A
REPORT
ON
REMOTE DESKTOP

By

DeepanshuSoni (101350)

Under the guidance of

Dr. Nitin

= WNFO;
L OF RE0R,,
A= . -F_)-/

Department of Computer Science & Engineering
Jaypee University of Information Technology
Waknaghat, Solan

HP - 173234

CERTIFICATE

This is to certify that the work titled “Remote Dé&sp Sharing”, in partial fulfillment for the
award of degree of B.Tech of Jaypee University wfoimation Technology, Waknaghat,
Himachal Pradesh has been carried out under mynssijpe. This work has not been submitted
partially or wholly to any other University or liisite for the award of this or any other degree or
diploma.

Signature of Supervisor: L

Name of Supervisor: Dr. Nitin

Designation: Senior Lecturer

Date:

ACKNOWLEDGEMENTS

We would like to express our great gratitude towards our supervisor Dr. Nitin who has given us support
and suggestions. Without his help we could not have presented this dissertation up to the present
standards. We also take this opportunity to give thanks to all others who gave us support for the project

or in other aspects of our study at REMOTE DESKTOP.

LIST OF FIGURES AND TABLES

Figure2.1: Programs written in the Java programming language

Figure2.2: The Java APl and the Java VM

Figure3.1: Context level DFD

Figure3.2: Application Processing Logic

Figure3.3: Use Case Diagram

IFigure 3.4: State Chart Diagram

Figure3.5 Basic Idea of Project

Figure3.6 RMI Architecture

Figure 6.1 Testing Process

15

15

24

25

26

29

30

76

32

Table 6.1 Compatibility test OS details

Table 6.2 Compatibility test for OS

79

80

CONTENTS

Chapter

Declaration and Certificate
Acknowledgement
Tables and figures
Abstract
1. Introduction
1.1 Overview
1.2 Purpose
1.3 Modules of project
131

Remote Server

1.3.2
Remote Client

2. Requirement Gathering
2.1 Primary research
2.2Questionnaires
2.3Technical Research

2.4Selection Of Programming Language

2.4.1 Java
2.4.2 Swings

2.4.3 Relationship to SWT

Page No.

10
12

13

2.4.4 Java Features
2.4.5 the java Platform

2.4.6 Implementation of Java

2.5Tools Used

3. Design

2.5.1JDK

2.5.2 net beans

3.1 Introduction

3.2 Physical Design

3.3 Use Case Diagram:

3.4 State Chart Diagram:

3.5

Basic Idea of RMI:

4 Feasibility Analysis

4.1

4.2

4.3

4.4

Aim
Technical Feasibility
Operational Feasibility

Economical Feasibility

5 Implementation

6 Testing

6.1

Testing Overview

14

19

20

21

21

23

26

27

27

30

31

32

41

42

42

43

44

46

73

74

6.2 Independent unit test
6.3 System testing
6.3.1 Unit testing
6.3.2 Module testing
6.3.3 Sub system testing
6.4 Acceptance testing
6.5 Testing Strategies
6.6 Performance testing
6.7 Security Testing

6.8 Equivalence Testing

7 Maintenance

8 Appendix A

75

75

76

76

76

77

77

77

77

78

81

85

ABSTRACT

The project “Remote Desktop Sharing” is basically aimed to provide communication between

server and client from the local area network for capture client screen to server.

Current thin-client remote desktop systems were designed for data-oriented applications over
low-quality LAN links and they do not provide satisfactory end-user performance in enterprise
environment for more and more popular graphical and multimedia applications. To improve
perception of those applications in thin-client environment we designed architecture of a
server-side Quality of Service (QoS) management component responsible for mapping
application QoS requirements into network QoS. We analyze how service differentiation and
traffic management techniques combined with user perception monitoring can be used in
order to adjust network level resource allocation when performance of multimedia applications
in remote desktop environment is not meeting user requirements. Our objective is to provide
QoS-aware remote desktop systems which will be able to manage available resources in

intelligent manner and meet end-user performance expectations.

Chapter One
INTRODUCTION

10

Introduction

1.1 Overview

Remote Desktop Sharing is designed and developtdtiné end user in mind, user in a
similar way. The features included in the RemotenMwing package are a jump further

on of other similar fields.

A Remote Desktop Sharing is a desktop applicatesighed for use on a control client
pc by server. A Remote Desktop is optimized so caglisplay client pc which is
connected in local area network. Remoter Desktdipvace must be small and efficient

to accommodate the low memory capacity.

1.2 Purpose

This system is useful for those offices which hawdtiple users in different locations
and admin want to monitor all users in an offichisTApplication also provides server
monitor all clients in an office. In this, serverable to chat with client and also can chat
with client and server is also able to shut dowentlpc. These facilities are provided in

which place where local area network is available.

1.3 Modules of the project

Remote Server

11

This is the server part which waits for clients mections and per each connected client,
a new frame appears showing the current clienescid/hen you move the mouse over
the frame, this results in moving the mouse atdient side. The same happens when
you right/left click mouse button or type a key lghthe frame is in focus.

Remote Client

This the client side, its core function is sendmgcreen shot of the client's desktop
every predefined amount of time. Also it receivesver commands such as "move the
mouse command", then executes the command ati¢m'sIPC.

Coding Structure

a. Remote Server

Serverlnitiator Class

This is the entry class which listens to servert pod waits for client’s connections.
Also, it creates an essential part of the progradush. G

ClientHandler Class

Per each connected client, there is an objectisfcthss. It shows an Internal Frameper
client and it receives clients' screen dimension.

ClientScreenReciever Class
Receives captured screen from the client, thedadispt.
ClientCommandsSender Class

It listens to the server commands, then sends ttoemhe client. Server commands
include mouse move, key stroke, mouse click, etc.

EnumCommands Class
Defines constants which are used to representrseonemands.

b. RemoteClient

Clientlnitiator Class

12

This is the entry class that starts the clientansé. It establishes connection to the
server and creates the client GUI.

ScreenSpyer Class
Captures screen periodically and sends them teeihwer.
Server Delegate Class

Receives server commands and executes them itiegheRC.

13

Chapter Two

Requirement Gathering

14

2.1 Primary Research

User requirement is the main point of view for aigvelopmental movement. User
accepts only those products which are able to cet@pheir functions. Primary research
is very supportive in receiving information fromeus Developer did the primary
research in order to verify the feasibility of tipeoposed system. The following

activities were conducted in order to gain infonimatfrom the users.
Sites and Books:

1. Bellinaso Marco (2006 ASP.NET 2.0 Website Programming: Problem - Design
- Solution (Programmer to Programmer). Paperback

2. Matthew MacDonald, Matthew MacDonald, and Julianrmp&man (2005).
Beginning ASP.NET 2.0 in C# 2005: From Novice toféssional

3. Shahram Khosravi. ASP.NET AJAX Programmer's Refegenvith ASP.NET
2.0 or ASP.NET 3.5 (Programmer's Reference (Wrox))

4. Schwable, Kathy, Information Technology Project MMgement, Cengage
Technology, 2008

2.2 Questionnaires

A questionnaire is basically a survey. It is uspall short survey that takes specific
information. This kind of fact-finding method is @jed to obtain more information
from the people who are significant for the systend having very fewer times for

participa

tion for the reason that of their daily schedulbe juestionnaires are also important for
congregation information from the users who areateel to the project but are

geographically separated from each other.

15

The primary intention of distributing of this quiestnaire is to further justify and to gain
the user support of implementation of the proposgstem and to know the kind of
feature that those respondents anticipate and ssvany existing system that the user
came across. A total of 15 respondents have tpéidrthis survey. The questions in the

guestionnaires are as follows:

1. Do you want scheduler in the system?

- Yes

'_No

Justification:If you are too often send messages on the schedoé&Email
Scheduler plug in will help you fully automate thisocess. Now you can set a
certain date and time to send out specific messdgesthermore, Email scheduler
can work with attached a file, which allows you foy example, send certain
documents periodically.

2. Are you using any current system?

- Yes

I_No

Justification: This question would help me to know that whethsgrs want or not to

use such kind of system.

3. Do you want user groups?

2 Yes

'_No

Jugtification:When you are in an Active Directory network enviment, you can set

Smart mail policies to enforce settings on a speoif a group of users. This is mainly

16

to be used to change or limit the default behaofddutlook in a corporate environment
but can also be useful in some home environmemtsinstance, as a home user you

might want to set policies on what your children ead cannot do in Outlook.

4. Do you want attaches from one group to another?

- Yes

'_No

Justification: this would ask to know, whether the user wantde this functionality or
not.

5. Do you face any problem in current system?

- Yes

I_No

6. Do you want your customize setting or just system default?

2 Yes

I_No

Justification- Designed to find out is user want customized rsgtor system default,

which cannot be change by user.

2.3 Technical Research

What isa Methodology?

Software engineering is carry out of using preférpeocedure techniques to progress
the quality of a software development effort. A huetology is defined as a collection of
procedures, techniques, tools, and documentatids &hich will help developers in

their efforts (both product and process relatetvitiels) to implement a new system. For

successful implementation, a well-organized andtesyatic approach is crucial.

17

Therefore, several methodologies were developashtourage the systematic approach
to planning, analysis, design, testing and impletaten. Methodologies offer various
tools and techniques to assist in analysesigh and testing in terms of detailed

design of software, data flowcharts and databasgyd.
Why M ethodology?

1. To complete a project within time and budget witie texpected scope and
guality we need methodologies which provide foraafework.

2. Most methodologies have a general planning, deugjognd managing stages in
common. They suggest the development team the efayénking, learning and

arriving at a regular feasible solution.
To select an ideal methodology was based on proggctirements and goals.

+ Functional Decomposition: The methodology shoulgehatages according to
the interrelated activities which can be grouped different functional areas.

+ Requirement Changes: If required, methodology plesiscope to change the
requirement.

+ Manage Risks: Determined the risk is an importativigy to develop a project.

¢ lterative approach: Iteration allows refinementexfuirement as well as design.

+ Documentation: Methodology provides support fogéadocumentation.

« Analysis and Design Support: A well defined struetaf the methodology helps
for analysis and designing to development process..

+« Implementation: The system should be implementqueaglan.

+«+ Testing Support: More testing, more reliable thedpict is.

Object Oriented Approach: Object oriented concepits be used in developing the

project as it supports component reusability.

2.4 Selection of Programming language:

18

To successfully develop a project or system, tesdirand programming skills are both
equally important. The academic research detesnine design of the system, while
the technical and programming research will deteenthe usability of the system. The
objective of this session is to identify a programgrlanguage platform for developing
this project. Most important factors such as praeitg, maintainability, efficiency,
portability, etc. pay an enormous part in this kraks the project being developed is an
email application to be developed by an objectriei@ approach, it leaves the developer
to choose from the following languages: JAVA, ASET and C#. A lot of research

was carried to select the best among these.
2.4.1 Java:

It is an object oriented and platform independesmiglage which is used for
programming desktop application. It consists ofirdugl machine and set of libraries

which are needed to allow the use of file systarasyorks, graphical interfaces, etc.

Java is a programming language originally develdpe8un Microsystems and released
in 1995 a core component of Sun Microsoft, javdfpien. The language derives much
of its syntax from C and C++ but a simpler objecidel and fewer low level facilities.
Java applications are typically component to bytéecthat can run on any java virtual
machine (JVM) regardless of computer architectufee original and reference
implementation of java compliers, virtual machines)d class libraries which is
developed by Sun from 1996, as of May 2007, in d@npe with the specifications of
the Java community Process, sun made available ehdiseéir Java technologies as free
software under the General public license. Othexgehalso developed alternatives
implementation of technologies such as GNU compbiedava and GNU Classpath.
Java is a programming language originally developg James Gosling at Sun
Microsystems (which has since merged into Oradgo@ration) and released in 1995
as a core component of Sun Microsystems' Javéoptat The language derives much
of its syntax from C and C++ but has a simptéject model and fewer low-level
facilities. Java applications are typically coregilto byte code (class file) that can run
on any Java Virtual Machine (JVM) regardless admputer architecture. Java is a

19

general-purpose, concurrent, class-based, objemited language that is specifically
designed to have as few implementation dependeasigmssible. It is intended to let
application developers "write once, run anywheM/ORA), meaning that code that
runs on one platform does not need to be recompiledn on another. Java is currently
one of the most popular programming languages & particularly for client-server

web applications, with a reported 10 million users.

The original and reference implementation Javanpters, virtual machines, and class
libraries were developed by Sun from 1995. As ofyN@07, in compliance with the

specifications of the Java Community Process, #licensed most of its Java
technologies under the GNU General Public Licer@thers have also developed
alternative implementations of these Sun technekgsuch as the GNU Compiler for
Java and GNU Classpath.

James Gosling, Mike Sheridan, and Patrick Naughidtiated the Java language
project in June 1991. Java was originally desigioednteractive television, but it was

too advanced for the digital cable television irtdust the time. The language was
initially called Oak after an oak tree that stamdside Gosling's office; it went by the

name Green later, and was later renamed Java,Jawmcoffee, said to be consumed in
large quantities by the language's creators. Gpstimed to implement a virtual

machine and a language that had a familiar C/Qyle ef notation.

Sun Microsystems released the first public impletagon as Java 1.0 in 1995. It
promised "Write Once, Run Anywhere" (WORA), prawmgl no-cost run-times on
popular platforms. Fairly secure and featuring figpmable security, it allowed
network-and file-access restrictions. Major webwsers soon incorporated the ability
to run Java applets within web pages, and Javeklgubecame popular. With the
advent of Java 2 (released initially as J2SE 1.Raenember 1998-1999), new versions
had multiple configurations built for different tgp of platforms. For example, J2EE
targeted enterprise applications and the greatigpstd-down version J2ME for mobile
applications (Mobile Java). J2SE designated thendatal Edition. In 2006, for
marketing purposes, Sun renamed new J2 versiorkaes EE, Java ME, and Java SE,
respectively.

In 1997, Sun Microsystems approached the ISO/IEClJstandards body and later the

20

Ecma International to formalize Java, but it soomhdrew from the process. Java
remains a de facto standard, controlled through Jlava Community Process. At one
time, Sun made most of its Java implementationgabla without charge, despite their

proprietary software status. Sun generated revémmme Java through the selling of

licenses for specialized products such as the Hatarprise System. Sun distinguishes
between its Software Development Kit (SDK) and nftue Environment (JRE) (a

subset of the SDK); the primary distinction invadvihe JRE's lack of the compiler,
utility programs, and header files.

On November 13, 2006, Sun released much of Javaieesand open source software,
(FOSS), under the terms of the GNU General Pubtiense (GPL). On May 8, 2007,

Sun finished the process, making all of Java's covde available under free
software/open-source distribution terms, aside faramall portion of code to which

Sun did not hold the copyright.

Sun's vice-president Rich Green said that Sun& rdée with regards to Java was as an
"evangelist". Following Oracle Corporation's agiuon of Sun Microsystems in 2009—
2010, Oracle has described itself as the "stewérthwea technology with a relentless
commitment to fostering a community of participatiand transparency”. Java software
runs on laptops to data centres, game consolgsédatific supercomputers. There are
930 million Java Runtime Environment downloadshegear and 3 billion mobile
phones run Java. On April 2, 2010, James Goslisigmed from Oracle.

2.4.2 Swings.

Swing is the primary Java GUI widget toolkit. ¢ part of Oracle's Java Foundation
Classes (JFC) — an API for providing a graphigsér interface (GUI) for Java
programs.

Swing was developed to provide a more sophisticagtaf GUI components than the
earlier Abstract Window Toolkit (AWT). Swing pralés a native look and feel that
emulates the look and feel of several platforms, @so supports a pluggable look and
feel that allows applications to have a look arel terelated to the underlying platform.
It has more powerful and flexible components thawTA In addition to familiar

21

components such as buttons, check box and labeisgSrovides several advanced
components such as tabbed panel, scroll panes, taddes and lists.

Unlike AWT components, Swing components are notemented by platform-specific
code. Instead they are written entirely in Java taiefore are platform-independent.
The term "lightweight" is used to describe suclement.

Since early versions of Java, a portion of the t/as Window Toolkit (AWT) has
provided platform-independent APIs for user integfacomponents. In AWT, each
component is rendered and controlled by a nativer g@mponent specific to the
underlying windowing system.

By contrast, Swing components are often descrilselightweight because they do not
require allocation of native resources in the opegasystem's windowing toolkit. The
AWT components are referred to as heavyweight corapis.

Much of the Swing API is generally a complementaxyension of the AWT rather than
a direct replacement. In fact, every Swing lighgyliinterface ultimately exists within
an AWT heavyweight component because all of theld¢gpl components in Swing
(JApplet, JDialog, JFrame, and JWindow) extend\®WAl top-level container. Prior to
Java 6 Update 10, the use of both lightweight a@alvinweight components within the
same window was generally discouraged due to 2roirtcompatibilities. However,
later versions of Java have fixed these issuesbatidSwing and AWT components can
now be used in one GUI without Z-order issues.

The core rendering functionality used by Swing tawdits lightweight components is
provided by Java 2D, another part of JFC.

2.4.3 Relationship to SWT

The Standard Widget Toolkit (SWT) is a competinglkit originally developed by

IBM and now maintained by the Eclipse communittv1Bs implementation has more
in common with the heavyweight components of AWTHisTconfers benefits such as
more accurate fidelity with the underlying nativéndowing toolkit, at the cost of an
increased exposure to the native platform in tlogi@mming model.

The advent of SWT has given rise to a great dealliabion among Java desktop

developers, with many strongly favouring either B@ Swing.
22

There has been significant debate and speculatiout@ahe performance of SWT versus
Swing; some hinted that SWT's heavy dependencdMhwould make it slower when
the GUI component and Java need to communicate liatéaster at rendering when the
data model has been loaded into the GUI, but thésrfot been confirmed either way. A
fairly thorough set of benchmarks in 2005 concludledt neither Swing nor SWT
clearly outperformed the other in the general case.

SWT is considered by some to be less effective @schnology for cross-platform
development. By using the high-level features afhemative windowing toolkit, they
claim that SWT returns to the issues seen in thd-I18B0s (with toolkits like
zApp,Zinc, XVT and IBM/Smalltalk) where toolkitstatmpted to mask differences in
focus behaviour, event triggering and graphicablday Failure to match behaviour on
each platform can cause subtle but difficult-tostes bugs that impact user interaction
and the appearance of the GUIL.

2.4.4 Java features

The fundamental forces that necessitated the imreraf Java are portability and
security. There are other factors that played gyomant role in modeling the final form
of the language. The Java team is as follows adgedhe key considerations and
features.

Java was designed to be easy for professional gmoger to learn and use effectively.
Java is completely object-oriented so if we aré weised with OOP’S learning Java
another attribute that makes it easy to learn ikemaan effort not have surprising
Features. In Java, there are a small number oflgldafined ways to accomplish a
given task.

Although influenced by its predecessor, Java wats dasigned to be source code
compatible with any other languages. This allonedhxeam the freedom to design with
a blank slate. One out come of this was a cleamleisarogrammatic approach to
objects. Borrowing liberally from any seminal oljjsoftware environment of the last
few decades. Java manages to strike a balance purist’s —everything is an objectl

paradigm, and the pragmatist’s —stay out of my wayl model. The object model in Java
23

is simple and easy to extent, while simple typeghsas integers are kept as high

performance non-objects.

1. Java is Portable:

One of the biggest advantages Java offers is timpbrtable. An application written in
Java will run on all the major platforms. Any congruwith a Java based browser can
run the applications or applets written in the Jar@gramming language. A programmer
no longer has to write one program to run on a ktash, another program to run on a
Windows machine, still another to run on a Unix hmae and so on. In other words,
with Java, developers write their programs onlyeonc

The virtual machine is what gives Java a crosdgtat capabilities. Rather than being
complied into machine language, which is differémt each operating systems and
computer architecture, Java code is compiled igte bodes. With other languages, the
program code is complied into a language that themputer can understand. The
problem is that other computers with different maehnstruction set cannot understand
that language. Java code, on the other hand is lEmimipto byte codes rather than a
machine language. These byte codes go to the Jewalvmachine, which executes
them directly or translates them into the langutgd is understood by the machine

running it.

In summary, these means that with the JDBC APInelitey Java, a programmer writing
Java code can access all the major relational dsé¢sbon any platform that supports the
Java virtual machine.

2. Java is Object — Oriented:

Java is Object Oriented, which makes program defigns on what you are dealing
with rather than on how you are going to do sonmgthiThis makes it more useful for
programming in sophisticated projects because ame break the things down into
understandable components. A big benefit is tregdlcomponents can then be reused.

Object oriented languages use the paradigm ofedass simplest term, a class includes

both the data and the functions to operate on #t&. d/ou can create an instance of a
24

class, also called an object, which will have la lata members and functionality of its
class. Because of this, you can think of a cladseasy like template, with each object
being a specific instance of a particular typelas.

The class paradigm allows one to encapsulate datiaas specific data values are those
using the data cannot see function implementatmtapsulation makes it possible to
make the changes in code without breaking othegrpros that use that code. If for
example the implementation of a function is chandlee change is invisible to another
programmer who invokes that function, and it doest affect his/her program, except
hopefully to improve it.

Java includes inheritance, or that ability to demew classes from existing classes. The
derived class, also called subclass, inheritshalldata and the function of the existing
class, referred to as the parent class. A subcdassadd new data members to those
inherited form the parent class. As far as metlaydsconcerned, the subclass can reuse
the inherited methods, as it is, or change thereyen add its own new methods.

3. Java Makes It Easy:

In addition to being portable and object orientéalva facilitates writing correct code.
Programmers spend less time writing Java code doidless time debugging it. In fact,
developers have reported slashing developmenthyras much as two thirds.

Java automatically takes care of allocating andeaélocating memory, a huge potential
source of errors. If an object is no longer beisgdi(has no reference to it), then it is
automatically removed from memory, or Garbage Ctdle by a low priority daemon
thread called Garbage Collector. Java’s no poisti@port eliminates big source errors.
By using object references instead of memory pnigoblems with pointer arithmetic
are eliminated, and problems with inadvertentlyesstng the wrong memory address
are greatly reduced.

Java’s strong typing cuts down on runtime erroes;aoise Java enforces strong type
checking, many errors are caught when code is dethpgDynamic binding is possible
and often very useful, but static binding with dttype checking is used when possible.

25

Java keeps code simple by having just one way teainething instead of having
several alternatives, as in some languages. Javastlys lean by not including multiple
inheritances, which eliminates the errors and amtyghat arise when you create a
subclass that inherits from two or more classes. r@glace capabilities, multiple
inheritances provide, Java lets you add functibpao a class throw the use of
interfaces.

4. Java is Extensible:

A big plus for Java is the fact it can be extendedas purposely written to be lean with
the emphasis on doing what it does very well, extef tying to do everything from the

beginning; it was return so that extending it isyveasy. The java platform includes an
extensive class library so that programmers canalready existing classes, as it is,
create subclasses to modify existing classes, pleiment to augment the capabilities of
classes.

5. Java is Secure;:

It is important that a programmer not be able tiersubversive code for applications or
applets. This is especially true with the Interbeing used more and more extensively
for services such as electronic commerce and el@ctdistribution of software and
multimedia content. The way memory is allocated &id out. In java an object’s
location in memory is not determined until the mn&, as opposed to C and C++. As the
result, a programmer cannot look at a class defiménd figure out how it might be laid
out in memory. Also since, Java has no pointeogrammer cannot forge pointers to
memory. The Java Virtual Machine (JVM) doesn’t trasy incoming code and subjects
it to what is called Byte Code Verification. Thetéyode verifier, part if the virtual
machine, checks that

The format of incoming code is correct
« Incoming code doesn’t forge pointers.
» It doesn't violate access restrictions.

« It access objects as what they are

26

The Java byte code loader, another part of the JuiMcks whether classes loaded
during program execution are local of from acrose@vork. Imported classes cannot be
substituted for built in classes, and built in sks cannot accidentally reference classes
bring in over a network.

The Java Security manager allows user to restntusted Java applets so that they
cannot access the local network, local files aheiotesources.

6. Java Performs Well:

Java performance is better than one might expesta’'s many advantages, such as
having built in security and being interpreted asllvas complied, do have a cost
attached to them. However, various optimizationgehaeen built, in, and the byte code
interpreter can run very fast the cost it doesmdd any checking. As a result, Java has
done quite respectably in performance tests. Itfopeance numbers for interpreted
byte codes are usually more than adequate to rteractive graphical end user
applications. For situations that require unusubigh performance, byte codes can be
translated on the fly generating the final machiode for the particular CPU on which
the application is running at run time. Java offgeed performance with the advantages
of high-level languages but without the disadvaesagf C and C++. In the world of
design trade-off, you can think of Java as pro\gdirvery attractive middle ground.

7. Java is Robust:

The multiplatform environment of the WEB places ragtdinary demands on a
program, because it must execute reliably in aetarmf systems. Thus the ability to
create robust programs was given a high prioritythe design of Java. To gain
reliability, Java restricts you in a few key aréagorce you to find your mistakes early
in program developments. At the same time, Jawesfy@u from having to worry about
many of the most common causes of programmingsrBecause Java is strictly typed
language, it checks your code at compile time. H@nedt also checks your code at run
time. In fact, many hard to track down bugs thaemfturn up in hard to reproduce
runtime situations are simply impossible to creatdava. Knowing that what you have

27

written will behave in a predictable way under dse=conditions is a key feature of
Java.

8. Java is Multithreaded:

Multithreading is simply the ability of a program ¢o more than one thing at a time.
For example an application could be faxing a docuna¢ the same time it is printing
another document. Or a program could process neantory figures while it maintains
a feed for current prices. Multithreading is park&ly important in multimedia: a
multimedia program might often be running a movimning a audio track and display
in text all at the same time.

2.45 TheJava Platform

A platform is the hardware or software environmianivhich a program runs. The Java
platform differs from most other platforms in théd a software-only platform that runs
on top of other, hardware-based platforms.

The Java platform has two components:
1.The Java Virtual Machine (Java VM)

2.The Java Application Programming Interface (Jav8)

Java VM is the base for the Java platform and i$edoonto various hardware-based
platforms.

Programs written in the Java programming language fiist compiled and then
interpreted.

Sr—— o=
g

myProgram.class

FIG 2.1 Program written in the Java programming lang

The Java API is a large collection of re-made software components that pro.
many useful capabilities, such as graphical userfecce (GUI) widgets. The Java A
is grouped into libraries crelated classes and interfaces; these librariekrayen as
packages. The next section highlights what funetion some of the packages in t
Java API provide.

myProgram.java

Java AP|

Java Virtual Machine Java Platiorm

Hardware-Based Platform

FIG 2.2 The Java API and the Java VM insulate gnamm from hardware depeencies
2.4.6 Implementation of Java Technology

Every full implementation of the Java platform gweu the following feature

1. The essentials: Objects, strings, threads, numbgysf and output, data structur
system properties, date and time, and sc

2. Applets: The set of conventions used by Java ag|

3. Networking: URLs, TCP (Transmission Control ProtpcdDP (User Datagrar
Protocol) sockets, and IP (Internet Protocol) askskze

4. Internationalization: Help for writing programs thean be localized for use
worldwide. Programs can automatically ac to specific locales and be displayed in
appropriate language.

5. Security: Both low level and high level, includimdectronic signatures, public a

29

private key management, access control, and cextis.

6. Software components: Known as JavaBeans, can pitay @xisting component
architectures.

7. Object serialization: Allows lightweight pergste and communication via RMI
(Remote Method Invocation).

2.5 ToolsUsed :

2.5.1 JDK

The Java Development Kit is an Oracle Corporapimduct aimed at Java developers.
Since the introduction of Java, it has been bytliar most widely used Java Software
Development Kit (SDK). On 17 November 2006, Sumamced that it would be
released under the GNU General Public License jGfRus making it free software.

This happened in large part on 8 May 2007; Sunributed the source code to the
Open JDK.

The JDK has as its primary components a colleafgrogramming tools, including:

1. java — the loader for Java applications. This tgoln interpreter and can
interpret the class files generated by the jawaopsler. Now a single launcher
is used for both development and deployment. THedeployment launcher, jre,
no longer comes with Sun JDK, and instead it has Ibeplaced by this new java
loader.

2. javac —the compiler, which converts source datte Java bytecode

3. appletviewer — this tool can be used to run armigelava applets without a web
browser

4. apt— the annotation-processing tool.

5. extcheck — a utility which can detect JAR-file daté

6. idlj — the IDL-to-Java compiler. This utility gersges Java bindings from a
given Java IDL file.

30

7.

10.
11.
12.
13.
14.

15.

16.

17.

18.
19.
20.
21.

22.

23.

24.

25.

javadoc — the documentation generator, which aatcally generates
documentation from source code comments

jar — the archiver, which packages related clagaries into a single JAR file.
This tool also helps manage JAR files.

javah — the C header and stub generator, usedt® nmative methods

javap — the class file disassembler

javaws — the Java Web Start launcher for INLPiegipmns
jconsole — Java Monitoring and Management Console
jdb — the debugger

jhat — Java Heap Analysis Tool

jinfo — This utility gets configuration informatidinom a running Java process or
crash dump.

jmap — This utility outputs the memory map for Javal can print shared object
memory maps or heap memory details of a given gsooecore dump.

jps — Java Virtual Machine Process Status Toat lise instrumented HotSpot
Java Virtual Machines (JVMs) on the target system.

jrunscript — Java command-line script shell.

jstack — utility which prints Java stack tracegdavba threads

jstat — Java Virtual Machine statistics monitortogl

jstatd — jstat daemon

policytool — the policy creation and management,techich can determine

policy for a Java runtime, specifying which pernogs are available for code
from various sources

VisualVM - visual tool integrating several commddme JDK tools and
lightweight performance and memory profiling caiiibs
wsimport — generates portable JAX-WS artifactdiooking a web service.

xjc — Part of the Java API for XML Binding (JAXB)FA. It accepts an XML
schema and generates Java classes.

The JDK also comes with a complete Java Runtimer&mment, usually called a

private runtime, due to the fact that it is sepaddtom the "regular® JRE and has extra

31

contents. It consists of a Java Virtual Maching alh of the class libraries present in the
production environment, as well as additional liles only useful to developers, such as
the internationalization libraries and the IDLrlbies.

2.5.2 Net Beans|DE 6.9.1

Net Beans refers to both a platform framework ftava desktop applications, and an
integrated development environment (IDE) for dep@lg with Java, JavaScript, PHP,
Python, Groovy, C, C++, Scala, Clojure, and oth&he Net Beans IDE 7.0 no longer
supports Ruby and Ruby on Rails, but a thirdyplagis begun work on a separate plug-
in. The Net Beans IDE is written in Java and cam on Windows, Mac OS, Linux,
Solaris and other platforms supporting a compatiiéM. A pre-existing JVM or a
JDK is not required.

The Net Beans platform allows applications to bgettgped from a set of modular
software components called modules. Applicationsedaon the Ne Beans platform
(including the Net Beans IDE) can be extended hig tparty developers.

1. Net BeansPlatform

The Net Beans Platform is a reusable frameworksioplifying the development of
Java Swing desktop applications. The Net BeanshDitlle for Java SE contains what
is needed to start developing Net Beans plugins Hetl Beans Platform based
applications; no additional SDK is required. Applions can install modules
dynamically. Any application can include the Upd&tenter module to allow users of
the application to download digitally-signed uptga and new features directly into the
running application. Reinstalling an upgrade oreavirelease does not force users to
download the entire application again.

The platform offers reusable services common toktdes applications, allowing
developers to focus on the logic specific to tlagiplication. Among the features of the

platform are:
32

1. User interface management (e.g. menus and toolbars)
2. User settings management

3. Storage management (saving and loading any Kkiitaf)
4

. Window management

5. Wizard framework (supports step-by-step dialogs)
6. Net Beans Visual Library
7. Integrated development tools

Net Beans IDE is a free, open-source, cross-platl@E with built-in-support for Java
Programming Language.

2. Net Beans|DE

NetBeans IDE is an open-source integrated devedopranvironment. NetBeans
IDE supports development of all Java applicatiopety (Java SE (including
JavaFX), Java ME, web, EJB and mobile applicajions of the box. Among other
features are an Ant-based project system, Mavempostp refactorings,version
control (supporting CVS, Subversion, Mercurial &lidarcase).

All the functions of the IDE are provided by modull&ach module provides a well
defined function, such as support for the Javguage, editing, or support for the
CVS versioning system, and SVN. NetBeans contalinth@a modules needed for
Java development in a single download, allowing tlser to start working
immediately. Modules also allow NetBeans to be mo¢el. New features, such as
support for other programming languages, can beschdwy installing additional
modules. For instance, Sun Studio, Sun Java StHdierprise, and Sun Java
Studio Creator from Sun Microsystems are all basethe NetBeans IDE.

From July 2006 through 2007, NetBeans IDE was fednunder Sun's Common
Development and Distribution License (CDDL), a lise based on the Mozilla
Public License (MPL). In October 2007, Sun annodndieat NetBeans would

33

henceforth be offered under a dual license ofGBL and the GPL version 2
licenses, with the GPL linking exception for GNUASspath

34

Chapter Three

Design

35

3.1 Introduction

The main purpose for preparing this document @te a general insight into the
analysis and requirements of the existing systesitoation and for determining the

operational characteristics of the system.

3.2 Physical Design:

The interface of the application is very aesthetser friendly that even a novice user
can understand and use it quickly to achieve theired task. The user has to simply

follow the syntax given on the form which is vemnple.
He/she simply performs various operation like madsee, left click or right click.

The context level DFD is here

36

Figure 3.1: Context level DFD

Processing Logic:

The user starts the application first.

After that the user enters the ip address of trgetacomputer.

Then the user inserts the password in the apptepgat field.

After that, the user starts the connection by aliglon the start button.
The user can see the target machine desktop @tigsn.

The user can operate on it as if it is his deskidy. He can use the mouse clicks,

keystrokes.

37

The flow of program is explained with this diagram.

[
-I

Figure 3.2: Application Processing Logic

38

3.3 Use Case Diagram:

C o

Enter commands

all

System

e

Screenshots

Command fil

-,

Output

Figure 3.3: Use Case Diagram

39

3.4 State Chart Diagram:

. events gerated

@7

action performed

Figure 3.6: State Chart Diagram

40

Connection established by RMI

Robot class used to transfer events
(mouse and keyboard)

Figure3.5: Basic I dea of Project

Our Project “Remote Desktop Shaing” is based ondarmcepts :-
* RMI (Remote method Invocation)
* Robot Class

Here the connection establishment between clieshsarnver is done through RMI, once

the connection is established, the work of the rabass starts.
Robot class helps the program to send and recédieeaht events like
Mousevents — Mouse Button Pressed/Release, P@oation, Scroll Wheel, etc.

Key events — Key Strokes, Key Pressed/Release.

41

Buffered Image — Screen capture, Pixel informaton.
Basic Idea of RMI:
Our Project is based mainly upon the remote desstteping.

3.6 RMI (Remote Desktop Sharing): Remote Method Invocation (RMI) facilitates
object function calls between Java Virtual Machi@@®#Ms). JVMs can be located on
separate computers - yet one JVM can invoke metheldsging to an object stored in
another JVM. Methods can even pass objects thaeggh virtual machine has never

encountered before, allowing dynamic loading of méagses as required.
Java RMI allows:
» provide user with a “thin client
o allows good performance on lower end workstations
» run server on high end hardware
0 maximize investment over many clients
0 server remote from client

» Distributed network object

The general idea of RMI is:

» Instantiate an object on another machine

» Invoke methods on the remote object

42

3.6.1 Architecture of RMI

Figure 3.6: RMIArchitecture
Client - user interface
Server - data source

The Stub/Skeleton Layer

The stub/skeleton layer is the interface betweeragiplication layer and the rest of
RMI system. This layer does not deal with specifitany transport, but transm data
to the remote reference layer via the abstracticmarshal streams. Marshal stream
employ a mechanism callobject serialization which enables Java objects to
transmitted between address spaces. Objects ttd@dmsing the object serializon
system are passed by copy to the remote address, spdess they are remote obje

in which case they are passed by refere

A stub for a remote object is the clie-side proxy for the remote object. Such a ¢
implements all the interfaces ttare supported by the remote object implementafc

clientside stub is responsible f

43

- Initiating a call to the remote object (by callitige remote reference layer).

« Marshaling arguments to a marshal stream (obténoead the remote reference

layer).
« Informing the remote reference layer that the slatiuld be invoked.
« Unmarshaling the return value or exception fromaaghal stream.
« Informing the remote reference layer that the isatomplete.

A skeleton for a remote object is a server-side entity tlatains a method which
dispatches calls to the actual remote object imptaation. The skeleton is responsible
for:

- Unmarshaling arguments from the marshal stream.
« Making the up-call to the actual remote object iempéntation.

« Marshaling the return value of the call or an exicep(if one occurred) onto the
marshal stream.

The appropriate stub and skeleton classes arendatt at run time and are
dynamically loaded as needed. Dynamic Stub Loadésgribes in detail how the stubs

are located and how their actions are constrained.
3.6.2 The Remote Reference L ayer

The remote reference layer deals with the loweglleansport interface. This layer is
also responsible for carrying out a specific remreterence protocol which is
independent of the client stubs and server skedeton

Each remote object implementation chooses its @mote reference subclass that
operates on its behalf. Various invocation prote@aln be carried out at this layer, for

example:

« Unicast point-to-point invocation.

44

« Invocation to replicated object groups.
« Support for a specific replication strategy.

« Support for a persistent reference to the remajecolenabling activation of the

remote object).
« Reconnection strategies (if remote object becomascessible).

The remote reference layer has two cooperating coes: the client-side and the
server-side components. The client-side compor@mtams information specific to the
remote server (or servers, if the remote referente a replicated object) and
communicates via the transport to the server-sideponent. During each method
invocation, the client and server-side componeatfopm the specific remote reference
semantics. For example, if a remote object is giaatreplicated object, the client-side
component can forward the invocation to each rapither than just a single remote

object.

In a corresponding manner, the server-side compgomgements the specific remote
reference semantics prior to delivering a remotthoteinvocation to the skeleton. This
component, for example, could handle ensuring atamiltiple delivery by

communicating with other servers in the replicaugro

The remote reference layer transmits data to Hmesport layer via the abstraction of a
stream-orientedonnection. The transport takes care of the implementatidaildeof
connections. Although connections present a strdmsed interface, a connectionless

transport may be implemented beneath the abstractio

3.6.3 The Transport Layer

In general, the transport layer of the RMI systsmesponsible for:
« Setting up connections to remote address spaces.

- Managing connections.

45

« Monitoring connection "liveness."

« Listening for incoming calls.

« Maintaining a table of remote objects that residthe address space.
« Setting up a connection for an incoming call.

« Locating the dispatcher for the target of the resvgatll and passing the
connection to this dispatcher.

The concrete representation of a remote objecteeée consists of an endpoint and an
object identifier. This representation is calleliva reference. Given a live reference for

a remote object, a transport can use the endpos#ttup a connection to the address
space in which the remote object resides. On thesside, the transport uses the object

identifier to look up the target of the remote call
The transport for the RMI system consists of foasib abstractions:

« An endpoint is the abstraction used to denote an address spdesa virtual
machine. In the implementation, an endpoint cambapped to its transport. That

is, given an endpoint, a specific transport instacan be obtained.

« A channédl is the abstraction for a conduit between two askispaces. As such,
it is responsible for managing connections betwhlerocal address space and

the remote address space for which it is a channel.
« A connection is the abstraction for transferring data (perforgninput/output).

« Thetransport abstraction manages channels. Each channel ifuahtonnection
between two address spaces. Within a transpost,amd channel exists per pair
of address spaces, the local address space antbteraddress space. Given an
endpoint to a remote address space, a transpsmiget channel to that address
space. The transport abstraction is also resp@blaccepting calls on
incoming connections to the address space, seffirgconnection object for the
call, and dispatching to higher layers in the gyste

46

A transport defines what the concrete represemati@n endpoint is, so multiple
transport implementations may exist. The designiampdementation also supports
multiple transports per address space, so bothafdRJDP can be supported in the

same virtual machine.

The steps involved in the RMI process are:
» Create the Interface to the server
» Create the Server
» Create the Client
» Compile the Interface (javac)
» Compile the Server (javac)
» Compile the Client (javac)
» Generate Stubs and Skeletons (rmic)

RMI Registry-The RMI Registry is a naming serviceypded with the JDK as a
teaching tool or for a small number of Remote Ofsjec

» Uses port 1099 as its default port

» Can be considered to be a reference implementation
» runs out of steam above a 100 objects

» runs on same machine as the remote object

» Use another naming service

» J2EE uses JNDI and Directory Services to provideee robust naming service

47

» Silver stream uses JNDI with its own Service Prewiand repository for it

3.6.4 Robot Class

This class is used to generate native system e\arits for the purposes of test
automation, self-running demos, and other appbecatwhere control of the mouse and
keyboard is needed. The primary purpose of Robiot fiacilitate automated testing of

Java platform implementations.

Using the class to generate input events diffenqifposting events to the AWT event
queue or AWT components in that the events arergtetkin the platform's native input
queue. For example, Robot.mouseMove will actualbyventhe mouse cursor instead of

just generating mouse move events.

Note that some platforms require special privilegesxtensions to access low-level
input control. If the current platform configuratialoes not allow input control, an
AWTException will be thrown when trying to consttiRobot objects. For example, X-
Window systems will throw the exception if the XTE3.2 standard extension is not

supported (or not enabled) by the X server.

Some methods and Constructors

Constructor Summary

Robot ()
Constructs a Robot object in the coordinate system of the primary screen.

Robot (GraphicsDevice screen)
Creates a Robot for the given screen device.

48

Method Summary

BufferedImage

createScreenCapture (Rectangle screenRect)
Creates an image containing pixels read from the screen.

void

delay (int ms)
Sleeps for the specified time.

getAutoDelay ()
Returns the number of milliseconds this Robot sleeps after generating an event.

Color

getPixelColor (int =, int y)
Returns the color of a pixel at the given screen coordinates.

boolean

isAutoWaitForIdle()
Returns whether this Robot automatically invokes waitForidle after generating an event.

woid

keyPress (int keycode)
Presses a given key.

void

keyRelease (int keycode)
Releases a given key.

void

mouseMove (int %, int y)
Moves mouse pointer to given screen coordinates.

void

mousePress (int buttons)
Presses one or more mouse buttons.

void

mouseRelease (int buttons)
Releases one or more mouse buttons.

void

setAutcDelay (int ms)
Sets the number of milliseconds this Robot sleeps after generating an event.

void

setAutoWaitForIdle (booclean isOn)
Sets whether this Robot automatically invokes waitForIdle after generating an event.

String

toString ()
Returns a string representation of this Robot.

woid

waitForIdle ()
Waits until all events currently on the event queue have been processed.

49

Chapter Four

FEASIBILITY ANALYSIS

50

4.1 Aim

The main aim of feasibility study is to determinkether development of the application
is financially and technically feasible or not.iftvolves the analysis of problem and
collection of data which will be put into the sysiethe processing required to be carried
out on this data, the output required to be produmethe system as well as the study of
various constraints on the behaviour of the system.

The application can be developed in many langubked/isual C++, Visual Basic, and
Java etc. But Java is the most suitable languagethie development of these
applications it is platform independent, takes l@s® in execution as far as network
application is concerned. It also contains varipaskages that contain various classes
that are needed to implement the functions forajygication. The packages that are to
be included in this application are Java. Swingalawt, Java.awt.event. Hence, Java
provides all the methods that are to be used & dpplication. Moreover much help
regarding Java is available on the internet, sgptbhblem regarding the implementation
will be very less.

The application to be developed does not requise lagh investment. The software
required JDK 1.4 is easily available in the markétnce financially also the project is
very much feasible.

Hence, from the above stated points, the applicasEams to be very much feasible,
both technically and financially.

An Important outcome of the preliminary investigatis the determination that the
system requested is feasible. There are 3 aspettte feasibility study:

4.2 Technical Feasibility

It is concerned with specifying equipment and safevthat will successfully satisfy the
user requirement. The technical needs of the systemvary considerably, but might

51

include:

The facility to produce outputs in a given time.

1) Response time under certain conditions.
3) Ability to process a certain volume of transactamaarticular spee

4) Facility to communicate data to distant location.

In examining technical feasibility, configuratiohtbe system is given more importance
than the actual make of hardware. The configurasioould given the complete picture
about the system’s requirements like how many watkms are required, how these
units are interconnected so that they could opeaate communicate smoothly. What
speeds of input and output should be achievedratplar quality of printing. This can

be used b e used as a basis for the tender docuagamist which dealers and
manufactures can later make their equipment bigeciBc hardware and software

products can then be evaluated keeping in view thighogical needs.

At the feasibility stage it is desirable that twotbree different configurations will be
pursued that satisfy the key technical requirembntswhich represent different levels
of ambitions and cost. Investigation of these temdinalternatives can be aided by
approaching a range of sup pliers for preliminargcassions. Out of all types of
feasibility, technical feasibility generally is tiheost difficult to determine.

4.3 Operational Feasbility

It is mainly related to human organizational anditipal aspects. The points to be
considered are:

1. What changes will be brought with the system?

2. What organizational structures are distributed?

3. What new skills will be required? Do existing stafEmbers have these
skills? If not, can they be trained in due coursegnoe?

52

Generally project will not be rejected simply besawf operational infeasibility but
such considerations are likely to critically afféhe nature and scope of the eventual
recommendations. This feasibility study is caroes by a small group of people who
are familiar with information system techniques, owbnderstand the parts of the
business that are relevant to the project and kiledsin system analysis and design
process.

As far as this project of Personal Information 8gsis concerned the changes which we
have to be brought were only organizational. Thenfocus goes towards workstations.
Keeping in view of their hardware requirements kietwork interface card etc.

4.4 Economical Feasbility

Economic analysis is the most frequently used tiegienfor evaluating the effectiveness

of a proposed system. More commonly known as ocaséfit analysis; the procedure is

to determine the benefits and savings that expdateda proposed system and compare
them with costs. If benefits outweigh costs, a sieai is taken to design and implement
the system. Otherwise, further justification oreafiative in the proposed system will

have to be made if it is to have a chance of bapmroved. This is an on going effort

that improves in accuracy at each phase of thesyste cycle.

This feasibility also depends upon quality of staiffed and the proposed duration of
time taken in this project sometimes it might besgble due to extension of time
duration may fall the project under loss. The statljeasibility changes from phase to
phase of the project development.

In this project although this feasibility study do& matter much in the case new setup
of project but on the other hand if we have to rhyodver existing system we must take
care of our existing resources and must analyseialyethe working condition of
hardware.

The main components of making software are:

53

1. System and software requirements analysis

2. Design and implementation software

3. Ensuring, verifying and maintaining software iniggr System Analysis is an
activity that encompasses most of the tasks thatcaled Computer System
Engg. Confusion sometimes occurs because the seoftein used in context that
alludes it only to software requirement analysiivées, but system analysis
focuses on all the system elements -not just soétwsystem analysis is
conducted with the following objectives in mind.

4. ldentify the Need

5. Evaluate the system concept for feasibility

6. Perform economic and technical analysis

7. Allocate functions to hardware, software, datalzaskother system elements

8. Establish cost and schedule constraints

9. Create a system definition that forms the foundafar all the subsequent e.g.
Word

Lines Of Code 550

Duration 4-5 Months

54

Chapter Five

| mplementation

55

Server Code

1. ClientCommandsSender .java

package serverdesktop;

import java.awt.Rectangle;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener,

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.awt.event.MouseMotionListener;
import java.io.lOException;

import java.io.PrintWriter;

import java.net.Socket;

import javax.swing.JPanel,

class ClientCommandsSender implements KeyListener,

MouseMotionListener,MouseListener {

private Socket cSocket = null;
private JPanel cPanel = null;
private PrintWriter writer = null,

private Rectangle clientScreenDim = null;

ClientCommandsSender(Socket s, JPanel p, Rectgrigle
cSocket = s;
cPanel = p;

clientScreenDim =r;
56

cPanel.addKeyListener(this);

cPanel.addMouseListener(this);

cPanel.addMouseMotionListener(this);

try {

writer = new PrintWriter(cSocket.getOutputStream())
} catch (IOException ex) {

ex.printStackTrace();

}

}
public void mouseDragged(MouseEvent e) {

}
public void mouseMoved(MouseEvent e) {
double xScale = clientScreenDim.getWidth()/cPamt\{\jdth();
System.out.printin("xScale: " + xScale);
double yScale = clientScreenDim.getHeight()/cPae#Height();
System.out.printin("yScale: " + yScale);
System.out.printin("Mouse Moved");
writer.printin(EnumCommands.MOVE_MOUSE.getAbbrey())
writer.printin((int)(e.getX() * xScale));
writer.printin((int)(e.getY() * yScale));
writer.flush();

}

public void mouseClicked(MouseEvent e) {
}

public void mousePressed(MouseEvent e) {

System.out.printin("Mouse Pressed");

writer.printin(EnumCommands.PRESS_MOUSE.getAbbjev()

57

int button = e.getButton();
int xButton = 16;
if (button == 3) {
xButton = 4,
}
writer.printin(xButton);
writer.flush();
}
public void mouseReleased(MouseEvent e) {
System.out.printin("Mouse Released");
writer.printin(EnumCommands.RELEASE_MOUSE.getAblfjgv
int button = e.getButton();
int xButton = 16;
if (button == 3) {
xButton = 4,
}
writer.printin(xButton);
writer.flush();

}

public void mouseEntered(MouseEvent e) {

}

public void mouseExited(MouseEvent e) {

}
public void keyTyped(KeyEvent e) {

}
public void keyPressed(KeyEvent €) {

System.out.printin("Key Pressed");

58

writer.printin(EnumCommands.PRESS_KEY.getAbbrev());
writer.printin(e.getKeyCode());
writer.flush();

}
public void keyReleased(KeyEvent e) {
System.out.printin("Mouse Released");
writer.printin(EnumCommands.RELEASE_KEY.getAbbrgy()
writer.printin(e.getKeyCode());

writer.flush();

}

2. Clienthandler.java

package serverdesktop;

import java.awt.BorderLayout;

import java.awt.Rectangle;

import java.beans.PropertyVetoException;
import java.io.lOException;

import java.io.ObjectinputStream;

import java.net.Socket;

import javax.swing.JDesktopPane;

import javax.swing.JInternalFrame;

import javax.swing.JPanel,

class ClientHandler extends Thread {
59

private JDesktopPane desktop = null;
private Socket cSocket = null;
private JinternalFrame interFrame = new Jinterraaita("Client Screen”,
true, true, true);
private JPanel cPanel = new JPanel();
public ClientHandler(Socket cSocket, JDesktopPaskibp) {
this.cSocket = cSocket;
this.desktop = desktop;
start();
}
public void drawGUI(){
interFrame.setLayout(new BorderLayout());
interFrame.getContentPane().add(cPanel,BorderLayBMTER);
interFrame.setSize(100,100);
desktop.add(interFrame);
try {
interFrame.setMaximum(true);
} catch (PropertyVetoException ex) {
ex.printStackTrace();
}
cPanel.setFocusable(true);
interFrame.setVisible(true);
}
public void run(){

Rectangle clientScreenDim = null;
60

ObjectinputStream ois = null;
drawGUI();
try{
ois = new ObjectinputStream(cSocket.getinputStrgam(
clientScreenDim =(Rectangle) ois.readObject();
}catch(IOException ex){
ex.printStackTrace();
}catch(ClassNotFoundException ex){
ex.printStackTrace();

}
new ClientScreenReciever(ois,cPanel);

new ClientCommandsSender(cSocket,cPanel,client&oresy;

}

3. ClientScreenReciever .java

package serverdesktop;

import java.awt.Graphics;

import java.awt.Image;

import java.io.|OException;
import java.io.ObjectinputStream;
import javax.swing.Imagelcon;
import javax.swing.JPanel,

class ClientScreenReciever extends Thread {
61

private ObjectInputStream cObjectinputStream =;null
private JPanel cPanel = null;

private boolean continueLoop = true;

public ClientScreenReciever(ObjectinputStream &anel p) {
cObjectinputStream = ois;

cPanel = p;

start();

}
public void run(){

try {
while(continueLoop){

Imagelcon imagelcon = (ImagalcoObjectinputStream.readObject();
System.out.printin("New image recieved");

Image image = imagelcon.getle{sg
image = image.getScaledinstance(cPanel.getWidighel.getHeight()
,Image.SCALE_FAST);

Graphics graphics = cPanel.gapBics();
graphics.drawlmage(image, 0, 0, cPanel.getWidthénel.getHeight(),cPanel);

}
} catch (IOException ex) {
ex.printStackTrace();
} catch(ClassNotFoundException ex){

ex.printStackTrace();

}

62

4 EnumCommands.java

package serverdesktop;

public enum EnumCommands {
PRESS_MOUSE(-1),
RELEASE_MOUSE(-2),
PRESS_KEY(-3),
RELEASE_KEY(-4),
MOVE_MOUSE(-5);

private int abbrev;

EnumCommands(int abbrev){

this.abbrev = abbrev;

}

public int getAbbrev(){

return abbrev;

}

5.Main.java

package serverdesktop;

public class Main {
63

public static void main(String[] args) {

}

6.Server | nitiator .java

package serverdesktop;

import java.awt.BorderLayout;

import java.io.|OException;

import java.net.ServerSocket;

import java.net.Socket;

import javax.swing.JDesktopPane;
import javax.swing.JFrame;

import javax.swing.JOptionPane;
public class Serverlnitiator {

private JFrame frame = new JFrame();

private JDesktopPane desktop = new JDesktopPane();

public static void main(String args[]){
String port = JOptionPane.showlInputDialog(&Blke enter listening port");
new Serverlnitiator().initialize(Integer.parselra(p);

}

public void initialize(int port) {

try {

ServerSocket sc = new ServerSockel(port
64

drawGUI();
while (true) {

Socket client = sc.accept();
System.out.printin("New client Connected to thessgb);
new ClientHandler(client, desktop);

}
} catch (IOException ex) {

ex.printStackTrace();

}

}
public void drawGUI() {

frame.add(desktop, BorderLayout. CENTER);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLPSE

//IShow the frame in a maximized state
frame.setExtendedState(frame.getExtendedStaté(@mé.MAXIMIZED BOTH);

frame.setVisible(true);

}

7.Server.java

package serverdesktop;
import java.awt.*;
import java.awt.event.*;

import java.net.*;
65

import java.io.*;

public class server extends Frame implements Actsdener, Runnable
{
Image Icon = Toolkit.getDefaultToolkit() image("hi.gif");
ServerSocket ss;
Socket s;
BufferedReader br;
BufferedWriter bw;
TextField text;
Button sendBut, exitBut;
List list;
public server(String m) // class constructor
{
super(m);
setSize(300, 130);
setLocation(0,0);
setlconimage(lcon);
setResizable(false);
setBackground(new Color(192, 192, 192));
this.setLayout(new GridLayout(2, 1));
Panel panels[] = new Panel[2];
panels[0] = new Panel();
panels[1] = new Panel();

panels[0].setLayout(new BorderLayout());
66

panels[1].setLayout(new FlowLayout(FlowLayout.LEFT)
sendBut = new Button("Send");

exitBut = new Button("Exit");
sendBut.addActionListener(this);
exitBut.addActionListener(this);

list = new List();

list.addltem("Server up & Listening on port plz wal);
text = new TextField(25);

panels[0].add(list);

panels[1].add(text);

panels[1].add(sendBut);

panels[1].add(exitBut);

add(panels[0]);

add(panels[1]);

setVisible(true);

try

{
ss = new ServerSocket(1053);//some port numbeterdes above 1000

s = ss.accept();
br = new BufferedReader(new InputStreamReader(smaStream()));
bw = new BufferedWriter(new OutputStreamWriter($@eatputStream()));
bw.write("Hi! ASL plz??");
bw.newLine();
bw.flush();

Thread th;
67

th = new Thread(this);
th.start();
}catch(Exception e){}
}
server() {
throw new UnsupportedOperationException("Not yeplemented");

}

public void run()

{

while (true)

try
{
list.addItem(br.readLine());

}catch (Exception e){}

}
}
public static void main(String arg[])
{
new server("Server Applicaton");
}
public void actionPerformed(ActionEvent ae)
{

if (ae.getSource().equals(exitBut))

System.exit(0);
68

else

try
{

bw.write(text.getText());

bw.newLine();bw.flush();

text.setText(");

jcatch(Exception x){}

}

69

Client Source

1.Client initiator.java

package cleintdesktop;

import java.awt. AWTException;

import java.awt.Dimension;

import java.awt.GraphicsDevice;
import java.awt.GraphicsEnvironment;
import java.awt.Rectangle;

import java.awt.Robot;

import java.awt.Toolkit;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.lOException;

import java.net.Socket;

import java.net.UnknownHostException;
import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

public class Clientlnitiator {
public void initialize() {
Socket socket = null;

String ip = JOptionPane.showlnputDialogédde enter server IP");
70

String port_no = JOptionPane.showInputDjéiBlease enter server port");
int port = Integer.parselnt(port_no);
Robot robot = null; //Used to capture theesn

Rectangle rectangle = null; //Used to repn¢ screen dimensions

try {

System.out.printin("Connecting to server%);...
socket = new Socket(ip, port);
System.out.printin("Connection Established.");

GraphicsEnvironment gEnv=
GraphicsEnvironment.getLocalGraphicsEnvironment();

GraphicsDevice gDev = gEnv.getDefauk®BoDevice();
Dimension dim = Toolkit.getDefaultTodiRigetScreenSize();
rectangle = new Rectangle(dim);
robot = new Robot(gDev);
drawGUI();
new ScreenSpyer(socket, robot, rectangle);
new ServerDelegate(socket, robot);
} catch (UnknownHostException ex) {
ex.printStackTrace();
} catch (IOException ex) {
ex.printStackTrace();
} catch (AWTException ex) {

ex.printStackTrace();

}

71

private void drawGUI() {

JFrame frame = new JFrame("Remote Admin");

JButton button = new JButton("Terminate");
frame.setBounds(100, 100, 150, 150);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLPSE
frame.add(button);
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);

}

D;

frame.setVisible(true);

}

2.EnumCommands.java

package cleintdesktop;

public enum EnumCommands {
PRESS_MOUSE(-1),
RELEASE_MOUSE(-2),
PRESS_KEY(-3),
RELEASE_KEY(-4),
MOVE_MOUSE(-5);

private int abbrev;
72

EnumCommands(int abbrev){
this.abbrev = abbrev;
}
public int getAbbrev(){
return abbrev;
}
}
3.Main.java

package cleintdesktop;
public class Main {

public static void main(String[] args) {

}

4.Screenspyer.java

package cleintdesktop;

import java.awt.Rectangle;

import java.awt.Robot;

import java.awt.image.Bufferedimage;
import java.io.lOException;

import java.io.ObjectOutputStream;
import java.net.Socket;

import javax.swing.Imagelcon;

class ScreenSpyer extends Thread {
Socket socket = null;
Robot robot = null; // Used to capture screen
Rectangle rectangle = null; //Used to represergen dimensions
boolean continueLoop = true; //Used to exit thegpam
public ScreenSpyer(Socket socket, Robot robot,Rgtaaect) {
this.socket = socket;
this.robot = robot;
rectangle = rect;
start();
}
public void run(){
ObjectOutputStream oos = null; //Used tdenain object to the streem
try{
00s = new ObjectOutputStream(socket.getOutputS{gam
oos.writeObject(rectangle);
}catch(IOException ex){
ex.printStackTrace();
}
while(continueLoop){
Bufferedlmage image = robot.createSuGapture(rectangle);
Imagelcon imagelcon = new Imagelcon@e)a
try {
System.out.printin("before sending image");

oos.writeObject(imagelcon);
74

oos.reset(); /Clear ObjectOutputStream cache
System.out.printin("New screenshot sent");
} catch (IOException ex) {

ex.printStackTrace();

}

try{
Thread.sleep(100);

}catch(InterruptedException e){

e.printStackTrace();

}

5.Server delegate.java

package cleintdesktop;

import java.awt.Robot;

import java.io.lOException;

import java.net.Socket;

import java.util.Scanner;

class ServerDelegate extends Thread {
Socket socket = null;
Robot robot = null;

boolean continueLoop = true;
75

public ServerDelegate(Socket socket, Robot robot) {
this.socket = socket;
this.robot = robot;
start(); //Start the thread and hence calling rethmd
}
public void run(){
Scanner scanner = null
try {
System.out.printin("Preparing InputStream");
scanner = new Scanner(socket.getinputStream());
while(continueLoop){
System.out.printin("Waiting for command");
int command = scanner.nextint();
System.out.printin("New command: " + command);
switch(command){
case -1:
robot.mousePress(scanner.nextint());
break;
case -2:
robot.mouseRelease(scanner.nextint());
break;
case -3:
robot.keyPress(scanner.nextint());
break;

case -4:
76

robot.keyRelease(scanner.nextint());

break;

case -5:

robot.mouseMove(scanner.nextint(), scanner.nexxint(

break;

}
} catch (IOException ex) {

ex.printStackTrace();

}

6. Client.java

package cleintdesktop;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;
public class client extends Frame implements Atiistener, Runnable
{
Image Icon = Toolkit.getDefaultToolkit() i@mage("hi.gif") ;
Socket s;
BufferedReader br;

BufferedWriter bw;
77

TextField text;
Button sendBut, exitBut;
List list;
public client(String st)
{
super(st);
setSize(300, 130);
setlconimage(lcon);
setLocation(300,0);
setResizable(false);
setBackground(new Color(192, 192, 192));
this.setLayout(new GridLayout(2, 1));
Panel panels[] = new Panel[2];
panels[0] = new Panel();
panels[1] = new Panel();
panels[0].setLayout(new BorderLayout());
panels[1].setLayout(new FlowLayout(FlowLayout.LEFT)
sendBut = new Button("Send");
exitBut = new Button("Exit");
sendBut.addActionListener(this);
exitBut.addActionListener(this);
list = new List();
text = new TextField(25);
panels[0].add(list);

panels[1].add(text);
78

panels[1].add(sendBut);
panels[1].add(exitBut);
add(panels[0]);
add(panels[1]);

setVisible(true);

try

S = new Socket("192.163:01053);
br = new BufferedReader(new InputStreamReader(ameStream()));
bw = new BufferedWriter(new OutputStreamWriter($@etputStream()));
Thread th;
th = new Thread(this);
th.start();
}catch(Exception e){}

}

public static void main(String arg[])

{

new client("Client Application");
}
private client() {
throw new UnsupportedOperationException("Not ygplemented"”);

}

public void run()

{

while (true)
79

try

{
list.addItem(br.readLine());

}catch (Exception h){}

}
}
public void actionPerformed(ActionEvent ae)
{

if(ae.getSource().equals(exitBut))
System.exit(0);

else

try
{

bw.write(text.getText());
bw.newLine();
bw.flush();
text.setText(");

}catch(Exception m){}

}

}
{

java.awt.EventQueue.invokeLater(new Runnable() {
80

public void run() {

new client().setVisible(true);

}
D

81

Chapter Six

Testing

82

6.1 Testing Overview

Testing plays a critical role in quality assurafmesoftware .Due to the limitation of the

verification method for the previous phases, desiga requirement fault also appear in
the code. Testing is used to detect these erroegjdition to the error introduced during
coding phase.

Testing is a dynamic method for verification andidation, where the system is to be
tested is executed and behaviour of the systernssreed. Due to this testing the failure
of the system can be observed, from which the poesef fault can be deduced.
However, separate activities have to be perforroedentify the faults.

There are two method of testing: functional andicitiral. In functional testing, the
internal logic of the system under testing is mmsidered and the test cases are decided
from the specification or the requirements. It is often called —Black Box Testing|.
Equivalence class partitioning, boundary analysisd cause effect graphing are
examples of methods for selecting test cases fastifonal testing. In structural testing,
the test cases are decided entirely on the intéogad of the program or module being
tested.

As the goal of testing is to detect any errorshiem programs different flavour of testing
are often used. Unit testing are used to test auleoal a small collection of modules
and the focus is on detecting coding errors in resduDuring integration testing
modules are combined into sub-system, which anmetésted. The goal here is to test the
system design. In system testing and acceptantedethe entire System is tested. The
goal here is to test the requirement themselvesctdral testing can be used for unit
testing while at higher level mostly functionaltteg is used.

In the project Monthly Materialization Report Systeve used the unit testing and
functional testing. Testing can be done with temiadwhich attempts to simulate all
possible conditions that may arise during procegsiime plane for testing are prepared
and then implemented.

83

The testing methods adopted in the testing of yseem were Independent Unit Testing
and System Testing

6.2 Independent Unit Test

IUT focuses first on the modules, independentlywé another, to locate errors. This
enables the tester to detect errors in coding agdat Ithat are contained within that
module alone. Those resulting from the interactttween modules are initially
avoided.

IUT is generally white box oriented which is pradd on the close examination of
procedural detail. It exercises all the logical idens on their true and false side,
executes all loops at their boundaries and with&irtoperational bounds and checks
whether the required validations have been met.té&Mbox testing exercises internal
data structure to assure their validity.

6.3 System Testing

Here the system testing involved is the most wideslgd testing process consists of five
stages as shown in the figure. In general, theesepuof testing activities is component
testing, integration testing then user testing. elosv, as defects are discovered at any
one stage, they required program modificationsdwect them and this may require
other stages in the testing process to be repeated.

However, as defects are discovered at any one,dtagerequire program modifications
to correct them and this may require other stageabe testing process to be repeated.
Errors in program components, say may come to lggha later stage of the testing
process. The process is therefore an iterativenstieinformation being fed back from
later stages to earlier parts of the process.

84

The Testing Process

Unit }
o Module
+ testing

1

FIG 6.1 Testing process

¥

Sub-sys. ﬁ

testing

.

System ﬁ,

testing

The stages in the testing process are as follows:

6.3.1 Unit testing: (Code Oriented)

el |

Acceptance
testing

Individual components are tested to ensure thatdperate correctly. Each component
is tested independently, without other system campts.

6.3.2 Module testing:

A module is a collection of dependent componenth sas an object class, an abstract

data type or some looser collection of proceduresfanctions. A module encapsulates

related components so it can be tested without sfystem modules.

6.3.3 Sub-system testing: (Integration Testing) (Design Oriented)

This phase involves testing collections of modwsich have been integrated into sub-

systems. Sub-systems may be independently designddimplemented. The most

common problems, which arise in large software esyst are sub-systems interface

mismatches. The sub-system test process shoulefdherconcentrate on the detection

85

of interface errors by rigorously exercising thegerfaces.
System testing:

The sub-systems are integrated to make up theeesystem. The testing process is
concerned with finding errors that result from un@pated interactions between sub-
systems and system components. It is also concemitedvalidating that the system

meets its functional and non-functional requireraent

6.4 Acceptancetesting:

This is the final stage in the testing process figefoe system is accepted for operational
use. The system is tested with data supplied byystem client rather than simulated
test data. Acceptance testing may reveal errors amissions in the systems

requirements definition (user — oriented) becalwess data exercises the system in
different ways from the test data. Acceptance rigstinay also reveal requirement
problems where the system facilities do not reaiet the user’'s needs (functional) or
the system performance (non-functional) is unaat#et

6.5 Testing Strategies:

Strategy is a general approach rather than a methdevising particular systems for
component tests. Different strategies may be adog¢pending on the type of system
to be tested and the development process usededtigg strategies are:

6.6 Performance testing
This is used to test the run-time performance tivsoe.
6.7Security testing

This attempt to verify that protection mechanismgthnto system will protect it from
improper penetration.

6.8 Recovery testing

This forces software to fail in a variety ways avetifies that recovery is properly
86

performed.
Large systems are usually tested using a mixturthese strategies rather than any

single approach. Different strategies may be neéaedifferent parts of the system and
at different stages in the testing process.

Whatever testing strategy is adopted, it is alwagasible to adopt an incremental
approach to sub-system and system testing. Radtharintegrate all components into a
system and then start testing, the system shoutddbed incrementally. Each increment
should be tested before the next increment is atlélde system. This process should
continue until all modules have been incorporated the system.

When a module is introduced at some stage in tloisgss, tests, which were previously
unsuccessful, may now, detect defects. These deéeet probably due to interactions
with the new module. The source of the problemoisalized to some extent, thus
simplifying defect location and repair.

6.9 Equivalence Partitioning

Equivalence partitioning is a black box testing Imoek that divides the input domain of a

program into classes of data from which test cas@esbe derived. A typical test case

uncovers a class of errors that might otherwis@iregmany more test cases before the
error is observed.

Equivalence classes for input determine the valdliavalid inputs for the program.

Equivalence class test cases are generated ugiigiithwing guidelines:

If an input class specifies a range then one \aalidl two invalid equivalence classes are
defined.

If an input class specifies a value then one vafid one invalid equivalence classes are
defined.

Test cases should be selected so that the largesiar of attributes of an equivalence
class is exercised at once.

87

Table 6.1: Compatibility test OS details

Microsoft Windows 98, 20(

Owner: Mr. Jasdeep Sin
Configuration: Intel P4 processor, 512MB RAM

Server:

Microsoft windows |

Owner: Mr.Manmeet Singh Mon
Configuration: Intel core i5 processor, 4 GB RAM

Server:

Ubuntu

Owner: Ms. Amandeep Ka
Configuration: Intel P4 processor, 512MB RAM

Server:

Apple Mac OS>

Owner: Ms. Sheetal Ka
Configuration: Intel Core Duo processor, 1GB RAM

Server :

Table 6.2: Compatibility test for OS

Test Test Method Expected Result Actual Result Remarks
Subj ect
Microsoft | Deployment o | Suitable deploymen System deployed ar | More than
Windows | e system, appropriate output on | Passed black box expected result.
98, 2000 _ , ,
black box black box testing, averagetesting with above Test successful.
testing performance average performance
Microsoft | Deployment o | Suitabledeployment System deployed ar | Test cast
Vista the system, appropriate output on Passed black box successful
black box black box testing, Best | testing with best
testing performance performance
Ubuntu Deployment o | Suitable deploymen System deployed ar | Test successf
6.04 the system, appropriate output on Passed black box

88

black box
testing

black box testing, abo\

average performance

testing with bes
performance

Apple
Mac OS X

Deployment o

the system,
black box

testing

Suitable deploymen
appropriate output on
black box testing, above

average performance

System deployed wit
minor tweaks that
hindered performance
Passed black box
testing with average
performance.

The code wa
reconsidered and
rectified.
Performance
increased in™@
iteration.

89

Chapter Seven

M aintenance

90

With project management points of view it may beked among medium-high when
we consider the whole system to be develop. Thgegrglanning, research and
corresponding analysis part went efficiently. Thesigning of the system was middle-

of-the-road that eventually lead to interruptionmplementation part.

The stoppage in designing phase has leaded thensyestbind the functionalities and
thus reducing the scope. As the developer was sbiorttime the extraordinary

functionalities to be incorporated in the systenmestemmed.

The only thing that could have been done improvesulds definitely be the time
management. Also there has not been any similaersyisas been previously developed
in the similar domain, therefore the developer megliwidespread research in similar
domain of smart mail presentation developments. Ru¢he lack of experience in
completing a project of such a scale alone, mogt®time set in the Gantt chart is pure
assumptions, which soon very much affects theafetste project progress.

As the number of computer-based systems, grievariéds of computer software began
to expand. In the house of developed projects mediitones of thousand software
program statements. Software products purchased thhe outside added hundreds and
thousands of new statements. A dark cloud appearedhe horizon. All of these
programs, all of these source statements had twibyected when false were detected,
modified as user requirements changed, or adaptedvw hardware that was purchased.
These activities were collectively called softwaraintenance.

The Maintenance phase focuses on change that isiatexl with error correction,
adaptations required as the software environmemtives, and changes due to
enhancements brought by changing user requiremé&mist types of changes are
encountered during maintenance phase.

1. Correction
2. Adaptation

91

3. Enhancement

4. Prevention

1. Correction:

Even with the best quality assurance activitiedightly that the user will uncover
defects in the software. Corrective maintenanceg@bs the software to correct defects.

Maintenance is a set of Software Engineering amw/ithat occur after software has
been delivered to the user and put into operataftware Configuration Management
is a set of tracking and control activities thatjdne when a software project begins and
terminates only when the software is taken out hed operation. We may define
maintenance by describing four activities thatwandertaken after a program is released
for use.

1. Corrective maintenance

2. Adaptive Maintenance
3. Perfective Maintenance or Enhancement

4. Preventive Maintenance or Re-engineering.
2. Adaptation

Over time, the original environment (E > G, CPUggiing system, business rules,
external product characteristics) for which thetwafe was developed is likely to
change. Adaptive maintenance results in modificatib the software to accommodate
change to its external environment.

3. Enhancement

As software is used, the user will recognize adddl functions that will provide
benefit. Perceptive maintenance extends the sadtwayond the original functional
requirements.

4. Prevention

92

Computer Software deteriorates due to change, aswhuse of this, preventive
maintenance, often called Software Engineering, modt be conducted to enable the
software to serve the needs of its end users daneg, preventive maintenance makes
changes to computer diagrams so that they can lve easily corrected, adapted, and
enhanced. Software configuration Management (SGMVan umbrella activity that is
applied throughput the software process. SCM de#/iare developed to Identify
Change .Control change. Ensure that change is h@iogerly implemented .Report
change to others that may have an interest.

93

APPENDIX A

94

Screen Shot

Client Login

User Name

Password

Please enter server IP

OK

Cancel

Please enter server port

OK

| Cancel |

95

Server side

i

Input

L] Please enter listening port
3000] |

0K Cancel

[Client Sereen i i L i SRR P i SR SRR S Bl

[ciem screen ¢ P i i

v Comouis v Loiel DK (BT ¥ Keniala . v COiElava COmDIEiE v ~ T | [Semrm

) Ty oY | S Al T

Cracannityg cubn eger ey Forimen Rt ey et swein

FarminuaLs Amperen

LIYAM

96

