
 A

 REPORT

 ON

 REMOTE DESKTOP

 By

 DeepanshuSoni (101350)

Under the guidance of

Dr. Nitin

Department of Computer Science & Engineering

Jaypee University of Information Technology

Waknaghat, Solan

HP - 173234

CERTIFICATE

This is to certify that the work titled “Remote Desktop Sharing”, in partial fulfillment for the

award of degree of B.Tech of Jaypee University of Information Technology, Waknaghat,

Himachal Pradesh has been carried out under my supervision. This work has not been submitted

partially or wholly to any other University or Institute for the award of this or any other degree or

diploma.

Signature of Supervisor: ………………………

Name of Supervisor: Dr. Nitin

Designation: Senior Lecturer

Date:

ACKNOWLEDGEMENTS

We would like to express our great gratitude towards our supervisor Dr. Nitin who has given us support

and suggestions. Without his help we could not have presented this dissertation up to the present

standards. We also take this opportunity to give thanks to all others who gave us support for the project

or in other aspects of our study at REMOTE DESKTOP.

LIST OF FIGURES AND TABLES

 Figure2.1: Programs written in the Java programming language 15

 Figure2.2: The Java API and the Java VM 15

 Figure3.1: Context level DFD 24

Figure3.2: Application Processing Logic 25

 Figure3.3: Use Case Diagram 26

FFigure 3.4: State Chart Diagram 29

Figure3.5 Basic Idea of Project 30

Figure3.6 RMI Architecture 32

Figure 6.1 Testing Process 76

Table 6.1 Compatibility test OS details 79

Table 6.2 Compatibility test for OS 80

6

 CONTENTS

Chapter Page No.

Declaration and Certificate i

Acknowledgement ii

Tables and figures iv

Abstract vii

1. Introduction 1

 1.1 Overview 2

 1.2 Purpose 2

 1.3 Modules of project 3

 1.3.1
Remote Server

3

 1.3.2
Remote Client

3

2. Requirement Gathering 5

 2.1 Primary research 6

 2.2Questionnaires 6

 2.3Technical Research 8

 2.4Selection Of Programming Language 9

 2.4.1 Java 10

 2.4.2 Swings 12

 2.4.3 Relationship to SWT 13

7

 2.4.4 Java Features 14

 2.4.5 the java Platform 19

 2.4.6 Implementation of Java 20

 2.5Tools Used 21

 2.5.1 JDK 21

 2.5.2 net beans 23

3. Design 26

 3.1 Introduction 27

 3.2 Physical Design 27

 3.3 Use Case Diagram: 30

 3.4 State Chart Diagram: 31

 3.5 Basic Idea of RMI: 32

4 Feasibility Analysis 41

 4.1 Aim 42

 4.2 Technical Feasibility 42

 4.3 Operational Feasibility 43

 4.4 Economical Feasibility 44

5 Implementation 46

6 Testing 73

 6.1 Testing Overview 74

8

 6.2 Independent unit test 75

 6.3 System testing 75

 6.3.1 Unit testing 76

 6.3.2 Module testing 76

 6.3.3 Sub system testing 76

 6.4 Acceptance testing 77

 6.5 Testing Strategies 77

 6.6 Performance testing 77

 6.7 Security Testing 77

 6.8 Equivalence Testing 78

7 Maintenance 81

8 Appendix A 85

9

ABSTRACT

The project “Remote Desktop Sharing” is basically aimed to provide communication between

server and client from the local area network for capture client screen to server.

Current thin-client remote desktop systems were designed for data-oriented applications over

low-quality LAN links and they do not provide satisfactory end-user performance in enterprise

environment for more and more popular graphical and multimedia applications. To improve

perception of those applications in thin-client environment we designed architecture of a

server-side Quality of Service (QoS) management component responsible for mapping

application QoS requirements into network QoS. We analyze how service differentiation and

traffic management techniques combined with user perception monitoring can be used in

order to adjust network level resource allocation when performance of multimedia applications

in remote desktop environment is not meeting user requirements. Our objective is to provide

QoS-aware remote desktop systems which will be able to manage available resources in

intelligent manner and meet end-user performance expectations.

10

Chapter One

INTRODUCTION

11

Introduction

1.1 Overview

Remote Desktop Sharing is designed and developed with the end user in mind, user in a

similar way. The features included in the Remote Monitoring package are a jump further

on of other similar fields.

A Remote Desktop Sharing is a desktop application designed for use on a control client

pc by server. A Remote Desktop is optimized so as to display client pc which is

connected in local area network. Remoter Desktop software must be small and efficient

to accommodate the low memory capacity.

1.2 Purpose

This system is useful for those offices which have multiple users in different locations

and admin want to monitor all users in an office. This Application also provides server

monitor all clients in an office. In this, server is able to chat with client and also can chat

with client and server is also able to shut down client pc. These facilities are provided in

which place where local area network is available.

1.3 Modules of the project

Remote Server

12

This is the server part which waits for clients connections and per each connected client,
a new frame appears showing the current client screen. When you move the mouse over
the frame, this results in moving the mouse at the client side. The same happens when
you right/left click mouse button or type a key while the frame is in focus.

Remote Client

This the client side, its core function is sending a screen shot of the client's desktop
every predefined amount of time. Also it receives server commands such as "move the
mouse command", then executes the command at the client's PC.

Coding Structure

a. Remote Server

ServerInitiator Class

This is the entry class which listens to server port and waits for client’s connections.
Also, it creates an essential part of the program GUI.

ClientHandler Class

Per each connected client, there is an object of this class. It shows an Internal Frameper
client and it receives clients' screen dimension.

ClientScreenReciever Class

Receives captured screen from the client, then displays it.

ClientCommandsSender Class

It listens to the server commands, then sends them to the client. Server commands
include mouse move, key stroke, mouse click, etc.

EnumCommands Class

Defines constants which are used to represent server commands.

b. RemoteClient

ClientInitiator Class

13

This is the entry class that starts the client instance. It establishes connection to the
server and creates the client GUI.

ScreenSpyer Class

Captures screen periodically and sends them to the server.

ServerDelegate Class

Receives server commands and executes them in the client PC.

14

Chapter Two

Requirement Gathering

15

2.1 Primary Research

User requirement is the main point of view for any developmental movement. User

accepts only those products which are able to complete their functions. Primary research

is very supportive in receiving information from user. Developer did the primary

research in order to verify the feasibility of the proposed system. The following

activities were conducted in order to gain information from the users.

Sites and Books:

1. Bellinaso Marco (2006). ASP.NET 2.0 Website Programming: Problem - Design

- Solution (Programmer to Programmer). Paperback

2. Matthew MacDonald, Matthew MacDonald, and Julian Templeman (2005).

Beginning ASP.NET 2.0 in C# 2005: From Novice to Professional

3. Shahram Khosravi. ASP.NET AJAX Programmer's Reference: with ASP.NET

2.0 or ASP.NET 3.5 (Programmer's Reference (Wrox))

4. Schwable, Kathy, Information Technology Project Management, Cengage

Technology, 2008

2.2 Questionnaires

A questionnaire is basically a survey. It is usually a short survey that takes specific

information. This kind of fact-finding method is applied to obtain more information

from the people who are significant for the system and having very fewer times for

participa

tion for the reason that of their daily schedule. The questionnaires are also important for

congregation information from the users who are related to the project but are

geographically separated from each other.

16

The primary intention of distributing of this questionnaire is to further justify and to gain

the user support of implementation of the proposed system and to know the kind of

feature that those respondents anticipate and as well as any existing system that the user

came across. A total of 15 respondents have taken part this survey. The questions in the

questionnaires are as follows:

1. Do you want scheduler in the system?

 Yes

 No

Justification:If you are too often send messages on the schedule, the Email

Scheduler plug in will help you fully automate this process. Now you can set a

certain date and time to send out specific messages. Furthermore, Email scheduler

can work with attached a file, which allows you to, for example, send certain

documents periodically.

2. Are you using any current system?

 Yes

 No

Justification: This question would help me to know that whether users want or not to

use such kind of system.

3. Do you want user groups?

 Yes

 No

Justification:When you are in an Active Directory network environment, you can set

Smart mail policies to enforce settings on a specific or a group of users. This is mainly

17

to be used to change or limit the default behavior of Outlook in a corporate environment

but can also be useful in some home environments. For instance, as a home user you

might want to set policies on what your children can and cannot do in Outlook.

4. Do you want attaches from one group to another?

 Yes

No

Justification: this would ask to know, whether the user want to use this functionality or

not.

5. Do you face any problem in current system?

 Yes

 No

6. Do you want your customize setting or just system default?

 Yes

 No

Justification- Designed to find out is user want customized setting or system default,

which cannot be change by user.

2.3 Technical Research

What is a Methodology?

Software engineering is carry out of using preferred procedure techniques to progress

the quality of a software development effort. A methodology is defined as a collection of

procedures, techniques, tools, and documentation aids which will help developers in

their efforts (both product and process related activities) to implement a new system. For

successful implementation, a well-organized and systematic approach is crucial.

18

Therefore, several methodologies were developed to encourage the systematic approach

to planning, analysis, design, testing and implementation. Methodologies offer various

tools and techniques to assist in analysis, design and testing in terms of detailed

design of software, data flowcharts and database design.

Why Methodology?

1. To complete a project within time and budget with the expected scope and

quality we need methodologies which provide for a framework.

2. Most methodologies have a general planning, developing and managing stages in

common. They suggest the development team the ways of thinking, learning and

arriving at a regular feasible solution.

To select an ideal methodology was based on project requirements and goals.

� Functional Decomposition: The methodology should have stages according to

the interrelated activities which can be grouped into different functional areas.

� Requirement Changes: If required, methodology provides scope to change the

requirement.

� Manage Risks: Determined the risk is an important activity to develop a project.

� Iterative approach: Iteration allows refinement of requirement as well as design.

� Documentation: Methodology provides support for large documentation.

� Analysis and Design Support: A well defined structure of the methodology helps

for analysis and designing to development process..

� Implementation: The system should be implemented as per plan.

� Testing Support: More testing, more reliable the product is.

Object Oriented Approach: Object oriented concepts will be used in developing the

project as it supports component reusability.

2.4 Selection of Programming language:

19

To successfully develop a project or system, technical and programming skills are both

equally important. The academic research determines the design of the system, while

the technical and programming research will determine the usability of the system. The

objective of this session is to identify a programming language platform for developing

this project. Most important factors such as productivity, maintainability, efficiency,

portability, etc. pay an enormous part in this track. As the project being developed is an

email application to be developed by an object oriented approach, it leaves the developer

to choose from the following languages: JAVA, ASP.NET and C#. A lot of research

was carried to select the best among these.

2.4.1 Java:

It is an object oriented and platform independent language which is used for

programming desktop application. It consists of a virtual machine and set of libraries

which are needed to allow the use of file systems, networks, graphical interfaces, etc.

Java is a programming language originally developed by Sun Microsystems and released

in 1995 a core component of Sun Microsoft, java platform. The language derives much

of its syntax from C and C++ but a simpler object model and fewer low level facilities.

Java applications are typically component to byte code that can run on any java virtual

machine (JVM) regardless of computer architecture. The original and reference

implementation of java compliers, virtual machines, and class libraries which is

developed by Sun from 1996, as of May 2007, in compliance with the specifications of

the Java community Process, sun made available most of their Java technologies as free

software under the General public license. Others have also developed alternatives

implementation of technologies such as GNU complier of Java and GNU Classpath.

Java is a programming language originally developed by James Gosling at Sun

Microsystems (which has since merged into Oracle Corporation) and released in 1995

as a core component of Sun Microsystems' Java platform. The language derives much

of its syntax from C and C++ but has a simpler object model and fewer low-level

facilities. Java applications are typically compiled to byte code (class file) that can run

on any Java Virtual Machine (JVM) regardless of computer architecture. Java is a

20

general-purpose, concurrent, class-based, object-oriented language that is specifically

designed to have as few implementation dependencies as possible. It is intended to let

application developers "write once, run anywhere" (WORA), meaning that code that

runs on one platform does not need to be recompiled to run on another. Java is currently

one of the most popular programming languages in use, particularly for client-server

web applications, with a reported 10 million users.

The original and reference implementation Java compilers, virtual machines, and class

libraries were developed by Sun from 1995. As of May 2007, in compliance with the

specifications of the Java Community Process, Sun relicensed most of its Java

technologies under the GNU General Public License. Others have also developed

alternative implementations of these Sun technologies, such as the GNU Compiler for

Java and GNU Classpath.

 James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language

project in June 1991. Java was originally designed for interactive television, but it was

too advanced for the digital cable television industry at the time. The language was

initially called Oak after an oak tree that stood outside Gosling's office; it went by the

name Green later, and was later renamed Java, from Java coffee, said to be consumed in

large quantities by the language's creators. Gosling aimed to implement a virtual

machine and a language that had a familiar C/C++ style of notation.

Sun Microsystems released the first public implementation as Java 1.0 in 1995. It

promised "Write Once, Run Anywhere" (WORA), providing no-cost run-times on

popular platforms. Fairly secure and featuring configurable security, it allowed

network-and file-access restrictions. Major web browsers soon incorporated the ability

to run Java applets within web pages, and Java quickly became popular. With the

advent of Java 2 (released initially as J2SE 1.2 in December 1998–1999), new versions

had multiple configurations built for different types of platforms. For example, J2EE

targeted enterprise applications and the greatly stripped-down version J2ME for mobile

applications (Mobile Java). J2SE designated the Standard Edition. In 2006, for

marketing purposes, Sun renamed new J2 versions as Java EE, Java ME, and Java SE,

respectively.

In 1997, Sun Microsystems approached the ISO/IEC JTC1 standards body and later the

21

Ecma International to formalize Java, but it soon withdrew from the process. Java

remains a de facto standard, controlled through the Java Community Process. At one

time, Sun made most of its Java implementations available without charge, despite their

proprietary software status. Sun generated revenue from Java through the selling of

licenses for specialized products such as the Java Enterprise System. Sun distinguishes

between its Software Development Kit (SDK) and Runtime Environment (JRE) (a

subset of the SDK); the primary distinction involves the JRE's lack of the compiler,

utility programs, and header files.

On November 13, 2006, Sun released much of Java as free and open source software,

(FOSS), under the terms of the GNU General Public License (GPL). On May 8, 2007,

Sun finished the process, making all of Java's core code available under free

software/open-source distribution terms, aside from a small portion of code to which

Sun did not hold the copyright.

Sun's vice-president Rich Green said that Sun's ideal role with regards to Java was as an

"evangelist". Following Oracle Corporation's acquisition of Sun Microsystems in 2009–

2010, Oracle has described itself as the "steward of Java technology with a relentless

commitment to fostering a community of participation and transparency". Java software

runs on laptops to data centres, game consoles to scientific supercomputers. There are

930 million Java Runtime Environment downloads each year and 3 billion mobile

phones run Java. On April 2, 2010, James Gosling resigned from Oracle.

2.4.2 Swings:

Swing is the primary Java GUI widget toolkit. It is part of Oracle's Java Foundation

Classes (JFC) — an API for providing a graphical user interface (GUI) for Java

programs.

Swing was developed to provide a more sophisticated set of GUI components than the

earlier Abstract Window Toolkit (AWT). Swing provides a native look and feel that

emulates the look and feel of several platforms, and also supports a pluggable look and

feel that allows applications to have a look and feel unrelated to the underlying platform.

It has more powerful and flexible components than AWT. In addition to familiar

22

components such as buttons, check box and labels, Swing provides several advanced

components such as tabbed panel, scroll panes, trees, tables and lists.

Unlike AWT components, Swing components are not implemented by platform-specific

code. Instead they are written entirely in Java and therefore are platform-independent.

The term "lightweight" is used to describe such an element.

Since early versions of Java, a portion of the Abstract Window Toolkit (AWT) has

provided platform-independent APIs for user interface components. In AWT, each

component is rendered and controlled by a native peer component specific to the

underlying windowing system.

By contrast, Swing components are often described as lightweight because they do not

require allocation of native resources in the operating system's windowing toolkit. The

AWT components are referred to as heavyweight components.

Much of the Swing API is generally a complementary extension of the AWT rather than

a direct replacement. In fact, every Swing lightweight interface ultimately exists within

an AWT heavyweight component because all of the top-level components in Swing

(JApplet, JDialog, JFrame, and JWindow) extend an AWT top-level container. Prior to

Java 6 Update 10, the use of both lightweight and heavyweight components within the

same window was generally discouraged due to Z-order incompatibilities. However,

later versions of Java have fixed these issues, and both Swing and AWT components can

now be used in one GUI without Z-order issues.

The core rendering functionality used by Swing to draw its lightweight components is

provided by Java 2D, another part of JFC.

2.4.3 Relationship to SWT

The Standard Widget Toolkit (SWT) is a competing toolkit originally developed by

IBM and now maintained by the Eclipse community. SWT's implementation has more

in common with the heavyweight components of AWT. This confers benefits such as

more accurate fidelity with the underlying native windowing toolkit, at the cost of an

increased exposure to the native platform in the programming model.

The advent of SWT has given rise to a great deal of division among Java desktop

developers, with many strongly favouring either SWT or Swing.

23

There has been significant debate and speculation about the performance of SWT versus

Swing; some hinted that SWT's heavy dependence on JNI would make it slower when

the GUI component and Java need to communicate data, but faster at rendering when the

data model has been loaded into the GUI, but this has not been confirmed either way. A

fairly thorough set of benchmarks in 2005 concluded that neither Swing nor SWT

clearly outperformed the other in the general case.

SWT is considered by some to be less effective as a technology for cross-platform

development. By using the high-level features of each native windowing toolkit, they

claim that SWT returns to the issues seen in the mid-1990s (with toolkits like

zApp,Zinc, XVT and IBM/Smalltalk) where toolkits attempted to mask differences in

focus behaviour, event triggering and graphical layout. Failure to match behaviour on

each platform can cause subtle but difficult-to-resolve bugs that impact user interaction

and the appearance of the GUI.

2.4.4 Java features

The fundamental forces that necessitated the invention of Java are portability and

security. There are other factors that played an important role in modeling the final form

of the language. The Java team is as follows added up the key considerations and

features.

Java was designed to be easy for professional programmer to learn and use effectively.

Java is completely object-oriented so if we are sell versed with OOP’S learning Java

another attribute that makes it easy to learn it makes an effort not have surprising

Features. In Java, there are a small number of clearly defined ways to accomplish a

given task.

Although influenced by its predecessor, Java was not designed to be source code

compatible with any other languages. This allowed Java team the freedom to design with

a blank slate. One out come of this was a clean usable programmatic approach to

objects. Borrowing liberally from any seminal object software environment of the last

few decades. Java manages to strike a balance purist’s ―everything is an objectǁ

paradigm, and the pragmatist’s ―stay out of my wayǁ model. The object model in Java

24

is simple and easy to extent, while simple types, such as integers are kept as high

performance non-objects.

1. Java is Portable:

One of the biggest advantages Java offers is that it is portable. An application written in

Java will run on all the major platforms. Any computer with a Java based browser can

run the applications or applets written in the Java programming language. A programmer

no longer has to write one program to run on a Macintosh, another program to run on a

Windows machine, still another to run on a Unix machine and so on. In other words,

with Java, developers write their programs only once.

The virtual machine is what gives Java a cross platform capabilities. Rather than being

complied into machine language, which is different for each operating systems and

computer architecture, Java code is compiled into byte codes. With other languages, the

program code is complied into a language that the computer can understand. The

problem is that other computers with different machine instruction set cannot understand

that language. Java code, on the other hand is complied into byte codes rather than a

machine language. These byte codes go to the Java virtual machine, which executes

them directly or translates them into the language that is understood by the machine

running it.

In summary, these means that with the JDBC API extending Java, a programmer writing

Java code can access all the major relational databases on any platform that supports the

Java virtual machine.

2. Java is Object – Oriented:

Java is Object Oriented, which makes program design focus on what you are dealing

with rather than on how you are going to do something. This makes it more useful for

programming in sophisticated projects because one can break the things down into

understandable components. A big benefit is that these components can then be reused.

Object oriented languages use the paradigm of classes. In simplest term, a class includes

both the data and the functions to operate on the data. You can create an instance of a

25

class, also called an object, which will have all the data members and functionality of its

class. Because of this, you can think of a class as being like template, with each object

being a specific instance of a particular type of class.

The class paradigm allows one to encapsulate data so that specific data values are those

using the data cannot see function implementation. Encapsulation makes it possible to

make the changes in code without breaking other programs that use that code. If for

example the implementation of a function is changed, the change is invisible to another

programmer who invokes that function, and it does not affect his/her program, except

hopefully to improve it.

Java includes inheritance, or that ability to derive new classes from existing classes. The

derived class, also called subclass, inherits all the data and the function of the existing

class, referred to as the parent class. A subclass can add new data members to those

inherited form the parent class. As far as methods are concerned, the subclass can reuse

the inherited methods, as it is, or change them, or even add its own new methods.

3. Java Makes It Easy:

In addition to being portable and object oriented, Java facilitates writing correct code.

Programmers spend less time writing Java code and a lot less time debugging it. In fact,

developers have reported slashing development time by as much as two thirds.

Java automatically takes care of allocating and the reallocating memory, a huge potential

source of errors. If an object is no longer being used (has no reference to it), then it is

automatically removed from memory, or Garbage Collected by a low priority daemon

thread called Garbage Collector. Java’s no pointer support eliminates big source errors.

By using object references instead of memory pointers, problems with pointer arithmetic

are eliminated, and problems with inadvertently accessing the wrong memory address

are greatly reduced.

Java’s strong typing cuts down on runtime errors, because Java enforces strong type

checking, many errors are caught when code is complied. Dynamic binding is possible

and often very useful, but static binding with strict type checking is used when possible.

26

Java keeps code simple by having just one way to do something instead of having

several alternatives, as in some languages. Java also stays lean by not including multiple

inheritances, which eliminates the errors and ambiguity that arise when you create a

subclass that inherits from two or more classes. To replace capabilities, multiple

inheritances provide, Java lets you add functionality to a class throw the use of

interfaces.

4. Java is Extensible:

A big plus for Java is the fact it can be extended. It was purposely written to be lean with

the emphasis on doing what it does very well, instead of tying to do everything from the

beginning; it was return so that extending it is very easy. The java platform includes an

extensive class library so that programmers can use already existing classes, as it is,

create subclasses to modify existing classes, or implement to augment the capabilities of

classes.

5. Java is Secure:

It is important that a programmer not be able to write subversive code for applications or

applets. This is especially true with the Internet being used more and more extensively

for services such as electronic commerce and electronic distribution of software and

multimedia content. The way memory is allocated and laid out. In java an object’s

location in memory is not determined until the runtime, as opposed to C and C++. As the

result, a programmer cannot look at a class definition and figure out how it might be laid

out in memory. Also since, Java has no pointers; a programmer cannot forge pointers to

memory. The Java Virtual Machine (JVM) doesn’t trust any incoming code and subjects

it to what is called Byte Code Verification. The byte code verifier, part if the virtual

machine, checks that

The format of incoming code is correct

Incoming code doesn’t forge pointers.

It doesn’t violate access restrictions.

It access objects as what they are

27

The Java byte code loader, another part of the JVM, checks whether classes loaded

during program execution are local of from across a network. Imported classes cannot be

substituted for built in classes, and built in classes cannot accidentally reference classes

bring in over a network.

The Java Security manager allows user to restrict entrusted Java applets so that they

cannot access the local network, local files and other resources.

6. Java Performs Well:

Java performance is better than one might expect. Java’s many advantages, such as

having built in security and being interpreted as well as complied, do have a cost

attached to them. However, various optimizations have been built, in, and the byte code

interpreter can run very fast the cost it doesn’t to do any checking. As a result, Java has

done quite respectably in performance tests. Its performance numbers for interpreted

byte codes are usually more than adequate to run interactive graphical end user

applications. For situations that require unusually high performance, byte codes can be

translated on the fly generating the final machine code for the particular CPU on which

the application is running at run time. Java offers good performance with the advantages

of high-level languages but without the disadvantages of C and C++. In the world of

design trade-off, you can think of Java as providing a very attractive middle ground.

7. Java is Robust:

The multiplatform environment of the WEB places extraordinary demands on a

program, because it must execute reliably in a variety of systems. Thus the ability to

create robust programs was given a high priority in the design of Java. To gain

reliability, Java restricts you in a few key areas to force you to find your mistakes early

in program developments. At the same time, Java frees you from having to worry about

many of the most common causes of programming errors. Because Java is strictly typed

language, it checks your code at compile time. However, it also checks your code at run

time. In fact, many hard to track down bugs that often turn up in hard to reproduce

runtime situations are simply impossible to create in Java. Knowing that what you have

28

written will behave in a predictable way under diverse conditions is a key feature of

Java.

8. Java is Multithreaded:

Multithreading is simply the ability of a program to do more than one thing at a time.

For example an application could be faxing a document at the same time it is printing

another document. Or a program could process new inventory figures while it maintains

a feed for current prices. Multithreading is particularly important in multimedia: a

multimedia program might often be running a movie, running a audio track and display

in text all at the same time.

2.4.5 The Java Platform

A platform is the hardware or software environment in which a program runs. The Java

platform differs from most other platforms in that it's a software-only platform that runs

on top of other, hardware-based platforms.

The Java platform has two components:

1.The Java Virtual Machine (Java VM)

2.The Java Application Programming Interface (Java API)

Java VM is the base for the Java platform and is ported onto various hardware-based

platforms.

Programs written in the Java programming language are first compiled and then

interpreted.

FIG 2.1 Program written in the Java programming language

The Java API is a large collection of ready

many useful capabilities, such as graphical user interface (GUI) widgets. The Java API

is grouped into libraries of

packages. The next section highlights what functionality some of the packages in the

Java API provide.

FIG 2.2 The Java API and the Java VM insulate a program from hardware depend

.2.4.6 Implementation of Java Technology

Every full implementation of the Java platform gives you the following features:

1. The essentials: Objects, strings, threads, numbers, input and output, data structures,

system properties, date and time, and so on.

2. Applets: The set of conventions used by Java applets.

3. Networking: URLs, TCP (Transmission Control Protocol), UDP (User Datagram

Protocol) sockets, and IP (Internet Protocol) addresses.

4. Internationalization: Help for writing programs that can be localized for users

worldwide. Programs can automatically adapt

appropriate language.

5. Security: Both low level and high level, including electronic signatures, public and

 29

2.1 Program written in the Java programming language

The Java API is a large collection of ready-made software components that provide

many useful capabilities, such as graphical user interface (GUI) widgets. The Java API

is grouped into libraries of related classes and interfaces; these libraries are known as

packages. The next section highlights what functionality some of the packages in the

FIG 2.2 The Java API and the Java VM insulate a program from hardware dependencies.

2.4.6 Implementation of Java Technology

Every full implementation of the Java platform gives you the following features:

The essentials: Objects, strings, threads, numbers, input and output, data structures,

system properties, date and time, and so on.

Applets: The set of conventions used by Java applets.

Networking: URLs, TCP (Transmission Control Protocol), UDP (User Datagram

Protocol) sockets, and IP (Internet Protocol) addresses.

Internationalization: Help for writing programs that can be localized for users

worldwide. Programs can automatically adapt to specific locales and be displayed in the

Security: Both low level and high level, including electronic signatures, public and

made software components that provide

many useful capabilities, such as graphical user interface (GUI) widgets. The Java API

related classes and interfaces; these libraries are known as

packages. The next section highlights what functionality some of the packages in the

encies.

Every full implementation of the Java platform gives you the following features:

The essentials: Objects, strings, threads, numbers, input and output, data structures,

Networking: URLs, TCP (Transmission Control Protocol), UDP (User Datagram

Internationalization: Help for writing programs that can be localized for users

to specific locales and be displayed in the

Security: Both low level and high level, including electronic signatures, public and

30

private key management, access control, and certificates.

6. Software components: Known as JavaBeans, can plug into existing component

architectures.

7. Object serialization: Allows lightweight persistence and communication via RMI

(Remote Method Invocation).

2.5 Tools Used :

 2.5.1 JDK

The Java Development Kit is an Oracle Corporation product aimed at Java developers.

Since the introduction of Java, it has been by far the most widely used Java Software

Development Kit (SDK). On 17 November 2006, Sun announced that it would be

released under the GNU General Public License (GPL), thus making it free software.

This happened in large part on 8 May 2007; Sun contributed the source code to the

Open JDK.

The JDK has as its primary components a collection of programming tools, including:

1. java – the loader for Java applications. This tool is an interpreter and can

interpret the class files generated by the javac compiler. Now a single launcher

is used for both development and deployment. The old deployment launcher, jre,

no longer comes with Sun JDK, and instead it has been replaced by this new java

loader.

2. javac – the compiler, which converts source code into Java bytecode

3. appletviewer – this tool can be used to run and debug Java applets without a web

browser

4. apt – the annotation-processing tool.

5. extcheck – a utility which can detect JAR-file conflicts

6. idlj – the IDL-to-Java compiler. This utility generates Java bindings from a

given Java IDL file.

31

7. javadoc – the documentation generator, which automatically generates

documentation from source code comments

8. jar – the archiver, which packages related class libraries into a single JAR file.

This tool also helps manage JAR files.

9. javah – the C header and stub generator, used to write native methods

10. javap – the class file disassembler

11. javaws – the Java Web Start launcher for JNLP applications

12. jconsole – Java Monitoring and Management Console

13. jdb – the debugger

14. jhat – Java Heap Analysis Tool

15. jinfo – This utility gets configuration information from a running Java process or

crash dump.

16. jmap – This utility outputs the memory map for Java and can print shared object

memory maps or heap memory details of a given process or core dump.

17. jps – Java Virtual Machine Process Status Tool lists the instrumented HotSpot

Java Virtual Machines (JVMs) on the target system.

18. jrunscript – Java command-line script shell.

19. jstack – utility which prints Java stack traces of Java threads

20. jstat – Java Virtual Machine statistics monitoring tool

21. jstatd – jstat daemon

22. policytool – the policy creation and management tool, which can determine

policy for a Java runtime, specifying which permissions are available for code

from various sources

23. VisualVM – visual tool integrating several command-line JDK tools and

lightweight performance and memory profiling capabilities

24. wsimport – generates portable JAX-WS artifacts for invoking a web service.

25. xjc – Part of the Java API for XML Binding (JAXB) API. It accepts an XML

schema and generates Java classes.

The JDK also comes with a complete Java Runtime Environment, usually called a

private runtime, due to the fact that it is separated from the "regular" JRE and has extra

32

contents. It consists of a Java Virtual Machine and all of the class libraries present in the

production environment, as well as additional libraries only useful to developers, such as

the internationalization libraries and the IDL libraries.

2.5.2 Net Beans IDE 6.9.1

Net Beans refers to both a platform framework for Java desktop applications, and an

integrated development environment (IDE) for developing with Java, JavaScript, PHP,

Python, Groovy, C, C++, Scala, Clojure, and others. The Net Beans IDE 7.0 no longer

supports Ruby and Ruby on Rails, but a third party has begun work on a separate plug-

in. The Net Beans IDE is written in Java and can run on Windows, Mac OS, Linux,

Solaris and other platforms supporting a compatible JVM. A pre-existing JVM or a

JDK is not required.

The Net Beans platform allows applications to be developed from a set of modular

software components called modules. Applications based on the Ne Beans platform

(including the Net Beans IDE) can be extended by third party developers.

1. Net Beans Platform

The Net Beans Platform is a reusable framework for simplifying the development of

Java Swing desktop applications. The Net Beans IDE bundle for Java SE contains what

is needed to start developing Net Beans plugins and Net Beans Platform based

applications; no additional SDK is required. Applications can install modules

dynamically. Any application can include the Update Center module to allow users of

the application to download digitally-signed upgrades and new features directly into the

running application. Reinstalling an upgrade or a new release does not force users to

download the entire application again.

The platform offers reusable services common to desktop applications, allowing

developers to focus on the logic specific to their application. Among the features of the

platform are:

33

1. User interface management (e.g. menus and toolbars)

2. User settings management

3. Storage management (saving and loading any kind of data)

4. Window management

5. Wizard framework (supports step-by-step dialogs)

6. Net Beans Visual Library

7. Integrated development tools

Net Beans IDE is a free, open-source, cross-platform IDE with built-in-support for Java

Programming Language.

2. Net Beans IDE

NetBeans IDE is an open-source integrated development environment. NetBeans

IDE supports development of all Java application types (Java SE (including

JavaFX), Java ME, web, EJB and mobile applications) out of the box. Among other

features are an Ant-based project system, Maven support, refactorings,version

control (supporting CVS, Subversion, Mercurial and Clearcase).

All the functions of the IDE are provided by modules. Each module provides a well

defined function, such as support for the Java language, editing, or support for the

CVS versioning system, and SVN. NetBeans contains all the modules needed for

Java development in a single download, allowing the user to start working

immediately. Modules also allow NetBeans to be extended. New features, such as

support for other programming languages, can be added by installing additional

modules. For instance, Sun Studio, Sun Java Studio Enterprise, and Sun Java

Studio Creator from Sun Microsystems are all based on the NetBeans IDE.

From July 2006 through 2007, NetBeans IDE was licensed under Sun's Common

Development and Distribution License (CDDL), a license based on the Mozilla

Public License (MPL). In October 2007, Sun announced that NetBeans would

34

henceforth be offered under a dual license of the CDDL and the GPL version 2

licenses, with the GPL linking exception for GNU Classpath

35

Chapter Three

Design

36

3.1 Introduction

The main purpose for preparing this document is to give a general insight into the

analysis and requirements of the existing system or situation and for determining the

operational characteristics of the system.

3.2 Physical Design:

The interface of the application is very aesthetic, user friendly that even a novice user

can understand and use it quickly to achieve the required task. The user has to simply

follow the syntax given on the form which is very simple.

He/she simply performs various operation like mouse Move, left click or right click.

The context level DFD is here

37

Figure 3.1: Context level DFD

 Processing Logic:

The user starts the application first.

After that the user enters the ip address of the target computer.

Then the user inserts the password in the appropriate text field.

After that, the user starts the connection by clicking on the start button.

The user can see the target machine desktop on his screen.

The user can operate on it as if it is his desktop only. He can use the mouse clicks,

keystrokes.

User

Application

Remote

System

38

The flow of program is explained with this diagram.

Figure 3.2: Application Processing Logic

Insert ip address to

connect to

Insert password

Press the Start button to

initiate the connection

Control the actions on

the target computer

39

3.3 Use Case Diagram:

Figure 3.3: Use Case Diagram

Enter commands

User

System

 Mouse

Screenshots

Command file

 Output

40

3.4 State Chart Diagram:

Figure 3.6: State Chart Diagram

inputs events gerated

action performed

41

Figure3.5: Basic Idea of Project

Our Project “Remote Desktop Shaing” is based on two concepts :-

• RMI (Remote method Invocation)

• Robot Class

Here the connection establishment between client and server is done through RMI, once

the connection is established, the work of the robot class starts.

Robot class helps the program to send and receive different events like

Mousevents – Mouse Button Pressed/Release, Pointer location, Scroll Wheel, etc.

Key events – Key Strokes, Key Pressed/Release.

42

Buffered Image – Screen capture, Pixel informaton.

Basic Idea of RMI:

Our Project is based mainly upon the remote desktop sharing.

3.6 RMI (Remote Desktop Sharing): Remote Method Invocation (RMI) facilitates

object function calls between Java Virtual Machines (JVMs). JVMs can be located on

separate computers - yet one JVM can invoke methods belonging to an object stored in

another JVM. Methods can even pass objects that a foreign virtual machine has never

encountered before, allowing dynamic loading of new classes as required.

Java RMI allows:

� provide user with a “thin client

o allows good performance on lower end workstations

� run server on high end hardware

o maximize investment over many clients

o server remote from client

� Distributed network object

The general idea of RMI is:

� Instantiate an object on another machine

� Invoke methods on the remote object

3.6.1 Architecture of RMI

Figure 3.6: RMI Architecture

Client - user interface

Server - data source

The Stub/Skeleton Layer

The stub/skeleton layer is the interface between the application layer and the rest of the

RMI system. This layer does not deal with specifics of any transport, but transmits

to the remote reference layer via the abstraction of

employ a mechanism called

transmitted between address spaces. Objects transmitted using the object serializati

system are passed by copy to the remote address space, unless they are remote objects,

in which case they are passed by reference.

A stub for a remote object is the client

implements all the interfaces that

client-side stub is responsible for:

 43

.1 Architecture of RMI

Architecture

user interface

The Stub/Skeleton Layer

The stub/skeleton layer is the interface between the application layer and the rest of the

RMI system. This layer does not deal with specifics of any transport, but transmits

to the remote reference layer via the abstraction of marshal streams. Marshal streams

employ a mechanism called object serialization which enables Java objects to be

transmitted between address spaces. Objects transmitted using the object serializati

system are passed by copy to the remote address space, unless they are remote objects,

in which case they are passed by reference.

for a remote object is the client-side proxy for the remote object. Such a stub

implements all the interfaces that are supported by the remote object implementation. A

side stub is responsible for:

The stub/skeleton layer is the interface between the application layer and the rest of the

RMI system. This layer does not deal with specifics of any transport, but transmits data

. Marshal streams

which enables Java objects to be

transmitted between address spaces. Objects transmitted using the object serialization

system are passed by copy to the remote address space, unless they are remote objects,

side proxy for the remote object. Such a stub

are supported by the remote object implementation. A

44

• Initiating a call to the remote object (by calling the remote reference layer).

• Marshaling arguments to a marshal stream (obtained from the remote reference

layer).

• Informing the remote reference layer that the call should be invoked.

• Unmarshaling the return value or exception from a marshal stream.

• Informing the remote reference layer that the call is complete.

A skeleton for a remote object is a server-side entity that contains a method which

dispatches calls to the actual remote object implementation. The skeleton is responsible

for:

• Unmarshaling arguments from the marshal stream.

• Making the up-call to the actual remote object implementation.

• Marshaling the return value of the call or an exception (if one occurred) onto the

marshal stream.

The appropriate stub and skeleton classes are determined at run time and are

dynamically loaded as needed. Dynamic Stub Loading describes in detail how the stubs

are located and how their actions are constrained.

3.6.2 The Remote Reference Layer

The remote reference layer deals with the lower level transport interface. This layer is

also responsible for carrying out a specific remote reference protocol which is

independent of the client stubs and server skeletons.

Each remote object implementation chooses its own remote reference subclass that

operates on its behalf. Various invocation protocols can be carried out at this layer, for

example:

• Unicast point-to-point invocation.

45

• Invocation to replicated object groups.

• Support for a specific replication strategy.

• Support for a persistent reference to the remote object (enabling activation of the

remote object).

• Reconnection strategies (if remote object becomes inaccessible).

The remote reference layer has two cooperating components: the client-side and the

server-side components. The client-side component contains information specific to the

remote server (or servers, if the remote reference is to a replicated object) and

communicates via the transport to the server-side component. During each method

invocation, the client and server-side components perform the specific remote reference

semantics. For example, if a remote object is part of a replicated object, the client-side

component can forward the invocation to each replica rather than just a single remote

object.

In a corresponding manner, the server-side component implements the specific remote

reference semantics prior to delivering a remote method invocation to the skeleton. This

component, for example, could handle ensuring atomic multiple delivery by

communicating with other servers in the replica group.

The remote reference layer transmits data to the transport layer via the abstraction of a

stream-oriented connection. The transport takes care of the implementation details of

connections. Although connections present a streams-based interface, a connectionless

transport may be implemented beneath the abstraction.

3.6.3 The Transport Layer

In general, the transport layer of the RMI system is responsible for:

• Setting up connections to remote address spaces.

• Managing connections.

46

• Monitoring connection "liveness."

• Listening for incoming calls.

• Maintaining a table of remote objects that reside in the address space.

• Setting up a connection for an incoming call.

• Locating the dispatcher for the target of the remote call and passing the

connection to this dispatcher.

The concrete representation of a remote object reference consists of an endpoint and an

object identifier. This representation is called a live reference. Given a live reference for

a remote object, a transport can use the endpoint to set up a connection to the address

space in which the remote object resides. On the server side, the transport uses the object

identifier to look up the target of the remote call.

The transport for the RMI system consists of four basic abstractions:

• An endpoint is the abstraction used to denote an address space or Java virtual

machine. In the implementation, an endpoint can be mapped to its transport. That

is, given an endpoint, a specific transport instance can be obtained.

• A channel is the abstraction for a conduit between two address spaces. As such,

it is responsible for managing connections between the local address space and

the remote address space for which it is a channel.

• A connection is the abstraction for transferring data (performing input/output).

• The transport abstraction manages channels. Each channel is a virtual connection

between two address spaces. Within a transport, only one channel exists per pair

of address spaces, the local address space and a remote address space. Given an

endpoint to a remote address space, a transport sets up a channel to that address

space. The transport abstraction is also responsible for accepting calls on

incoming connections to the address space, setting up a connection object for the

call, and dispatching to higher layers in the system.

47

A transport defines what the concrete representation of an endpoint is, so multiple

transport implementations may exist. The design and implementation also supports

multiple transports per address space, so both TCP and UDP can be supported in the

same virtual machine.

The steps involved in the RMI process are:

� Create the Interface to the server

� Create the Server

� Create the Client

� Compile the Interface (javac)

� Compile the Server (javac)

� Compile the Client (javac)

� Generate Stubs and Skeletons (rmic)

RMI Registry-The RMI Registry is a naming service provided with the JDK as a

teaching tool or for a small number of Remote Objects

� Uses port 1099 as its default port

� Can be considered to be a reference implementation

� runs out of steam above a 100 objects

� runs on same machine as the remote object

� Use another naming service

� J2EE uses JNDI and Directory Services to provide a more robust naming service

48

� Silver stream uses JNDI with its own Service Provider and repository for it

3.6.4 Robot Class

This class is used to generate native system input events for the purposes of test

automation, self-running demos, and other applications where control of the mouse and

keyboard is needed. The primary purpose of Robot is to facilitate automated testing of

Java platform implementations.

Using the class to generate input events differs from posting events to the AWT event

queue or AWT components in that the events are generated in the platform's native input

queue. For example, Robot.mouseMove will actually move the mouse cursor instead of

just generating mouse move events.

Note that some platforms require special privileges or extensions to access low-level

input control. If the current platform configuration does not allow input control, an

AWTException will be thrown when trying to construct Robot objects. For example, X-

Window systems will throw the exception if the XTEST 2.2 standard extension is not

supported (or not enabled) by the X server.

Some methods and Constructors

49

50

Chapter Four

FEASIBILITY ANALYSIS

51

4.1 Aim

The main aim of feasibility study is to determine whether development of the application

is financially and technically feasible or not. It involves the analysis of problem and

collection of data which will be put into the system, the processing required to be carried

out on this data, the output required to be produced by the system as well as the study of

various constraints on the behaviour of the system.

The application can be developed in many languages like Visual C++, Visual Basic, and

Java etc. But Java is the most suitable language for the development of these

applications it is platform independent, takes less time in execution as far as network

application is concerned. It also contains various packages that contain various classes

that are needed to implement the functions for the application. The packages that are to

be included in this application are Java. Swing, Java.awt, Java.awt.event. Hence, Java

provides all the methods that are to be used in this application. Moreover much help

regarding Java is available on the internet, so the problem regarding the implementation

will be very less.

The application to be developed does not require any high investment. The software

required JDK 1.4 is easily available in the market. Hence financially also the project is

very much feasible.

Hence, from the above stated points, the application seams to be very much feasible,

both technically and financially.

An Important outcome of the preliminary investigation is the determination that the

system requested is feasible. There are 3 aspects in the feasibility study:

4.2 Technical Feasibility

It is concerned with specifying equipment and software that will successfully satisfy the

user requirement. The technical needs of the system may vary considerably, but might

52

include:

The facility to produce outputs in a given time.

1) Response time under certain conditions.

3) Ability to process a certain volume of transaction at a Particular speed.

4) Facility to communicate data to distant location.

In examining technical feasibility, configuration of the system is given more importance

than the actual make of hardware. The configuration should given the complete picture

about the system’s requirements like how many workstations are required, how these

units are interconnected so that they could operate and communicate smoothly. What

speeds of input and output should be achieved at particular quality of printing. This can

be used b e used as a basis for the tender document against which dealers and

manufactures can later make their equipment bids. Specific hardware and software

products can then be evaluated keeping in view with the logical needs.

At the feasibility stage it is desirable that two or three different configurations will be

pursued that satisfy the key technical requirements but which represent different levels

of ambitions and cost. Investigation of these technical alternatives can be aided by

approaching a range of sup pliers for preliminary discussions. Out of all types of

feasibility, technical feasibility generally is the most difficult to determine.

 4.3 Operational Feasibility

It is mainly related to human organizational and political aspects. The points to be

considered are:

1. What changes will be brought with the system?

2. What organizational structures are distributed?

3. What new skills will be required? Do existing staff members have these

skills? If not, can they be trained in due course of time?

53

Generally project will not be rejected simply because of operational infeasibility but

such considerations are likely to critically affect the nature and scope of the eventual

recommendations. This feasibility study is carries out by a small group of people who

are familiar with information system techniques, who understand the parts of the

business that are relevant to the project and are skilled in system analysis and design

process.

As far as this project of Personal Information System is concerned the changes which we

have to be brought were only organizational. Then our focus goes towards workstations.

Keeping in view of their hardware requirements like network interface card etc.

4.4 Economical Feasibility

Economic analysis is the most frequently used technique for evaluating the effectiveness

of a proposed system. More commonly known as cost/benefit analysis; the procedure is

to determine the benefits and savings that expected from a proposed system and compare

them with costs. If benefits outweigh costs, a decision is taken to design and implement

the system. Otherwise, further justification or alternative in the proposed system will

have to be made if it is to have a chance of being approved. This is an on going effort

that improves in accuracy at each phase of the system life cycle.

This feasibility also depends upon quality of staff hired and the proposed duration of

time taken in this project sometimes it might be possible due to extension of time

duration may fall the project under loss. The study of feasibility changes from phase to

phase of the project development.

In this project although this feasibility study doesn’t matter much in the case new setup

of project but on the other hand if we have to modify over existing system we must take

care of our existing resources and must analyse specially the working condition of

hardware.

The main components of making software are:

54

1. System and software requirements analysis

2. Design and implementation software
3. Ensuring, verifying and maintaining software integrity. System Analysis is an

activity that encompasses most of the tasks that are called Computer System
Engg. Confusion sometimes occurs because the term is often used in context that
alludes it only to software requirement analysis activities, but system analysis
focuses on all the system elements -not just software system analysis is
conducted with the following objectives in mind.

4. Identify the Need

5. Evaluate the system concept for feasibility

6. Perform economic and technical analysis

7. Allocate functions to hardware, software, database and other system elements

8. Establish cost and schedule constraints

9. Create a system definition that forms the foundation for all the subsequent e.g.

Word

Lines Of Code 550

Duration 4-5 Months

55

Chapter Five

Implementation

56

Server Code

1. ClientCommandsSender.java

package serverdesktop;

import java.awt.Rectangle;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.awt.event.MouseMotionListener;

import java.io.IOException;

import java.io.PrintWriter;

import java.net.Socket;

import javax.swing.JPanel;

class ClientCommandsSender implements KeyListener,

 MouseMotionListener,MouseListener {

private Socket cSocket = null;

private JPanel cPanel = null;

private PrintWriter writer = null;

private Rectangle clientScreenDim = null;

ClientCommandsSender(Socket s, JPanel p, Rectangle r) {

cSocket = s;

cPanel = p;

clientScreenDim = r;

57

cPanel.addKeyListener(this);

cPanel.addMouseListener(this);

cPanel.addMouseMotionListener(this);

try {

writer = new PrintWriter(cSocket.getOutputStream());

 } catch (IOException ex) {

ex.printStackTrace();

 }

 }

public void mouseDragged(MouseEvent e) {

 }

public void mouseMoved(MouseEvent e) {

double xScale = clientScreenDim.getWidth()/cPanel.getWidth();

System.out.println("xScale: " + xScale);

double yScale = clientScreenDim.getHeight()/cPanel.getHeight();

System.out.println("yScale: " + yScale);

System.out.println("Mouse Moved");

writer.println(EnumCommands.MOVE_MOUSE.getAbbrev());

writer.println((int)(e.getX() * xScale));

writer.println((int)(e.getY() * yScale));

writer.flush();

 }

public void mouseClicked(MouseEvent e) {

 }

public void mousePressed(MouseEvent e) {

System.out.println("Mouse Pressed");

writer.println(EnumCommands.PRESS_MOUSE.getAbbrev());

58

int button = e.getButton();

int xButton = 16;

if (button == 3) {

xButton = 4;

 }

writer.println(xButton);

writer.flush();

 }

public void mouseReleased(MouseEvent e) {

System.out.println("Mouse Released");

writer.println(EnumCommands.RELEASE_MOUSE.getAbbrev());

int button = e.getButton();

int xButton = 16;

if (button == 3) {

xButton = 4;

 }

writer.println(xButton);

writer.flush();

 }

public void mouseEntered(MouseEvent e) {

 }

public void mouseExited(MouseEvent e) {

 }

public void keyTyped(KeyEvent e) {

 }

public void keyPressed(KeyEvent e) {

System.out.println("Key Pressed");

59

writer.println(EnumCommands.PRESS_KEY.getAbbrev());

writer.println(e.getKeyCode());

writer.flush();

 }

public void keyReleased(KeyEvent e) {

System.out.println("Mouse Released");

writer.println(EnumCommands.RELEASE_KEY.getAbbrev());

writer.println(e.getKeyCode());

writer.flush();

 }

}

2. Clienthandler.java

package serverdesktop;

import java.awt.BorderLayout;

import java.awt.Rectangle;

import java.beans.PropertyVetoException;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.net.Socket;

import javax.swing.JDesktopPane;

import javax.swing.JInternalFrame;

import javax.swing.JPanel;

class ClientHandler extends Thread {

60

private JDesktopPane desktop = null;

private Socket cSocket = null;

private JInternalFrame interFrame = new JInternalFrame("Client Screen",

true, true, true);

private JPanel cPanel = new JPanel();

public ClientHandler(Socket cSocket, JDesktopPane desktop) {

 this.cSocket = cSocket;

 this.desktop = desktop;

start();

 }

public void drawGUI(){

interFrame.setLayout(new BorderLayout());

interFrame.getContentPane().add(cPanel,BorderLayout.CENTER);

interFrame.setSize(100,100);

desktop.add(interFrame);

try {

interFrame.setMaximum(true);

 } catch (PropertyVetoException ex) {

ex.printStackTrace();

 }

cPanel.setFocusable(true);

interFrame.setVisible(true);

 }

public void run(){

 Rectangle clientScreenDim = null;

61

 ObjectInputStream ois = null;

drawGUI();

try{

ois = new ObjectInputStream(cSocket.getInputStream());

clientScreenDim =(Rectangle) ois.readObject();

}catch(IOException ex){

ex.printStackTrace();

}catch(ClassNotFoundException ex){

ex.printStackTrace();

 }

new ClientScreenReciever(ois,cPanel);

new ClientCommandsSender(cSocket,cPanel,clientScreenDim);

 }

}

3. ClientScreenReciever.java

package serverdesktop;

import java.awt.Graphics;

import java.awt.Image;

import java.io.IOException;

import java.io.ObjectInputStream;

import javax.swing.ImageIcon;

import javax.swing.JPanel;

class ClientScreenReciever extends Thread {

62

private ObjectInputStream cObjectInputStream = null;

private JPanel cPanel = null;

private boolean continueLoop = true;

public ClientScreenReciever(ObjectInputStream ois, JPanel p) {

cObjectInputStream = ois;

cPanel = p;

start();

 }

public void run(){

try {

while(continueLoop){

 ImageIcon imageIcon = (ImageIcon) cObjectInputStream.readObject();

System.out.println("New image recieved");

 Image image = imageIcon.getImage();

image = image.getScaledInstance(cPanel.getWidth(),cPanel.getHeight()

,Image.SCALE_FAST);

 Graphics graphics = cPanel.getGraphics();

graphics.drawImage(image, 0, 0, cPanel.getWidth(),cPanel.getHeight(),cPanel);

 }

 } catch (IOException ex) {

ex.printStackTrace();

 } catch(ClassNotFoundException ex){

ex.printStackTrace();

 }

 }

63

}

4.EnumCommands.java

package serverdesktop;

public enum EnumCommands {

 PRESS_MOUSE(-1),

 RELEASE_MOUSE(-2),

 PRESS_KEY(-3),

 RELEASE_KEY(-4),

 MOVE_MOUSE(-5);

private int abbrev;

EnumCommands(int abbrev){

 this.abbrev = abbrev;

 }

public int getAbbrev(){

return abbrev;

 }

}

5.Main.java

package serverdesktop;

public class Main {

64

public static void main(String[] args) {

 }

}

6.ServerInitiator.java

package serverdesktop;

import java.awt.BorderLayout;

import java.io.IOException;

import java.net.ServerSocket;

import java.net.Socket;

import javax.swing.JDesktopPane;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

public class ServerInitiator {

private JFrame frame = new JFrame();

private JDesktopPane desktop = new JDesktopPane();

public static void main(String args[]){

 String port = JOptionPane.showInputDialog("Please enter listening port");

new ServerInitiator().initialize(Integer.parseInt(port));

 }

public void initialize(int port) {

try {

 ServerSocket sc = new ServerSocket(port);

65

drawGUI();

while (true) {

 Socket client = sc.accept();

System.out.println("New client Connected to the server");

new ClientHandler(client, desktop);

 }

 } catch (IOException ex) {

ex.printStackTrace();

 }

 }

public void drawGUI() {

frame.add(desktop, BorderLayout.CENTER);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 //Show the frame in a maximized state

frame.setExtendedState(frame.getExtendedState() | JFrame.MAXIMIZED_BOTH);

frame.setVisible(true);

 }

}

7.Server.java

package serverdesktop;

import java.awt.*;

import java.awt.event.*;

import java.net.*;

66

import java.io.*;

public class server extends Frame implements ActionListener, Runnable

{

 Image Icon = Toolkit.getDefaultToolkit().getImage("hi.gif");

 ServerSocket ss;

 Socket s;

 BufferedReader br;

 BufferedWriter bw;

 TextField text;

 Button sendBut, exitBut;

 List list;

public server(String m) // class constructor

 {

super(m);

setSize(300, 130);

setLocation(0,0);

setIconImage(Icon);

setResizable(false);

setBackground(new Color(192, 192, 192));

this.setLayout(new GridLayout(2, 1));

 Panel panels[] = new Panel[2];

panels[0] = new Panel();

panels[1] = new Panel();

panels[0].setLayout(new BorderLayout());

67

panels[1].setLayout(new FlowLayout(FlowLayout.LEFT));

sendBut = new Button("Send");

exitBut = new Button("Exit");

sendBut.addActionListener(this);

exitBut.addActionListener(this);

list = new List();

list.addItem("Server up & Listening on port plz wait...");

text = new TextField(25);

panels[0].add(list);

panels[1].add(text);

panels[1].add(sendBut);

panels[1].add(exitBut);

add(panels[0]);

add(panels[1]);

setVisible(true);

try

 {

ss = new ServerSocket(1053);//some port number, better be above 1000

 s = ss.accept();

br = new BufferedReader(new InputStreamReader(s.getInputStream()));

bw = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));

bw.write("Hi! ASL plz??");

bw.newLine();

bw.flush();

 Thread th;

68

th = new Thread(this);

th.start();

 }catch(Exception e){}

 }

server() {

throw new UnsupportedOperationException("Not yet implemented");

 }

public void run()

 {

while (true)

 {

try

 {

list.addItem(br.readLine());

}catch (Exception e){}

 }

 }

public static void main(String arg[])

 {

new server("Server Applicaton");

 }

public void actionPerformed(ActionEvent ae)

 {

if (ae.getSource().equals(exitBut))

 System.exit(0);

69

else

 {

try

 {

bw.write(text.getText());

bw.newLine();bw.flush();

text.setText("");

}catch(Exception x){}

 }

 }

}

70

Client Source

1.Client initiator.java

package cleintdesktop;

import java.awt.AWTException;

import java.awt.Dimension;

import java.awt.GraphicsDevice;

import java.awt.GraphicsEnvironment;

import java.awt.Rectangle;

import java.awt.Robot;

import java.awt.Toolkit;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.IOException;

import java.net.Socket;

import java.net.UnknownHostException;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

public class ClientInitiator {

public void initialize() {

 Socket socket = null;

 String ip = JOptionPane.showInputDialog("Please enter server IP");

71

 String port_no = JOptionPane.showInputDialog("Please enter server port");

int port = Integer.parseInt(port_no);

 Robot robot = null; //Used to capture the screen

 Rectangle rectangle = null; //Used to represent screen dimensions

try {

System.out.println("Connecting to server");

socket = new Socket(ip, port);

System.out.println("Connection Established.");

 GraphicsEnvironment gEnv=
GraphicsEnvironment.getLocalGraphicsEnvironment();

 GraphicsDevice gDev = gEnv.getDefaultScreenDevice();

 Dimension dim = Toolkit.getDefaultToolkit().getScreenSize();

rectangle = new Rectangle(dim);

robot = new Robot(gDev);

drawGUI();

new ScreenSpyer(socket, robot, rectangle);

new ServerDelegate(socket, robot);

 } catch (UnknownHostException ex) {

ex.printStackTrace();

 } catch (IOException ex) {

ex.printStackTrace();

 } catch (AWTException ex) {

ex.printStackTrace();

 }

 }

72

private void drawGUI() {

 JFrame frame = new JFrame("Remote Admin");

 JButton button = new JButton("Terminate");

frame.setBounds(100, 100, 150, 150);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.add(button);

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(0);

 }

 });

frame.setVisible(true);

 }

}

2.EnumCommands.java

package cleintdesktop;

public enum EnumCommands {

 PRESS_MOUSE(-1),

 RELEASE_MOUSE(-2),

 PRESS_KEY(-3),

 RELEASE_KEY(-4),

 MOVE_MOUSE(-5);

private int abbrev;

73

EnumCommands(int abbrev){

 this.abbrev = abbrev;

 }

public int getAbbrev(){

return abbrev;

 }

}

3.Main.java

package cleintdesktop;

public class Main {

public static void main(String[] args) {

 }

}

4.Screenspyer.java

package cleintdesktop;

import java.awt.Rectangle;

import java.awt.Robot;

import java.awt.image.BufferedImage;

import java.io.IOException;

import java.io.ObjectOutputStream;

import java.net.Socket;

import javax.swing.ImageIcon;

74

class ScreenSpyer extends Thread {

 Socket socket = null;

 Robot robot = null; // Used to capture screen

 Rectangle rectangle = null; //Used to represent screen dimensions

boolean continueLoop = true; //Used to exit the program

public ScreenSpyer(Socket socket, Robot robot,Rectangle rect) {

 this.socket = socket;

 this.robot = robot;

rectangle = rect;

start();

 }

public void run(){

 ObjectOutputStream oos = null; //Used to write an object to the streem

try{

oos = new ObjectOutputStream(socket.getOutputStream());

oos.writeObject(rectangle);

}catch(IOException ex){

ex.printStackTrace();

 }

while(continueLoop){

 BufferedImage image = robot.createScreenCapture(rectangle);

 ImageIcon imageIcon = new ImageIcon(image);

try {

System.out.println("before sending image");

oos.writeObject(imageIcon);

75

oos.reset(); //Clear ObjectOutputStream cache

System.out.println("New screenshot sent");

 } catch (IOException ex) {

ex.printStackTrace();

 }

try{

Thread.sleep(100);

}catch(InterruptedException e){

e.printStackTrace();

 }

 }

 }

}

5.Serverdelegate.java

package cleintdesktop;

import java.awt.Robot;

import java.io.IOException;

import java.net.Socket;

import java.util.Scanner;

class ServerDelegate extends Thread {

 Socket socket = null;

 Robot robot = null;

boolean continueLoop = true;

76

public ServerDelegate(Socket socket, Robot robot) {

 this.socket = socket;

 this.robot = robot;

start(); //Start the thread and hence calling run method

 }

public void run(){

 Scanner scanner = null;

try {

System.out.println("Preparing InputStream");

scanner = new Scanner(socket.getInputStream());

while(continueLoop){

System.out.println("Waiting for command");

int command = scanner.nextInt();

System.out.println("New command: " + command);

switch(command){

case -1:

robot.mousePress(scanner.nextInt());

break;

case -2:

robot.mouseRelease(scanner.nextInt());

break;

case -3:

robot.keyPress(scanner.nextInt());

break;

case -4:

77

robot.keyRelease(scanner.nextInt());

break;

case -5:

robot.mouseMove(scanner.nextInt(), scanner.nextInt());

break;

 }

 }

 } catch (IOException ex) {

ex.printStackTrace();

 }

 }

6. Client.java

package cleintdesktop;

import java.awt.*;

import java.awt.event.*;

import java.net.*;

import java.io.*;

public class client extends Frame implements ActionListener, Runnable

{

 Image Icon = Toolkit.getDefaultToolkit().getImage("hi.gif") ;

 Socket s;

 BufferedReader br;

 BufferedWriter bw;

78

 TextField text;

 Button sendBut, exitBut;

 List list;

public client(String st)

 {

super(st);

setSize(300, 130);

 setIconImage(Icon);

 setLocation(300,0);

setResizable(false);

setBackground(new Color(192, 192, 192));

 this.setLayout(new GridLayout(2, 1));

 Panel panels[] = new Panel[2];

panels[0] = new Panel();

panels[1] = new Panel();

panels[0].setLayout(new BorderLayout());

panels[1].setLayout(new FlowLayout(FlowLayout.LEFT));

sendBut = new Button("Send");

exitBut = new Button("Exit");

sendBut.addActionListener(this);

exitBut.addActionListener(this);

list = new List();

 text = new TextField(25);

panels[0].add(list);

panels[1].add(text);

79

panels[1].add(sendBut);

panels[1].add(exitBut);

add(panels[0]);

add(panels[1]);

 setVisible(true);

try

 {

 s = new Socket("192.168.0.2", 1053);

br = new BufferedReader(new InputStreamReader(s.getInputStream()));

bw = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));

 Thread th;

 th = new Thread(this);

 th.start();

 }catch(Exception e){}

 }

public static void main(String arg[])

 {

new client("Client Application");

 }

private client() {

throw new UnsupportedOperationException("Not yet implemented");

 }

public void run()

 {

while (true)

80

 {

 try

 {

list.addItem(br.readLine());

 }catch (Exception h){}

 }

 }

public void actionPerformed(ActionEvent ae)

 {

if(ae.getSource().equals(exitBut))

 System.exit(0);

 else

 {

try

 {

bw.write(text.getText());

bw.newLine();

bw.flush();

text.setText("");

}catch(Exception m){}

 }

 }

 {

java.awt.EventQueue.invokeLater(new Runnable() {

81

public void run() {

new client().setVisible(true);

 }

 });

 }

}

82

Chapter Six

Testing

83

6.1 Testing Overview

Testing plays a critical role in quality assurance for software .Due to the limitation of the

verification method for the previous phases, design and requirement fault also appear in

the code. Testing is used to detect these errors, in addition to the error introduced during

coding phase.

Testing is a dynamic method for verification and validation, where the system is to be

tested is executed and behaviour of the system is observed. Due to this testing the failure

of the system can be observed, from which the presence of fault can be deduced.

However, separate activities have to be performed to identify the faults.

There are two method of testing: functional and structural. In functional testing, the

internal logic of the system under testing is not considered and the test cases are decided

from the specification or the requirements. It is often called ―Black Box Testingǁ.

Equivalence class partitioning, boundary analysis, and cause effect graphing are

examples of methods for selecting test cases for functional testing. In structural testing,

the test cases are decided entirely on the internal logic of the program or module being

tested.

As the goal of testing is to detect any errors in the programs different flavour of testing

are often used. Unit testing are used to test a module or a small collection of modules

and the focus is on detecting coding errors in modules. During integration testing

modules are combined into sub-system, which are then tested. The goal here is to test the

system design. In system testing and acceptance testing, the entire System is tested. The

goal here is to test the requirement themselves. Structural testing can be used for unit

testing while at higher level mostly functional testing is used.

In the project Monthly Materialization Report System we used the unit testing and

functional testing. Testing can be done with test data, which attempts to simulate all

possible conditions that may arise during processing. The plane for testing are prepared

and then implemented.

84

The testing methods adopted in the testing of the system were Independent Unit Testing

and System Testing

6.2 Independent Unit Test

IUT focuses first on the modules, independently of one another, to locate errors. This

enables the tester to detect errors in coding and logic that are contained within that

module alone. Those resulting from the interaction between modules are initially

avoided.

IUT is generally white box oriented which is predicted on the close examination of

procedural detail. It exercises all the logical decisions on their true and false side,

executes all loops at their boundaries and within their operational bounds and checks

whether the required validations have been met. White box testing exercises internal

data structure to assure their validity.

6.3 System Testing

Here the system testing involved is the most widely used testing process consists of five

stages as shown in the figure. In general, the sequence of testing activities is component

testing, integration testing then user testing. However, as defects are discovered at any

one stage, they required program modifications to correct them and this may require

other stages in the testing process to be repeated.

However, as defects are discovered at any one stage, they require program modifications

to correct them and this may require other stages in the testing process to be repeated.

Errors in program components, say may come to light at a later stage of the testing

process. The process is therefore an iterative one with information being fed back from

later stages to earlier parts of the process.

85

The Testing Process

FIG 6.1 Testing process

The stages in the testing process are as follows:

6.3.1 Unit testing: (Code Oriented)

Individual components are tested to ensure that they operate correctly. Each component

is tested independently, without other system components.

6.3.2 Module testing:

A module is a collection of dependent components such as an object class, an abstract

data type or some looser collection of procedures and functions. A module encapsulates

related components so it can be tested without other system modules.

6.3.3 Sub-system testing: (Integration Testing) (Design Oriented)

This phase involves testing collections of modules, which have been integrated into sub-

systems. Sub-systems may be independently designed and implemented. The most

common problems, which arise in large software systems, are sub-systems interface

mismatches. The sub-system test process should therefore concentrate on the detection

86

of interface errors by rigorously exercising these interfaces.

System testing:

The sub-systems are integrated to make up the entire system. The testing process is

concerned with finding errors that result from unanticipated interactions between sub-

systems and system components. It is also concerned with validating that the system

meets its functional and non-functional requirements.

6.4 Acceptance testing:

This is the final stage in the testing process before the system is accepted for operational

use. The system is tested with data supplied by the system client rather than simulated

test data. Acceptance testing may reveal errors and omissions in the systems

requirements definition (user – oriented) because real data exercises the system in

different ways from the test data. Acceptance testing may also reveal requirement

problems where the system facilities do not really meet the user’s needs (functional) or

the system performance (non-functional) is unacceptable.

6.5 Testing Strategies:

Strategy is a general approach rather than a method of devising particular systems for

component tests. Different strategies may be adopted depending on the type of system

to be tested and the development process used. The testing strategies are:

6.6 Performance testing

This is used to test the run-time performance of software.

6.7Security testing

This attempt to verify that protection mechanisms built into system will protect it from

improper penetration.

6.8 Recovery testing

This forces software to fail in a variety ways and verifies that recovery is properly

87

performed.

Large systems are usually tested using a mixture of these strategies rather than any

single approach. Different strategies may be needed for different parts of the system and

at different stages in the testing process.

Whatever testing strategy is adopted, it is always sensible to adopt an incremental

approach to sub-system and system testing. Rather than integrate all components into a

system and then start testing, the system should be tested incrementally. Each increment

should be tested before the next increment is added to the system. This process should

continue until all modules have been incorporated into the system.

When a module is introduced at some stage in this process, tests, which were previously

unsuccessful, may now, detect defects. These defects are probably due to interactions

with the new module. The source of the problem is localized to some extent, thus

simplifying defect location and repair.

6.9 Equivalence Partitioning

Equivalence partitioning is a black box testing method that divides the input domain of a

program into classes of data from which test cases can be derived. A typical test case

uncovers a class of errors that might otherwise require many more test cases before the

error is observed.

Equivalence classes for input determine the valid and invalid inputs for the program.

Equivalence class test cases are generated using the following guidelines:

If an input class specifies a range then one valid and two invalid equivalence classes are

defined.

If an input class specifies a value then one valid and one invalid equivalence classes are

defined.

Test cases should be selected so that the largest number of attributes of an equivalence

class is exercised at once.

88

Table 6.1: Compatibility test OS details
Operating System System details

Microsoft Windows 98, 2000 Owner: Mr. Jasdeep Singh

 Configuration: Intel P4 processor, 512MB RAM

Server:

Microsoft windows 8 Owner: Mr.Manmeet Singh Monga

 Configuration: Intel core i5 processor, 4 GB RAM

Server:

Ubuntu Owner: Ms. Amandeep Kaur

Configuration: Intel P4 processor, 512MB RAM

Server:

Apple Mac OS X Owner: Ms. Sheetal Kaur

Configuration: Intel Core Duo processor, 1GB RAM

Server :

Table 6.2: Compatibility test for OS
Test

Subject

Test Method Expected Result Actual Result Remarks

Microsoft
Windows
98, 2000

Deployment of

the system,

black box

testing

Suitable deployment,

appropriate output on

black box testing, average

performance

System deployed and

Passed black box

testing with above

average performance

More than

expected result.

Test successful.

Microsoft
Vista

Deployment of

the system,

black box

testing

Suitable deployment,

appropriate output on

black box testing, Best

performance

System deployed and

Passed black box

testing with best

performance

Test case

successful

Ubuntu
6.04

Deployment of

the system,

Suitable deployment,

appropriate output on

System deployed and

Passed black box

Test successful

89

black box

testing

black box testing, above

average performance

testing with best

performance

Apple
Mac OS X

Deployment of

the system,

black box

testing

Suitable deployment,

appropriate output on

black box testing, above

average performance

System deployed with

minor tweaks that

hindered performance.

Passed black box

testing with average

performance.

The code was

reconsidered and

rectified.

Performance

increased in 2nd

iteration.

90

Chapter Seven

Maintenance

91

With project management points of view it may be ranked among medium-high when

we consider the whole system to be develop. The project planning, research and

corresponding analysis part went efficiently. The designing of the system was middle-

of-the-road that eventually lead to interruption in implementation part.

The stoppage in designing phase has leaded the system to bind the functionalities and

thus reducing the scope. As the developer was short on time the extraordinary

functionalities to be incorporated in the system were trimmed.

The only thing that could have been done improved would definitely be the time

management. Also there has not been any similar system has been previously developed

in the similar domain, therefore the developer required widespread research in similar

domain of smart mail presentation developments. Due to the lack of experience in

completing a project of such a scale alone, most of the time set in the Gantt chart is pure

assumptions, which soon very much affects the rest of the project progress.

As the number of computer-based systems, grieve libraries of computer software began

to expand. In the house of developed projects produced tones of thousand software

program statements. Software products purchased from the outside added hundreds and

thousands of new statements. A dark cloud appeared on the horizon. All of these

programs, all of these source statements had to be corrected when false were detected,

modified as user requirements changed, or adapted to new hardware that was purchased.

These activities were collectively called software maintenance.

The Maintenance phase focuses on change that is associated with error correction,

adaptations required as the software environment evolves, and changes due to

enhancements brought by changing user requirements. Four types of changes are

encountered during maintenance phase.

1. Correction

2. Adaptation

92

3. Enhancement

4. Prevention

1. Correction:

Even with the best quality assurance activities is lightly that the user will uncover

defects in the software. Corrective maintenance changes the software to correct defects.

Maintenance is a set of Software Engineering activities that occur after software has

been delivered to the user and put into operation. Software Configuration Management

is a set of tracking and control activities that began when a software project begins and

terminates only when the software is taken out of the operation. We may define

maintenance by describing four activities that are undertaken after a program is released

for use.

1. Corrective maintenance

2. Adaptive Maintenance

3. Perfective Maintenance or Enhancement

4. Preventive Maintenance or Re-engineering.

2. Adaptation

Over time, the original environment (E > G, CPU, operating system, business rules,

external product characteristics) for which the software was developed is likely to

change. Adaptive maintenance results in modification of the software to accommodate

change to its external environment.

 3. Enhancement

As software is used, the user will recognize additional functions that will provide

benefit. Perceptive maintenance extends the software beyond the original functional

requirements.

 4. Prevention

93

Computer Software deteriorates due to change, and because of this, preventive

maintenance, often called Software Engineering, and must be conducted to enable the

software to serve the needs of its end users .In essence, preventive maintenance makes

changes to computer diagrams so that they can be more easily corrected, adapted, and

enhanced. Software configuration Management (SCM) is an umbrella activity that is

applied throughput the software process. SCM activities are developed to Identify

Change .Control change. Ensure that change is being properly implemented .Report

change to others that may have an interest.

94

APPENDIX A

95

Screen Shot

Client Login

96

Server side

