

 int getNumberObjects()

 boolean intersect(Ray ray, Colour colour, int depth)

 void print(SceneWriter os)

 void read(SceneReader is)

 void setLight(int i, Light o)

 void setNumberLights(int n)

32

 void setNumberObjects(int n)

 void setObject(int i, Object o)

 void write(SceneWriter os)

Class Point

Field Summary

 double X

 Holds the X component

 double Y

 Holds the Y component

 double Z

 Holds the Z component

Constructor Summary

Point()

 Create a new point and set it to zero

Point(double x, double y, double z)

 Create a new point with the given x,y and z values

Point(Point p)

 Create a new point by copying an existing point

Method Summary

void add(Point pd, Point p, Vector v)

 Function that write addition of a point by adding a vector to a given

destiation point

Point add(Point p, Vector v)

 Function create a new point by adding a vector to a point.

 void add(Vector v)

 Add the given offset vector to this point

33

 void copy(Point p)

 Copy an existing point to this point

 boolean equals(Point p)

 Test if two points are equal

 void print(SceneWriter os)

 Print a human readable version of the point definition to the given

destination

 void read(SceneReader is)

 Read the point from the given source

 void set(double x, double y, double z)

 Set this point to the given x,y and z values

 void write(SceneWriter os)

 Write the point to the given destination

Class PointLight

Field Summary

 Point Origin

 Stores the origin of the point light.

Constructor Summary

PointLight()

 Create a default light.

PointLight(Point p)

 Create a new point light that at the given point.

Method Summary

 void print(SceneWriter os)

 Print a human readable version of the light definition to the given destination

 void read(SceneReader is)

 Read the light from the given source

 void write(SceneWriter os)

 Write the light to the given destination

34

Class Object

Field Summary

 Material SurfaceMaterial

 Holds the material of this object

Method Summary

abstract double intersect(Ray ray)

 Find the intersection of an object and a given ray.

abstract Vector normal(Point pt)

 Find the normal of an object at the given point on its surface.

abstract void print(SceneWriter os)

 Print a human readable version of the object definition to the

given destination

abstract void read(SceneReader is)

 Read the object from the given source

abstract void write(SceneWriter os)

 Write the object to the given destination

Class Plane

Field Summary

 double Constant

 Holds the constant of the plane equation

 Vector Normal

 Holds the normal that defines this plane

Constructor Summary

Plane()

 Create a default plane

Plane(Material n, Vector v, double c)

 Create a plane with the given material and plane equation Note values are

referenced not copied in the new object

35

Class Ray

Field Summary

 Vector Direction

 Holds the ray direction

 Point Origin

 Holds the ray origin

Method Summary

 Point getPointAt(double t)

 Get a point along a ray.

36

CHAPTER 6: RESULT

37

The scene file:

number of objects

9

#right wall

1 -1.0 0.0 0.0 -2.0 0.9 0.9 0.3 0.8 0.8 0.1 0.0 0.0 0.0 2.0

#bottom wall

1 0.0 1.0 0.0 -2.0 0.2 0.2 0.2 0.1 0.1 0.1 0.7 0.7 0.7 2.0

#top wall

1 0.0 -1.0 0.0 -2.0 0.3 0.9 0.3 0.1 0.8 0.1 0.0 0.0 0.0 2.0

#left wall

1 1.0 0.0 0.0 -2.0 0.3 0.3 0.9 0.1 0.1 0.8 0.0 0.0 0.0 2.0

#back wall

1 0.0 0.0 1.0 -2.0 0.9 0.3 0.3 0.8 0.1 0.1 0.0 0.0 0.0 2.0

#sphere 1

0 1.2 0.4 -0.4 0.5 0.2 0.2 0.2 0.6 0.4 0.2 0.1 0.3 0.3 5.0

#sphere 2

0 0.0 -0.6 0.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 2.0

#sphere 3

0 -1.0 0.0 -1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.8 5.0

#sphere 4

0 1.0 -0.6 0.0 0.5 0.2 0.2 0.2 0.6 0.4 0.2 0.1 0.3 0.3 5.0

38

#ambient colour

0.3 0.3 0.3

#number lights

2

light 1 - point light

0 0.3 0.5 0.5 -1.9 1.9 0.0

light 2 - directional light

1 0.8 0.3 0.3 1.9 0.0 0.0

Interpretation:

Scene has 9 objects

Scene has 2 lights

Number of objects 9

Plane with normal: [-1.0,0.0,0.0] and constant: -2.0

Material: ambient (0.9,0.9,0.3) diffuse (0.8,0.8,0.1) specular (0.0,0.0,0.0) shininess 2.0

Plane with normal: [0.0,1.0,0.0] and constant: -2.0

Material: ambient (0.2,0.2,0.2) diffuse (0.1,0.1,0.1) specular (0.7,0.7,0.7) shininess 2.0

Plane with normal: [0.0,-1.0,0.0] and constant: -2.0

Material: ambient (0.3,0.9,0.3) diffuse (0.1,0.8,0.1) specular (0.0,0.0,0.0) shininess 2.0

39

Plane with normal: [1.0,0.0,0.0] and constant: -2.0

Material: ambient (0.3,0.3,0.9) diffuse (0.1,0.1,0.8) specular (0.0,0.0,0.0) shininess 2.0

Plane with normal: [0.0,0.0,1.0] and constant: -2.0

Material: ambient (0.9,0.3,0.3) diffuse (0.8,0.1,0.1) specular (0.0,0.0,0.0) shininess 2.0

Sphere with centre: [1.2,0.4,-0.4] and radius: 0.5

Material: ambient (0.2,0.2,0.2) diffuse (0.6,0.4,0.2) specular (0.1,0.3,0.3) shininess 5.0

Sphere with centre: [0.0,-0.6,0.0] and radius: 0.4

Material: ambient (1.0,1.0,1.0) diffuse (1.0,1.0,1.0) specular (0.0,0.0,0.0) shininess 2.0

Sphere with centre: [-1.0,0.0,-1.0] and radius: 1.0

Material: ambient (0.0,0.0,0.0) diffuse (0.0,0.0,0.0) specular (0.8,0.8,0.8) shininess 5.0

Sphere with centre: [1.0,-0.6,0.0] and radius: 0.5

Material: ambient (0.2,0.2,0.2) diffuse (0.6,0.4,0.2) specular (0.1,0.3,0.3) shininess 5.0

Ambient light is 0.3 0.3 0.3

Number of lights 2

Point light with colour: (0.3,0.5,0.5) and origin: [-1.9,1.9,0.0]

Directional light with colour: (0.8,0.3,0.3) and direction: [1.9,0.0,0.0]

40

Rendering of the scene:

1. The Original scene :

Fig 12. The Original Scene before applying lighting and shadows

41

2. After applying lighting

Fig 13. Scene after applying lighting

42

3. After applying shadows and reflections

Fig 14. The final rendered image

43

CHAPTER 7: CONCLUSION

44

In this project we see how we can generate a realistic image through ray tracing by

using backward tracing where we shoot a ray from the camera to the scene and see

where it hits and then calculate the colour at that pixel. Ray tracing can be used in

non-interactive applications where we can generate images beforehand and then

display it when needed, as it takes a lot of time in rendering it is not suitable for

interactive applications however through parallelism we can still think of such

implementations. In the program developed in this project we can define any scene

consisting of plane and spheres through a data file containing its coordinates and

RGB components of diffuse, ambient and specular lighting components. The

number of recursive reflections depend on the exponential shininess component.

Through suitable mathematical equations we can further extend this project to other

primitives such as triangles, cylinders etc.

45

REFERENCES:

[1] WHITTED, T. An improved illumination model for shaded display. Communications

of the ACM 32,6 (June 1980).

[2] Cohen, M. F., and Greenberg, D.P. The hemi-cube: A radiosity solution for complex

environments. Computer Graphics (July 1985)

[3] SUTHERLAND, I.E., SPROULL, R.F., AND SCHUMACKER, R.A. A characterization of

ten hidden surface algorithm. Comput. Surv. (Mar 1974)

[4] HALL, R.A. A methodology for realistic image synthesis. Master’s thesis, Cornell

University, Ithaca, New York (1983)

[5] Nishita, T., and Nakamae, E., Continuous tone representation of 3D objects taking account

of shadows and interreflection, Computer Graphics (July 1985).

[6] Greg Ward, Francis M. Rubinstein, and Robert D. Clear. A Ray Tracing Solution for

Diffuse Interreflection. Proc. SIGGRAPH , 1988.

