
1 | P a g e

REVERSE ENGINEERING: JAVA CODE TO UML DIAGRAM SHOWING

DEPENDENCIES

Enrol. No. - 101258

Name of Student - ANKIT RAJPUT

Name of supervisor(s) - MR. RAVINDARA BHATT

 JAN 2014 – MAY 2014

 Submitted in partial fulfilment of the Degree of

 Bachelor of Technology

 in

 Computer Science Engineering

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING & INFORMATION

TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT

2 | P a g e

STUDENT DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge

and belief, it contains no material previously published or written by another person nor

material which has been accepted for the award of any other degree or diploma of the

university or other institutes of higher learning, except where due acknowledgement has been

made in the text.

Place: Signature:

Date: Name:

Enrollment No.:

3 | P a g e

CERTIFICATE

This is to certify that the project entitled “Reverse Engineering : Java code to uml diagram

showing dependencies ” done by Ankit Rajput (101258) is an authentic work carried out

by him at JUIT, during his 8th semester period from Jan’15 2014 to May’9 2014, under my

guidance. This project is submitted in partial fulfilment for the award of the degree of

Bachelor of Technology (Computer Science & Engineering) from Jaypee University of

Information Technology, Solan. The matter embodied in this project has not been submitted

earlier for award of any degree or diploma to the best of my knowledge and belief.

Signature of the Supervisor:

Name of the Supervisor : Mr. Ravindara Bhatt

Place: Jaypee University of Information Technology

 Solan, Himachal Pradesh

Date:

4 | P a g e

ACKNOWLEDGEMENT

This is a great opportunity to acknowledge and to thank all those persons without whom this

project would have been impossible. I would like to add a few heartfelt words for the people

who were a part of this project in numerous ways. I was extremely grateful to Mr. Ravindara

Bhatt, for his indefatigable guidance, valuable suggestion, moral support, constant

encouragement and contribution of time for the successful completion of project work. I am

very thankful to him, for providing all the facilities needed during the project development.

I would also like to extend my sincere thanks to all the staff members of the JUIT for

providing us with different facilities such as computer support and library infrastructure

support etc. required for the project work during our stay at the institute.

Signature of Student Signature of Supervisor

Name: Ankit Rajput Name: Ravindara Bhatt

Date : Date:

5 | P a g e

ABSTRACT:

Software Engineering research and industry recognize the need for practical tools to support

reverse engineering activities. Most of the well-known CASE-tools nowadays support

reverse engineering in some way or other. Reverse engineering is first step towards software

Architecture recovery. The most commonly used standard today is Unified Modeling

Language to depict the architecture and design of an application. An UML class diagram

describes the architecture of object oriented programs. Class diagram captures the essence of

its design. Most of the existing systems do not have reliable software architecture and some

legacy systems are designed without software architecture design phase. By using reverse

engineering tools we can generate class diagram as part of software architecture recovery.

This tool assess capabilities of software reverse engineering tools to generate class diagram

from java source code.

6 | P a g e

LIST OF FIGURES :

Figure 1: Rational Rose UML Class Diagram ...15

Figure 2: jGRASP CSD Diagram ..15

Figure 3: jGRASP UML Class Diagram ...16

Figure 4: NetBeans UML Class Diagram ..17

Figure 5: Eclipse UML Class Diagram ... 18

Figure 6: Project Framework .. 19

Figure 7: Class Diagram .. 22

Figure 8: MainFrame.java Method List. ..23

Figure 9: FileHandler.java Method List. ..24

Figure 10: DatabaseMethods.java Method List. ..24

Figure 11: GenerateDiagrams.java Method List. ...25

Figure 12: Constants.java Constants List ..25

Figure 13: Database Design ...26

Figure 14: UML Generator ..27

Figure 15: UML File Selector. ...28

Figure 16: Method Level Dependency Generator. ..29

7 | P a g e

TABLE OF CONTENTS :

Chapter 1: Introduction ...9

Chapter 2: Review of the Literature ...11

2.1 Reverse Engineering ..11

2.1.1 Related Areas and Sub-Topics in Reverse Engineering.....................................12

2.1.2 Reverse Engineering Defined..12

2.1.3 History of Reverse Engineering ..12

2.1.4 Problems with Reverse Engineering ...13

2.1. 5 Importance of Reverse Engineering ...13

2.1.6 Practicality of Reverse Engineering ..13

2.2 Reverse Engineering Tools ...14

2.2.1 Rational Rose ...14

2.2.2 jGRASP ...15

2.2.3 NetBeans ..17

2.2.4 Eclipse ..17

Chapter 3: Methodology ...18

3.1 Method Level Dependency Framework ...18

3.2 Reverse Engineering Framework. ..19

3.2.1 Development Software ..21

3.2.2 Framework Development. ...22

3.2.2.1 Framework Design ...23

3.2.2.1.1 MainFrame.java ...24

3.2.2.1.2 FileHandlerjava ..25

3.2.2.1.3 DatabaseMethodsjava ..26

3.2.2.1.4 GenerateDiagrams ..26

3.2.2.1.5 Constantsjava ...27

3.2.2.2 Database Design ..27

3.2.3 Framework Functionality ...28

3.3 Framework Output. ...28

Chapter 4: Results ..30

Chapter 5: Conclusion ..31

5.1 Analysis ..31

8 | P a g e

5.2 Future Work ..32

References ..33

Appendix A: Source Code: Constants.java ..34

Appendix B: Source Code: DatabaseMethods.java ..35

Appendix C: Source Code: FileHandler.java ...41

Appendix D: Source Code: GenerateDiagrams.java ..58

Appendix E: Source Code: MainFrame.java ...67

9 | P a g e

CHAPTER 1: INTRODUCTION

PROBLEM STATEMENT

In the world of computing applications, approximately 30-35% of the overall total lifecycle

costs are devoted to helping the programmer understand the functionality of

existing code. This is a necessary task, in order to correctly make required changes in

response to new requirements, to resolve errors, or perform other changes [Tomic94].

A thorough understanding of the logic, design, and structure of existing code will help

developers, management, and analysts more accurately estimate the maintenance and

enhancement costs, analyze code complexity, undertake thorough testing, and estimate

software reliability more effectively and efficiently. However, with the "time is

money" mentality that dominates in most workplaces, a professional is rarely given a

sufficient amount of time to thoroughly and comprehensively complete a task in a

manner that does not introduce additional problems in the software.

Reverse engineering, analyses system's code, documentation and behaviour to

create system abstractions and design information . Reverse Engineering is ,

essentially, the practice of examining existing systems, at any stage, to identify

elements and dependencies. This information is then used to gain more knowledge

about the design, the structure, system code, and functionality.

There are many existing tools, such as Rational Rose®, jGRASP®, NetBeans®, and

Eclipse® , that provide a degree of reverse engineering. Several tools and frameworks take

Java code as input and generate the Unified Modeling Language (UML) class diagrams.

These diagrams are helpful to the users by illustrating object dependencies; however, they

tend to be high level and leave much to be desired about "lower level" (i.e., code level)

application specifics. While object dependencies are indicated through UML associations,

multiplicity, direction, and other real-world objects can be complex. General dependencies at

this architectural level (class diagrams with dependencies) are helpful, but such renderings

leave the professional in dire need of much more detailed analysis of object dependencies

extending down to method-level dependencies, which is where actual code maintenance will

occur.

10 | P a g e

PROJECT GOAL / MOTIVATION:

As a developer, it would be more beneficial to have a framework that drills down a

level further than providing high-level class dependencies. A comprehensive reverse

engineering framework that, when given an unknown Java program, will analyze the

existing structural characteristics and generate detailed low-level dependencies and

relationships among code segments would be helpful in a workplace environment.

The framework would, by class, show all methods declared in the class and what methods

they invoke. It would also, by each method, show the class and methods it is

referenced by. Equivalently, "who" invokes the services of this class and what

services of other classes does "this" class invoke would be shown.

While this is clearly an arduous undertaking, a framework that provides this level of

analysis up front to a software professional before starting a software maintenance

task has multiple benefits. It should assist the user in both understanding of the design

and complexity of an existing application as well as assuring the user a more reliable

maintenance undertaking.

To set the stage for this undertaking, this documentation first presents a number of popular

development frameworks containing reverse engineering tools, such as Rational

Rose®, jGRASP®, NetBeans®, Eclipse® and others, in order to comprehensively

identify both their strengths and shortcomings. The thesis will then present the details

of the new framework that provides detailed method dependencies and associations.

ORGANIZATION OF THE REPORT :

It has been organized in the following manner : The present chapter gives an introduction and

explains about the statement of the problem . Chapter 2 gives an overview of the literature

survey. Chapter 3 gives the details of the implementation of the tool. Chapter 4 explains the

results of the project . Appendix includes the project code and references.

11 | P a g e

CHAPTER 2: REVIEW OF THE LITERATURE

2.1 Reverse Engineering

2.1.1 Related Areas and Sub-Topics in Reverse Engineering

Reverse engineering is a broad subject area, which includes a variety of sub-topics and

components. Many terms are used when discussing reverse engineering.

• Forward Engineering - the process of starting at the gathering of requirements and then

following through to design and finally to the implementation of the application.

• Design Recovery - gathering additional information, like domain knowledge, outside

information, and deductive information for inclusion with other observations, to assist the

professional in better understanding of the system being studied.

• Restructuring - the movement from one form to another form at the same level of

abstraction without changing the system's output. Essentially, it is changing code to put it in a

more structured format.

• Reengineering - the investigation and modification of a system to rebuild it in a new form.

It is usually accomplished by reverse engineering a systemand then forward engineering the

system.

• Software Maintenance - includes changing source code to correct errors, improve

performance, fix problems, etc.

2.1.2 Reverse Engineering Defined

With society'S dependence on the Internet, many businesses need to modify their

current applications, to make them web-based and move towards an electronic way of

doing business. This trend has created more of an interest in code maintenance and

12 | P a g e

evolution than in the past .Thus, there is now a need for experts in older

systems, as software maintenance and evolution is becoming more necessary.

Roughly, one third of total life-cycle costs are used for the programmer to understand

the functionality of the existing code .Even though it is a timely and costly process,

understanding the code is critical and significant, in order for a programmer to correctly make

the desired changes.

Software maintenance and evolution continue to become more important as time marches on.

Reverse engineering is the act of recognizing systems elements, along with their

corresponding dependencies, to generate a variety of application abstractions and design data

from these system elements .To successfully do this with software, the application's code,

documentation, and behavior must be studied to identify the system abstractions and various

design patterns, as well as to fully understand the functionality of the system.

Software reverse engineering may be viewed as a "solution looking for a problem."

. Many programmers attempt to understand "how the code gets where it's going" and "why

the code is doing something" in their everyday tasks. While there are many different

approaches and techniques to reverse engineer software, their common goal is to gather as

much information as possible from the current system, to assist in the maintenance task(s) at

hand. This information is critical to support current maintenance and/or future development,

as well as providing data to projectmanagement for planning the use of software engineering

resources.

13 | P a g e

2.1.3 History of Reverse Engineering

The need for reengineering legacy systems was apparent by the early 1990s.

However, with the recent pressure for businesses to go electronic, by way of the

Internet, to and convert many existing systems to web-based applications, this need

has intensified. There is now a demand for various methods, tools, and infrastructures

to assist in transforming existing applications rather quickly and relatively inexpensively

.Over the past decade, researchers have made tremendous advances in this area.

The 1980s were focused on various program comprehension theories, along with

identifying the concept of reverse engineering with the evolution of software. It was

noted that a majority of the software evolution process is used up by program

comprehension. The topic continued to be researched throughout the 1990s. It was

during this time that various infrastructures and tools were developed to assist with the

main parts of reverse engineering a system .As long as an application is used, it will

continuously change. As it changes, it will become more and more complex.

2.1.4 Problems with Reverse Engineering

Software reverse engineering is difficult for many reasons. One reason is there might

not be any documentation in the code to be modified. In some instances, the code may

be complex, making the original author's purpose difficult for the new engineer to

understand. Another issue occurs when the original code does not provide the correct

solution for the problem. The code may have also been altered from additional

problems found, creating a very cluttered and disorganized environment with which to

work. The programming language may have been updated, causing new problems in

the code. The software could have come from a different environment or the hardware

platform may have been modified. These are just a few of the problems software

engineers may face while trying to maintain code .If software engineers do

not fully understand the code they are modifying, this can create future problems.

2.1.5 Importance of Reverse Engineering

Approximately $30 billion is spent a year on software maintenance, including legacy

systems .An important and poor trait of legacy systems is many times business rules are

intertwined within the application logic. As software lives, it is updated due to enhancements

in the functionality, correction of errors, or improvements in quality. However, as software

changes, the documentation is not always updated, as well. Therefore, the code becomes the

14 | P a g e

only dependable source of information when trying to understand the application's

functionality. Previous design, if available, does not always map to the current

implementation. Yet, effective maintenance requires a reasonably thorough understanding of

the code and its intended functionality. This has led to the need for reverse engineering or

some mechanism to recapture some of the original design intentions. By reverse

engineering an application's code a user can then recognize the artifacts , detect various

relationships, and produce abstractions that can be used to re-document and depict the initial

design.

2.1.6 Practicality of Reverse Engineering

When maintaining old code, the organization will eventually need to decide if it is

most cost effective to keep maintaining the existing code or if the organization should

reengineer the system. There are many factors used when determining if system

reengineering is appropriate. A system should be reengineered if there are regular

failures, code that is out of date (about seven-to-ten years old), using application logic

or structure that is excessively complicated, or code written for hardware that is

obsolete. Other factors to consider for reengineering are when there is code

with exceedingly large modules, unnecessary resource usage, aspects in the code that

are hard-coded, difficulty in keeping resources to maintain the code, documentation

that is lacking and leaves much to be desired, or unfinished design specifications. By

reengineering a system, the maintainability will be improved, migration to a new

environment is easier, the system tends to be more reliable, and the code is more prepared for

functional enhancements.

Another reason to want to have a thorough understanding of code is the size of many

applications. As they increase in size and become more complex, it becomes more

important to understand their structure and behavior. Reverse engineering the code

will help bring that knowledge to the user. Often, there is little information or

15 | P a g e

rationale documented behind the implementation decisions. Reverse engineering is,

therefore, sometimes vital to understand the reason and logic behind existing code.

2.2 Reverse Engineering Tools

Most reverse engineering tools available, including Rational Rose®, NetBeans®, and

Eclipse®, will generate a UML class diagram from Java source code. jGRASP® goes

somewhat deeper by generating the class diagram, a Control Structure Diagram (CSD)

which is an algorithmic level diagram, and a Viewer which will display dynamic

visualizations of objects and primitives. Eclipse® provides for some additional reverse

engineering functionality within the environment itself.

The tools mentioned are the more popular reverse engineering tools in common use.

However, there are many others tools, including the Sun Java Studio Enterprise 7® or

JBuilder®, to name a few, that will perform various software reverse engineering

functions, as well. These tools will execute a variety of tasks, in addition to some of

the same operations as the other tools. However, all the tools excel in different ways

and possess different levels of capabilities, some are just more widely used then

others.

2.2.1 Rational Rose

Rational Rose® is a modeling tool, released by the Rational Software Corporation

(recently purchased by IBM), that supports, among a host of additional features, the

UML graphical notation. Rational Rose® will automatically generate a UML class diagram

from objectoriented source code, such as Java and C++. This is a good tool for round trip

engineering, as it will allow you to create UML class diagrams from existing code,

modify them, and update the source code immediately inside the application.

However, there is still a good deal of human interaction required during this process.

16 | P a g e

Figure 1: Rational Rose UML Class Diagram(Source: Internet)

2.2.2 jGRASP

jGRASP® is developed from pcGRASP. jGRASP® is one of the most recent

applications from the GRASP (Graphical Representations of Algorithms, Structures,

and Processes) .The application jGRASP® is a "lightweight integrated development

environment, created specifically to provide visualizations for improving the

comprehensibility of software.

17 | P a g e

Figure 2: jGrasp CSD Diagram(Source: Internet)

jGRASP® is written in Java and supports the Java programming language, as well as C,

C++, and Ada. jGRASP's current functionality includes the automatic generation of CSDs,

UML class diagrams, and Viewers. jGRASP® alsocontains an Object Workbench and

Debugger, which help a programmer to generateand debug source code.

The CSD is an "algorithmic level diagram generated for Ada, C, C++, and VHDL"

. This diagram assists the user in understanding the source code more thoroughly and in an

easier manner. It will do this by representing control constructs, control paths, and the general

structure of each program segment. This diagram is illustrated in the margins and

indentations of the source code. This diagram is often used in the place of flow charts and

other graphical diagrams. The main purpose of the CSD diagram is to "create an intuitive and

compact graphical notation that is easy to use" .

jGRASP® will also generate the UML class diagram, for the Java source code from the Java

class files and .jar files of a project. The diagram will illustrate the dependencies among

various classes by standard UML dependency arrows. If the user selects a class, its members

are displayed. If the user selects an arrow, the dependencies between the two classes are

illustrated.

jGRASP® will also generate Viewers for Java source code.The Viewers, "for objects and

primitives provide dynamic visualizations as the user steps through a program in debug mode

or invokes a method for an object on the workbench" .Presentation views are presented for

instances of classes that symbolize data structures, such as a link list, binary trees, and array

wrappers. When the user opens a viewer, a structure identifier recognizes the data structure

during the debugging process and displays the correct presentation view of the object for the

18 | P a g e

user.

Figure 3: jGrasp UML Diagram(Source: Internet)

2.2.3 NetBeans

The NetBeans® Integrated Development Environment (IDE) is an open source

application for the development and maintenance of Java application code

NetBeans® will create an UML class diagram from object-oriented source code,

such as Java and c++ .This tool will allow a software engineer to create UML class diagrams

from existing code. The class diagram will allow the user to see potential object

dependencies, thus, helping the user understand the code. However, high level, graphical

object dependencies only provide limited insight to the developer. More information is vital

to foster a firm grasp of what exactly is going on throughout the application logic.

19 | P a g e

Figure 4 : NetBeans UML Diagrams (Source: Internet)

2.2.4 Eclipse

Eclipse®, another product of IBM, is an open source tool that provides an advanced

development environment for various applications .Eclipse® will allow a

software engineer various reverse engineering techniques while in the Eclipse®

workspace. The Smart Development Environment (SDE) p1ugin for Eclipse®

provides reverse engineering of Java code into UML class diagrams and output in a

PDF or HTML format, entirely within the Eclipse® environment.In addition to these

facilities,Eclipse® also provides for various functiona1ities within the workspace to assist in

understanding program code. The Eclipse® Java IDE may assist the user by providing search

capabilities for finding referenced code declarations and usages. It provides various tools for

20 | P a g e

this purpose, including Open Declaration, References, Declarations, etc. The Open

Declaration operation will open a class to the selected method. The References tool will show

all the references in the project for that’s pecific method. The Declarations utility will show

the class in which that denoted method is declared. These features may be very helpful, but it

is necessary for the user to be within the project; that is, looking at the source code. There is

not a way to find method dependencies up front or without being "inside" the program code.

Figure 5 : Eclipse UML Diagram(Source: Internet)

21 | P a g e

CHAPTER 3 : METHODOLOGY

PROPOSED WORK : As a developer, it would be more beneficial to have a framework

that drills down a Level further than providing high-level class dependencies. A

comprehensive reverseengineering framework that, when given an unknown Java program,

will analyze the existing structural characteristics and generate detailed low-level

dependencies and relationships among code segments would be helpful in a workplace

environment. The framework would, by class, show all methods declared in the class and

what methods they invoke. It would also, by each method, show the class and methods it is

referenced by. Equivalently, "who" invokes the services of this class and what services of

other classes does "this" class invoke would be shown

3.1 Method Level Dependency Framework

This project include examining various reverse engineering tools, such as those found in

Rational Rose®, Eclipse®, NetBeans®, and jGRASP®, followed by comparing and

analyzing the their outputs and methodologies. Once these tools were evaluated, a new

framework was developed that, when used in combination with an existing tool, will generate

the UML class diagram, which is more beneficial during reverse engineering due to its focus

on method level detaiL This new reverse engineering framework included accepting Java

programs as input and determining the structural characteristics of the program. It provides

for both a forward and reverse analyses of method level dependencies. The framework

22 | P a g e

provides two output diagrams: a complete listing by method of all classes and methods that

reference the method in question, as well as an additional listing of all references made by

each method in each class. While this is viewed by many as an arduous undertaking, the

availability of such a framework, when used along with existing reverse engineering

tools, should be helpful to the software maintenance worker.

 Figure 6 : UML Generator Methodology

3.2 Reverse Engineering Framework

3.2.1 Development Software

Rational Rose®, jGRASP®, NetBeans®, and Eclipse® were used to generate the

various models to support reverse engineering methodologies. The method level

dependency framework was developed in Java 5.0 using the Eclipse® IDE. A

MySQL® database was used for storage and retrieval of various information artifacts

as needed. A machine containing the Java Run-Time Environment (JRE) was utilized

to run the application. This is a stand alone application and runs locally on a machine.

23 | P a g e

TOOLS ANS SOFTWARE USED :

 Code to be developed in JAVA

 Eclipse SDK

 Java Runtime Environment

 Windows XP/7

 Swing toolkit

 Simple Text editor

RET(Reverse Engineering Algorithm) :

Steps to reverse engineering Java program to UML class diagram :

1) Draw each class or interface of the Java program in the UML class diagram with

class/interface names only.

2) Identify & draw generalization (inheritance/extend) relationship between two classes

in the UML class diagram, by looking for the following code pattern in the Java

program:

 class A extends class B { …. }

3) Identify and draw directed association relationship between two classes in theUML

class diagram, by class A { private B b; ….}

 4) Identify and draw usage dependency relationship between two classes in the UML

class diagram, by looking for the following code pattern in the Java program:

 class A { … method(B b) { … }

24 | P a g e

 5) Class declarations were recognized by the keyword "class" and a space.

 6) Class instantiations were distinguished by the keyword "new" followed by a space, a

word (characters a-z, A-Z, 0-9), and then a left parenthesis.

 7) Method declarations were identified by a word.

 8) The method calls were discovered by checking for a word and checking to see if they

have not already been labelled a class instantiation

3.2.2 Framework Development

3.2.2.1 Framework Design

The project component was developed using the Java programming language and was

organized in a modular format. It consisted of fiveclasses: MainFrame.java, FileHandler.java,

DatabaseMethods.java, GenerateDiagrams.java, and Constants.java. Each class, composed of

various methods, was designed to handle a different part of the application functionality.

From here, the various class dependencies can be seen, along with the global variables

and methods found in each class.

Figure 7 : Example of class Diagram

25 | P a g e

3.2.2.1.1 MainFrame.java

MainFrame.java was designed to generate and handle the Graphical User Interface

that runs as a stand alone application for this framework. The GUI was developed

using the Swing toolkit in Java, which is part of the Java Foundation Classes. This

toolkit allowed for easy use of standard components, such as textboxes, panels,

buttons, frames, etc. This class contained the main method. It built the GUI and

controlled any action taken within the GUI by calling the corresponding methods to

accomplish that task. The methods found in Mainframe.java are listed in Figure .

Figure 8 : MainFrame.java Method List

3.2.2.1.2 FileHandler.java

FileHandler.java managed and evaluated the data coming in through the input files.

This class contained methods that read in the Java source code and, considering the

order, examined it for the structural characteristics that would indicate a class or a

method. First the entire input was read and any leading or trailing spaces and line

feeds were removed, storing the input as a StringBuffer. Next, the input StringBuffer

was parsed by open brackets, close brackets, or semi-colons, until the entire file was

read. Each substring was evaluated to determine if it contained a class declaration, an

object instantiation, a method declaration, or a method call. This was accomplished in

Java through the use of regular expressions, also known as patterns. Regular

Expressions were created to recognize the class declarations, method declarations, all

class instantiations, and any method calls in each given file.

26 | P a g e

• Class declarations were recognized by the keyword "class" and a space.

• Class instantiations were distinguished by the keyword "new" followed by a

space, a word (characters a-z, A-Z, 0-9), and then a left parenthesis. The

referenced name and the class name are both stored in a hash map for matching

later.

• Method declarations were identified by a word (characters a-z, A-Z, 0-9)

followed by a space, a word (characters a-z, A-Z, 0-9), and ending with a left

parenthesis.

• The method calls were discovered by checking for a word (characters a-z, A-Z,

0-9) followed by a left parenthesis and checking to see if they have not already

been labeled a class instantiation.

If part of the string matched a pattern, it was then checked for reserve words and

parsed out by the characters, to get the actual class or method name. If a method

call was found, it was stored in the database. The methods created to manipulate

the input files are listed in Figure .

Figure 9 : FileHandler.java Method List

3.2.2.1.3 DatabaseMethods.java

DatabaseMethods.java manipulated the database. This class made the connection to

the MySQL® database. It was also responsible for any calls to update or query the

database throughout the framework. As method calls were identified by the

FileHandler class, they were saved to the database. As the user selected to generate

diagrams from the Mainframe class, this information was retrieved from the database.

Figure 11 contains all the methods found in DatabaseMethods.java

27 | P a g e

Figure 10 : DatabaseMethods.java Method List

3.2.2.1.4 GenerateDiagrams.java

GenerateDiagrams.java was used to generate the output diagrams. The user has the

ability to generate two different diagrams

The methods located in GenerateDiagrams.java are listed in Figure

Figure 11 : GenerateDiagrams.java Method list

3.2.2.1.5 Constants.java

Constants.java defined all constants used throughout the framework. The UML Generator

used constants to define the various patterns it was searching for, in each class and image

locations. The constants used in the framework are provided in Figure

28 | P a g e

Figure 12 : Constants.java Constants list

3.2.2.2 Database Design

The MySQL® database created to store the infonnation was named "thesis." The

thesis database only contained one table, "code." This table consisted of four

columns, CurrentClass, CurrentMethod, CalledClass, and CalledMethod. While

scanning the input file, as a method call was found in a class, the current class, current

method, called class, and called method were stored in the code table. This table was

queried, in order to generate the diagrams. The database diagram is found in Figure.

Figure 13 : Database Diagram

29 | P a g e

3.2.3 Framework Functionality

The reverse engineering framework was relatively simple to operate and assumed the

input java files would compile together. The user began by starting the application.

They were given a graphical user interface that would allow them to manipulate the

framework. This GUI is shown in Figure .

Figure 14: Framework Diagram

The user selected one file at a time to examine, by selecting the "Open File to Read"

button and choosing the file. A file selector would appear and the user had to browse

to find the desired file, as shown in Figure .

30 | P a g e

Figure 14: Framework file open diagram

The file was uploaded and scanned for the various structural characteristics, indicating

a class declaration, method declaration, class instantiation, or a method call. As a

method call was found, the current class, current method, the class in which the called

method was contained, and the called method name were all saved to the database.

This was repeated for each file the user wished to read. The user was able to view a

list of all files read, thus far, in the file list in the GUI. In order to quit the application,

the user can select File on the menu bar and the Quit option. The Help option on the

menu bar would be used to provide the user with help information. The Method Level

interface can be seen in Figure

The information can be cleared from the database by selecting the "Reset Application"

button, in order to start clean again.

31 | P a g e

3.3 Framework Output

There are diagrams that were generated by the UML Generator. These diagrams included a

diagram by class showing the class and method calls from it, illustrated in Figure .

Figure 15: Framework output

The diagram (Figure) shows a representation of all classes, the methods that are in them, and

what methods they depend on. From this diagram, the user was able to see by class what

other classes and methods a change would potentially affect.

Figure 16: Framework showing methods and classes

32 | P a g e

.Upon completion of this new reverse engineering scheme, both method level diagrams were

compared with the existing diagrams generated by the other commonly-used approaches.

This was accomplished by analyzing the results for each diagram. By examining output from

the existing methods, along with output provided by this new reverse engineering framework,

it was apparent that the new framework provided a greater level of detail. The provision of

method level dependencies in combination with the output of existing tools should provide a

more practical tool for software maintenance.

33 | P a g e

CHAPTER 4 : RESULTS

The test cases for the new reverse engineering framework provided for the display of method

level Dependencies , in addition to the diagrams of existing tools. The UML Generator was

designed to read in Java source code input files as a source for the generation of the desired

detailed diagrams. The test bed for this thesis contained many different test cases obtained

from various sources. Each test case was made up of multiple class files, all varying in

different characteristics, such as size and functionality. All test files contained, at the

minimum, the essential information to retrieve the desired results, such as method calls and

the respective method signatures. The important factor for this thesis was to present the

method dependencies; thus, the test files focused on method calls. In order to test the new

methodology, each test case was compiled and loaded into the reengineering framework. This

generated the diagrams to display the lower level dependencies in the questionable

application. The new dependency approach is beneficial when used in conjunction with

existing software that shows high level dependencies. Many test cases were run and the

results attest to this finding. One example of the test case is as shown below which takes

input of several classes and present a class diagram showing dependencies.

34 | P a g e

CHAPTER 5 : OBSERVATIONS AND CONCLUSION

Results clearly indicate the comprehensive nature of the framework that includes, not only

useful UML class diagrams, but the essential addition of method level dependencies.

By viewing these results it is clear the new framework, consisting of detailed method

level dependencies in conjunction with higher level class diagrams, is a useful

methodology for undertaking real world software maintenance. As each test case was

evaluated, the framework was found to reliably produce lower level dependencies

among complex Java methods. Diagrams produced within the framework provide a

quick visual artifact of method level detail within specific applications. The reliability

of maintenance activities should be much improved by the use of this framework in

the workplace.

Each of the test cases demonstrated the use of the new framework that provides the

software practitioner with a view of the source code characterized by a lower level of

granularity. By examining the results for each scenario, the developer may readily

observe the results of using this new framework. The results demonstrate how the

UML class diagram provided for high level, architectural information of the

application. However, this information alone leaves much to be desired regarding

application specific logic and detail, which is where most code changes (and errors)

occur. Both of the method level dependency diagrams assist the developer with a

more detailed view of dependencies in code. In particular, the Diagram By Class

facility indicates all methods each of the instance methods call, thus providing a map

to other services provided by other methods in other classes. To complement the

Diagram By Class facility, the Diagram By Method presented for each method in a

class those methods in other classes that have dependencies upon the particular

method. In summary, UML class diagrams, supplemented with diagrams by class and

by method, provide a comprehensive framework to assist the software maintenance

practitioner.

The reverse engineering framework has the potential to expedite many of the activities of

those engaged in software development. This new method dependency approach provides a

very practical, lower level of granularity that should be useful to professionals in the

35 | P a g e

workplace. By coupling this new approach with existing software that generates UML

diagrams with their higher level architectural descriptions of collaborating classes, the

practitioner now posses a comprehensive methodology that addresses both the architectural

class dependencies and other class relationships, along with a more detailed analysis of

application design and code central to modem day development and maintenance needs.

Method level detail provides a higher degree of assurance in reconciling a myriad of

maintenance duties in the workplace. While UML class diagrams are very helpful in

displaying class relationships, the additional detailed information provided by this

method level generator completes a comprehensive strategy, which should provide for

significantly improved software maintenance efforts.

5.2 Future Work

There are several opportunities for future work, which may extend the utility of this

framework and provide additional workplace value to software engineering

practitioners.

The UML Generator was developed using Java. This framework recognized various ways to

declare new classes, new methods, and method calls throughout various files loaded into the

system. However, the Java programming language is quite complex, therefore, some potential

enhancements exist.

The framework could be modified to be more robust and handle the entire range of

Java syntax, such as recognizing every way an object can be instantiated. Some

known issues, not yet accounted for in the UML Generator, include the capability to

recognize creating an object and instantiating it separately and to recognize multiple

functions within a line, such as declaring an object within a method call.

Similarly, the framework is not set up to account for implementing interfaces in Java.

This is because a class can implement multiple interfaces. With the current design of

the generator, when the application encounters a method call, it will not know for

certain if the method is found in the current file or in one of the interfaces.

The new approach could also be improved by integrating this generator in with the

existing technology for developing a class diagrams, such as Rational Rose®,

Eclipse®, or jGRASP®. This could be accomplished various ways, such as, when the

user views the class diagram, a provision could be made to click on a class to view the

method dependencies.

36 | P a g e

REFERENCES:

Ali, Muhammad Raza, "Why Teach Reverse Engineering," ACM SIGSOFT Software

Engineering Notes, Volume 30, Issue 4; pp. 1-4, July 200S.

Buss, Erich and John Henshaw, "A Software Reverse Engineering Experience,"

Proceedings of the 1991 conference of the Centre for Advanced Studies on

Collaborative Research CASCON '91, pp. SS-72, October 1991.

Chen, Zhixiong and Delia Mars, "Experiences with Eclipse IDE in Programming,"

Consortium for Computing Sciences in Colleges, pp. 104-112, 200S.

Demeyer, Serge, Stephane Ducasse, and Oscar Nierstrasz, "Finding Refactorings via

Change Metrics," ACM SIGPLAN Notices, Proceedings of the 1Sth ACM

SIGPLAN conference on Object-Oriented Programming, Systems, Languages,

and Applications OOPSLA '00, Volume 3S, Issue 10, pp. 166-177, October

2000.

Muller, Hausi, "Reverse Engineering Strategies for Software Migration."

Proceedings of the 19th international conference on Software Engineering

ICSE '97, pp. 659-660, May 1997.

Newcomb, Philip, "Web-Based Business Process Reengineering," IEEE Software, pp.

116-118, November 1995.

Sneed, Harry, "Planning the Reengineering of Legacy System," IEEE Software, pp.

24-34, January 1995.

Eclipse, "Eclipse - an open development platform," Eclipse, http://www.eclipse.org/,

last accessed 2007.

37 | P a g e

APPENDIX A:

SOURCE CODE : Constants.java

public class Constants

{ public static final String currentClass = "(class) (\ \s) ";

public static final String currentMethod = "(\\w+) (\\[\\])*(\\s) (\\w+) (\\s)*(\\()";

public static final String Objects = "(new) (\ \s) (\ \w+) (\ \s) * (\ \ ()";

public static final String StringObjects = " (String) (\ \s) (\ \w+) (\ \s) * (=)";

public static final String Methods = "(\\.)*(\\w+) (\\s)*(\\()";

public static final String arrow2 = "C:/Documents and

Settings/ankz/workspace/Thesis/images/arrow2.jpg";

public static final String arrow3 = "C:/Documents and

Settings/ankz/workspace/Thesis/images/arrow3.jpg";

public static final String title = "C:/Documents and

Settings/ankz/workspace/Thesis/images/Title.jpg";

public static final String generator = "C:/Documents and

Settings/ankzworkspace/Thesis/images/generator.jpg";

public static final String class Title = "C:/Documents and

Settings/ankz/workspace/Thesis/images/ClassTitle.jpg";

public static final String methodTitle = "C:/Documents and

Settings/ankz/workspace/Thesis/images/MethodTitle.jpg";

38 | P a g e

APPENDIX B

SOURCE CODE : DatabaseMethods.java

import java.sql.*;

import java.util.*;

public class DatabaseMethods

{

public Connection connection = null;

public void getConnection() throws SQLException

{

try

{

// Load the JDBC driver

// MySQL MM JDBC driver

String driverName = "org.gjt.mm.mysql.Driver";

Class.forName(driverName) ;

//Create a connection to the database

String serverName = "localhost";

String mydatabase = "thesis";

String urI = "jdbc:mysql://" + serverName + "/" + mydatabase; // a JDBC urI

String username = "root";

String password = "root";

connection = DriverManager.getConnection(url, username, password) ;

}

catch (ClassNotFoundException e)

{

System.out.println("could not find the database driver") ;

catch (SQLException e)

{

System.out.println("could not connect to the database") ;

39 | P a g e

finally

{

}

public void insertCode(String CurrentClass, String CurrentMethod, String CalledClass,

String CalledMethod) throws SQLException

{

PreparedStatement Stat = null;

try

{

if (connection == null)

{

getConnection();

}

String sSQLString =" INSERT INTO code (CurrentClass, CurrentMethod, CalledClass,

CalledMethod) values(?,?,?,?)";

Stat = connection.prepareStatement(sSQLString);

Stat.setString(l, CurrentClass);

Stat.setString(2, CurrentMethod);

Stat.setString(3, CalledClass);

Stat.setString(4, CalledMethod);

if (Stat.executeUpdate() == 0)

{

System.out.println("did not insert");

}

}

catch (SQLException e)

{

System.out.println("SQL Exception" + e);

}

finally

40 | P a g e

{

Stat.close();

connection.close();

}

}

public void resetApplication() throws SQLException

{

PreparedStatement Stat = null;

try

{

if (connection == null)

{

getConnection();

}

String sSQLString = "delete from code";

Stat = connection.prepareStatement(sSQLString);

if (Stat.executeUpdate() == 0)

{

System.out.println("did not clear out the

database") ;

}

}

catch (SQLException e)

{

System.out.println("SQL Exception: " + e);

}

finally

{

Stat.close();

41 | P a g e

connection.close();

}

}

public HashMap getDiagramlnfoByClass() throws SQLException

{

PreparedStatement Stat = null;

ResultSet ResultSet = null;

HashMap Results = new HashMap();

try

{

if (connection == null)

{

getConnection();

}

String sSQLString = "SELECT distinct * FROM code order by CurrentClass,

CurrentMethod;";

Stat = connection.prepareStatement(sSQLString);

ResultSet = Stat.executeQuery();

int counter = 1;

while (ResultSet.next())

{

Results.put("CurrentClass" + counter, ResultSet.getString ("CurrentClass ")) ;

Results.put("CurrentMethod" + counter,ResultSet.getString("CurrentMethod")) ;

Results.put("CalledClass" + counter, ResultSet.getString ("CalledClass")) ;

Results.put("CalledMethod" +counter,ResultSet.getString("CalledMethod")) ;

counter++;

}

}

catch (SQLException e)

42 | P a g e

{

System.out.println("SQL Exception" + e);

}

finally

(

Stat.close();

ResultSet.close();

connection.close();

}

return Results;

}

public HashMap getDiagramInfoByMethod() throws SQLException

(

PreparedStatement Stat = null;

ResultSet ResultSet = null;

HashMap Results = new HashMap();

try

{

if (connection == null)

{

getConnection();

}

String sSQLString =

"SELECT distinct * FROM code order by CalledClass, CalledMethod ";

Stat = connection.prepareStatement(sSQLString);

ResultSet = Stat.executeQuery();

int counter = 1;

while (ResultSet.next())

{

43 | P a g e

Results.put("CurrentClass" +

counter,ResultSet.getString("CurrentClass")) ;

Results.put("CurrentMethod" + counter,ResultSet.getString("CurrentMethod"));

Results.put("CalledClass" +counter,ResultSet.getString("CalledClass")) ;

Results.put("CalledMethod" + counter,ResultSet.getString("CalledMethod")) ;

counter++;

}

}

catch (SQLException e)

{

System.out.println("SQL Exception" + e);

}

finally

{

Stat.close();

ResultSet.close();

connection.close();

}

return Results;

}

}

44 | P a g e

APPENDIX C

SOURCE CODE : FileHandler.java

import java.io.*;

import java.sql.*;

import java.util.regex.*;

import java.util.*;

public class FileHandler

{

int bracketCounter = 0;

String CurrentClassName = "";

String CurrentNestedClass = "";

String CurrentMethodName = "";

String ExtendedClass = "";

String NestedExtendedClass ="";

HashMap ObjectList = new HashMap();

HashMap DeclaredMethods = new HashMap();

HashMap CalledMethods = new HashMap();

public void readFile(File file) throws IOException,

SQLException

{

try

{

FilelnputStream fis = new FilelnputStream(file);

BufferedlnputStream bis = new

BufferedlnputStream(fis);

DatalnputStream dis = new DatalnputStream(bis) ;

String sText = "";

StringBuffer sResult = new StringBuffer("");

while ((sText= dis. readLine ()) ! = null)

45 | P a g e

{

sText=sText.replaceAll("A\\s+", "");

sText=sText.replaceAll("\\s+$","");

sText=" " + sText;

sResult. append (sText) ;

}

int index1= 0;

int index2 =0;

int index3 =0;

StringBuffer sTemp = new StringBuffer("");

while (sResult.length() != 0)

{

index 1 = sResult.indexOf("{");

index2 = sResult.indexOf(";");

index3 = sResult.indexOf("}");

if (index3 == 0)

{

sTemp.replace(0, sTemp.length(), sResult.substring(0,index3+1));

if (sResult.length() > 2)

 sResult.replace(0,

 sResult.length(),

 sResult.substring(ind

 ex3+2,

 sResult.length()));

else

sResult.replace(0,sResult.1ength (), "");

}

else if ((index1 < index2) && (index1 != -1))

{

46 | P a g e

sTemp.replace(0, sTemp.length(), sResult.substring(0, indexl+l));

sResult.replace(0, sResult.length(), sResult. substring (index1+2, sResult.length()));

}

else if ((index2 < index3) && (index2 != -1))

{

sTemp.replace (0, sTemp.length(),sResult.substring(0, index2+1));

sResult.replace(0, sResult.length(), sResult.substring(index2+2, sResult.length()));

}

else

{

sTemp.replace(0, sTemp.length(), sResult.substring(O, index3+1));

if (sResult.length() > 2)

sResult.replace(0, sResult.length() , sResult. substring (index3+2, sResult.length()));

else

sResult.replace(0,sResult.length(), " ") ;

evaluateLine(sTemp);

}

//go through the CalledMethods and see if they are

//declared in the Classes read ...

int Dcounter = DeclaredMethods.size()/2;

int Ccounter = CalledMethods.size()/4;

String CalledClass = "";

String CalledMethod = "";

String DeclaredClass = "";

String DeclaredMethod = "";

boolean bFound = false;

for (int i = 1; i<=Ccounter; i++)

{

47 | P a g e

bFound = false;

CalledClass = (String) CalledMethods.get("Class" + i);

CalledMethod = (String) CalledMethods.get("Method" + i);

String CuMethod = (String) CalledMethods.get("CurrentMethod" + i);

for (int j = 1; j<=Dcounter; j++)

DeclaredClass = (String) DeclaredMethods.get("Class" + j);

DeclaredMethod = (String)DeclaredMethods.get("Method" +j) ;

If (CalledClass.equalslgnoreCase(DeclaredClass) & CalledMethod.equalsIgnoreCase(Dec

laredMethod))

{

//save to the database- as in that class

 DatabaseMethods dataMethods = new DatabaseMethods();

if (CalledClass . length () ! = 0 &&

CuMethod.length() !=0 &&

CalledClass.length() !=0 &&

CalledMethod.length() !=0)

dataMethods.insertCode(Called Class.trim(), CuMethod.trim(), CalledClass.trim(),

CalledMethod.trim());

bfound=true;

}

if (bFound)

break;

}

if (!bFound)

{

//save to the database as inherrited

String XClass = (String)

CalledMethods.get("ExtendedClass" + i);

DatabaseMethods dataMethods = new DatabaseMethods();

if (CalledClass . length () ! = 0 && CuMethod. length () !=0 && XClass.length() !=0&&

48 | P a g e

CalledMethod.length() !=0)

dataMethods.insertCode(CalledClas

s.trim(), CuMethod.trim(),

XClass. trim () ,

CalledMethod.trim());

}

}

fis.close () ;

bis.close();

dis.close();

}

catch (IOException e)

{

}

}

public void evaluateLine(StringBuffer sInput) throws

SQLException

{

Pattern pattern = null;

Matcher matcher = null;

Constants myConstants = new Constants();

int inputLength = sInput.length();

for (int i = 0; i<inputLength; i++)

{

if (sInput.charAt(i) == ' { ')

{

bracketCounter++;

if (sInput.charAt(i) == '}')

{

49 | P a g e

bracketCounter--;

}

}

if (bracketCounter == 1)

{

CurrentNestedClass ="";

NestedExtendedClass = "";

//set up the current class pattern

String currentClass = myConstants.currentClass;

pattern = Pattern.compile(currentClass);

matcher = pattern.matcher(sInput);

if (matcher.find()) //if i find a new class

{

getCurrentClassName(sInput);

return;

}

//get any new class instantiation (object)

String Objects = myConstants.Objects;

pattern = Pattern.compile(Objects);

matcher = pattern.matcher(sInput);

if (matcher.find()) //if the line contains an object

{

getClassName(sInput);

return;

}

else //look for the other String declaration

String StringObjects = myConstants.StringObjects;

pattern = Pattern.compile(StringObjects);

matcher = pattern.matcher(sInput);

50 | P a g e

if (matcher.find()) //if the line contains an object

{

getClassName(sInput);

return;

}

}

//if the bracketCounter is greater than 0- then i need to look for methods

if (bracketCounter > 0)

{

//set up the current method declaration pattern

String currentMethod = myConstants.currentMethod;

pattern = Pattern.compile(currentMethod);

matcher = pattern.matcher(sInput);

if (matcher.find()) //if i find a new method

{

getCurrentMethodName(sInput);

return;

}

//this needs to be done last and if it passes the other test before it

//get any method calls

String Methods = myConstants.Methods;

pattern = Pattern.compile(Methods);

matcher = pattern.matcher(sInput);

if (matcher.find())

{

getMethodName(sInput);

return;

}

}

51 | P a g e

}

public void getCurrentClassName(StringBuffer Line)

{

StringTokenizer st = new

StringTokenizer(Line.toString());

String Next = "";

while (st.hasMoreTokens())

{

Next = st.nextToken();

if (Next.equalsIgnoreCase("class"))

{

if (bracketCounter < 2)

CurrentClassName = st.nextToken();

else

CurrentNestedClass = st.nextToken();

}

if (Next.equalsIgnoreCase("extends"))

{

if (bracketCounter < 2)

ExtendedClass = st.nextToken();

else

NestedExtendedClass = st.nextToken();

}

}

}

public void getCurrentMethodName(StringBuffer Line)

{

StringTokenizer st = new

StringTokenizer(Line.toString());

52 | P a g e

String Next = "";

String Temp = "";

String Class = "";

//handle else if

if (Line.toString() .contains("else if"))

{

return;

}

while (st.hasMoreTokens())

{

Next = st.nextToken();

if (Next.contains(" ("))

{

int index = Next.indexOf("(");

if (index ! = 0)

Temp Next;

CurrentMethodName = Next. substring (0,

index) ;

else

CurrentMethodName Temp;

}

Temp=Next;

}

//i want to store all declared methods to a hashmap

int counter = DeclaredMethods.size()/2;

counter++;

if (CurrentNestedClass.length() >0)

Class = CurrentNestedClass;

53 | P a g e

else

Class = CurrentClassName;

DeclaredMethods.put("Class" + counter, Class);

DeclaredMethods.put("Method" + counter,

CurrentMethodName) ;

}

public void getClassName(StringBuffer Line)

{

StringTokenizer st = new

StringTokenizer(Line.toString());

String Class = st.nextToken();

Class.trim () ;

String Reference = st.nextToken();

Reference.trim();

int counter = ObjectList.size()/2;

counter++;

ObjectList.put("Class" + counter, Class);

ObjectList.put("Reference" + counter, Reference);

}

public void getMethodName(StringBuffer Line) throws

SQLException

{

String Next = "";

String Class = "";

String Reference ="";

String Method = "";

int index = 0;

int index2 = 0;

Next = Line.toString();

54 | P a g e

if (Next.contains("."))

{

index = Next.indexOf(".");

index2 = Next.indexOf("(");

int index3 =Next.indexOf("=");

int index4=Next.indexOf(":");

int index5=Next.indexOf(")");

//check for reserve words

if (index2 == -1)

{

return;

}

else if ((index2< index))

{

String subNext = Next. substring (0, index2);

if (subNext. trim (). contains (" if") || subNext.trim().contains ("catch") ||

subNext.trim().contains("do") ||subNext.trim ().contains (" for") I|| subNext. trim ().contains

("return") ||

subNext.trim() . contains ("switch") I IsubN

ext.trim() .contains("while"))

{

string inside =

Next. substring (index2+1,

Next.length());

if (inside.indexOf(".") == -1)

{

return;

}

else

55 | P a g e

{

StringBuffer sbinside = new

StringBuffer() ;

sbinside.append(inside);

getMethodName(sbinside);

return;

}

}

else

{

if (subNext.length()== 0)

{

return;

}

else

{

if (index2 < index && index5 <

index) //this is for casting

{

String inside=Next.substring(index5

+1

, Next.length());

StringBuffer sbinside = new

StringBuffer();

sbinside. append (inside) ;

getMethodName(sbinside);

return;

}

}

56 | P a g e

}

}

if (index3 != -1|| index4 != -1)

{

if (index3 != -1)

Reference =Next. substring (index3+1,

index) ;

else

Reference = Next.substring(index4+1,

index) ;

}

else

Reference = Next.substring(0, index);

if (index2 != -1) //there is a paranthesis

Method = Next.substring(index+1, index2);

else //there is not a paranthesis

Method = Next.substring(index+1);

//get the class name

int counter = ObjectList.size()/2;

String Temp = "";

for (int i 1; i<=counter; i++)

{

Temp =(String) ObjectList.get("Reference" +

i) ;

if (Temp.equalsIgnoreCase(Reference.trim()))

{

Class (String) ObjectList.get("Class"

+ i);

}

57 | P a g e

}

if (Class.length()==0) //the reference was not found- it must be static

{

if(Reference.trim() .equalsIgnoreCase("sup

er"))

{

if(CurrentNestedClass.length()>0)

{

Class = NestedExtendedClass;

}

else

{

Class ExtendedClass;

}

}

else if(Reference.trim() .equalsIgnoreCase("this")){

{

if (CurrentNestedClass.length()>0)

{

Class = CurrentNestedClass;

}

else

{

Class CurrentClassName;

}

}

else

{

Class Reference;

58 | P a g e

}

}

//insert into db

if ((CurrentNestedClass.length () ! = 0 ||

CurrentClassName . length () ! =0) &&

CurrentMethodName.length() !=0 &&

Class.length() !=0 && Method.length() !=0)

{

DatabaseMethods dataMethods = new

DatabaseMethods();

if (CurrentNestedClass.length()>0)

{

dataMethods.insertCode(CurrentNestedClass

.trim(),

CurrentMethodName.trim(),

Class.trim(), Method.trim());

}

else

{

dataMethods.insertCode(CurrentClassName

.trim(), CurrentMethodName.trim (),

Class.trim(), Method.trim());

}

}

}

else if (Next. contains (" (")) //there is no dot operator

{

String ExtendedClass2 = "";

index = Next.indexOf("(");

59 | P a g e

int index1 = -1;

index1 = Next.indexOf("=");

if (index != 0) //has a paranthesis

{

if ((index< index1) && index1 != -1)

Method = Next.substring(0, index);

else if (index1 != -1)

Method = Next.substring(index1+1,

index) ;

else

Method = Next.substring(O, index);

//check for reserve words

if

(Method.trim() .equa1sIgnoreCase("if") ||

Method.trim() .equalsIgnoreCase("catch")

||

Method. trim().equals IgnoreCase (" do ") I||M

ethod.trim() .equalsIgnoreCase("fo

r") ||Method.trim() .equa1sIgnoreCa

se (" return ") || Method. trim () . equal

sIgnoreCase("switch") ||Method.tri

m () . equals IgnoreCase ("while "))

{

return;

}

if (CurrentNestedC1ass.length()>0)

{

Class = CurrentNestedClass;

ExtendedClass2 =NestedExtendedClass;

60 | P a g e

}

else

{

Class = CurrentClassName;

ExtendedClass2 = ExtendedClass;

}

//i want to store all called methods to a

hashmap

int counter = CalledMethods.size() /4;

counter++;

CalledMethods.put("Class" + counter, Class.trim());

CalledMethods.put("Method" + counter, Method.trim());

CalledMethods.put("CurrentMethod" + counter, CurrentMethodName.trim());

CalledMethods.put("ExtendedClass" + counter, ExtendedClass2.trim());

}}}}

61 | P a g e

APPENDIX D

SOURCE CODE : GenerateDiagrams.java

import java.io.*;

import java.aet.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.*;

public class GenerateDiagrams extends JPanel

{

public void generateDiagramByClass()

{

DatabaseMethods databaseMethods= new DatabaseMethods();

try

{

//call the database to get the classes and methods

HashMap Results = databaseMethods.getDiagramlnfoByClass();

int size = Results.size()/4;

String CurrentClass = "";

String CurrentMethod = "";

String CalledClass = "";

String CalledMethod = "";

String PreviousClass = "";

String PreviousMethod = "";

String NextCurrentClass = "";

String NextCurrentMethod = "";

String NextCalledClass = "";

String NextCalledMethod = "";

Constants myConstants = new Constants();

62 | P a g e

JFrame frame2 = new JFrame("Diagram By Class");

JPanel pClass = new JPanel();

pClass.setLayout(new BoxLayout(pClass, BoxLayout.Y_AXIS));

JPanel pTitle = new JPanel();

JLabel lTitle = new JLabel(new

ImageIcon(myConstants.classTitle));

lTitle.setBorder(BorderFactory.createLineBorder(Color.black));

pTitle.add(lTitle);

pTitle.setBorder(BorderFactory.createEmptyBorder(8,8, 8, 8));

//set up the frame

frame2.setSize(800, 400);

frame2.getContentPane() .setLayout(new BoxLayout (frame2.getContentPane () ,

BoxLayout.Y_AXIS));

frame2.getContentPane().add(pTitle);

for (int i = 1; i<=size; i++)

{

CurrentClass = (String)

Results.get("CurrentClass" + i);

JPanel pCurrentClass = new JPanel();

if (!PreviousClass.equals(CurrentClass))

{

pCurrentClass.setLayout(new BoxLayout(pCurrentClass, BoxLayout.Y_AXIS));

pCurrentClass.setBorder(BorderFactory.createLineBorder(Color.BLACK));

JLabel lCurrentClass = new JLabel(CurrentClass,

SwingConstants.LEFT);

Font labelFont1 = lCurrentClass.getFont();

Font labelFont2 = labelFont1.deriveFont(16.0f);

lCurrentClass.setFont(labelFont2);

pCurrentClass.add(lCurrentClass);

63 | P a g e

PreviousMethod = "";

for (int j=i; j<=size; j++)

{

CurrentMethod = (String)Results.get("CurrentMethod"+j) ;

if(!PreviousMethod.equals(CurrentMethod))

{

JPanel pCurrentMethod = new JPanel () ;

JLabel lCurrentMethod =new JLabel(CurrentMethod);

Font labelFont3 = lCurrentMethod.getFont();

Font labelFont4 = labelFont3.deriveFont(16. 0f) ;

lCurrentMethod.setFont(labeIFont4);

pCurrentMethod. add (lCurrentMethod);

JLabe1 arrow1 = new

JLabe1(new Imagelcon(myConstants.arrow2));

pCurrentMethod.add(arrow1);

CalledClass = (String)Resu1ts.get("CalledClass" + j);

CalledMethod = (String)Resu1ts.get("CalledMethod" + j);

JPane1 pCalled = new JPane1 () ;

pCalled.setLayout(new BoxLayout(pCalled, BoxLayout.Y_AXIS));

pCalled.setBorder(BorderFactory.createLineBorder(Color. BLACK)) ;

JLabel lCalled = newJLabel(CalledClass +" ." + CalledMethod);

Font 1abe1Font5 =lCalled.getFont();

Font 1abelFont6 = labelFont5.deriveFont(16.0f);

lCalled.setFont(labelFont6);

pCalled.add(lCalled);

for (int k = j+l; k<=size; k++)

NextCurrentClass=(String) Resu1ts.get("CurrentClass" + k);

NextCurrentMethod=(String) Resu1ts.get("CurrentMethod" +k) ;

NextCalledClass =(String) Resu1ts.get("CalledClass" +k) ;

64 | P a g e

NextCalledMethod=(String) Resu1ts.get("CalledMethod" +k) ;

if(NextCurrentClass.equalsIgnoreCase(CurrentClass)&&NextCurrentMethod

.equalsIgnoreCase(CurrentMethod))

{

JLabel lCurrent= new JLabel(NextCalledClass +" " +NextCalledMethod) ;

Font labelFont7= lCalled.get

Font () ;

Font labelFont8= label Font7.deriveFont(16.0f) ;

lCurrent.setFont(labelFont8) ;

pCalled.add(lCurrent) ;

pCurrentMethod.=add (pCalled) ;

j++ ;

}

else

{

break;

}

}

pCurrentMethod.add(pCalled);

pCurrentClass.add(pCurrentMethod) ;

PreviousMethod = CurrentMethod;

PreviousClass = CurrentClass;

if(!NextCurrentClass.equals(CurrentClass))

break;

}

else

{

break;

65 | P a g e

}

}

pClass.add(pCurrentClass);

JScrollPane scroll = new JScrollPane(pClass);

scroll.setVerticalScrollBarPolicy(ScrollPaneConstan

ts.VERTICAL_SCROLLBAR_ALWAYS);

frame2.getContentPane() .add(scroll);

//Create and set up the window.

frame2.setDefaultCloseOperation(frame2.DISPOSE_ON_CLOSE) ;

//Display the window.

frame2.pack();

frame2.setVisible(true);

}

catch (Exception e)

{

}

public void generateDiagramByMethod()

{

DatabaseMethods databaseMethods= new DatabaseMethods();

try

{

//call the database to get the classes and methods

HashMap Results =

databaseMethods.getDiagramlnfoByMethod();

int size = Results.size()/4;

String CurrentClass = "";

String CurrentMethod = "";

String CalledClass = "";

String CalledMethod = "";

String PreviousClass = "";

66 | P a g e

String PreviousMethod = "";

String NextCurrentClass = "";

String NextCurrentMethod ="";

String NextCalledClass = "";

String NextCalledMethod = "";

Constants myConstants = new Constants();

JFrame frame2 = new JFrame("Diagram By Method");

JPanel pMethod = new JPanel();

pMethod.setLayout(new BoxLayout(pMethod, BoxLayout.Y_AXIS));

JPanel pTitle = new JPanel();

JLabel ITitle = new JLabel(new Imagelcon(myConstants.methodTitle));

ITitle.setBorder (BorderFactory.createLineBorder (Color.black)) ;

pTitle.add(lTitle);

pTitle.setBorder(BorderFactory.createEmptyBorder(8,8, 8, 8));

//set up the frame

frame2.setSize(800, 400);

frame2.getContentPane() .setLayout(new BoxLayout(frame2.getContentPane(),

BoxLayout.Y_AXIS));

frame2.getContentPane() .add(pTitle);

for (int i = 1; i<=size; i++)

CalledClass = (String) Results.get("CalledClass" + i);

JPanel pCalledClass = new JPanel();

if (!PreviousClass.equals(CalledClass))

{

pCalledClass.setLayout(new

BoxLayout(pCalledClass,BoxLayout.Y_AXIS));

pCalledClass.setBorder(BorderFactory.createLineBorder(Color.BLACK));

JLabel lCalledClass = new JLabel(CalledClass,

67 | P a g e

SwingConstants.LEFT);

Font labelFont1 = lCalledClass.getFont();

Font labelFont2 = labelFont1.deriveFont(16.0f);

lCalledClass.setFont(labelFont2);

pCalledClass.add(lCalledClass);

for (int j=i; j<=size; j++)

{

CalledMethod = (String)

Results.get("CalledMethod"+j) ;

if(!PreviousMethod.equals(CalldMethod))

{

JPanel pCalledMethod= new JPanel();

JLabel lCalledMethod= new JLabel(CalledMethod);

Font labelFont3 = lCalledMethod.getFont();

Font labelFont4= labelFont3.deriveFont(16. 0f) ;

lCalledMethod. setFont (labelFont4);

pCalledMethod. add (lCaledMethod) ;

JLabel arrow 1 = new JLabel(new ImageIcon(myConstants.arrow3));

pCalledMethod.add(arrow1);

CurrentClass = (String)

Results.get("CurrentClass" + j);

CurrentMethod = (String) Results.get("CurrentMethod" + j);

JPanel pCurrent = new JPanel();

pCurrent.setLayout(new BoxLayout(pCurrent, BoxLayout.Y_AXIS));

pCurrent. setBorder (BorderFactory.createLineBorder(Color. BLACK)) ;

JLabel lCurrent = new JLabel(CurrentClass +"." + CurrentMethod);

Font labelFont5 = lCurrent.getFont();

Font labelFont6 = labelFont5.deriveFont(16.0f) ;

68 | P a g e

lCurrent.setFont(labelFont6

} ;

pCurrent.add(lCurrent);

for (int k = j+1; k<=size; k++)

{

NextCurrentClass= (String)Results.get("CurrentClass" + k);

NextCurrentMethod =(String)Results.get("CurrentMethod" + k);

NextCalledClass =(String)Results.get("CalledClass" + k);

NextCalledMethod =(String)Results.get("CalledMethod" +k) ;

if(NextCalledClass.equalsIgnoreCase(CalledClass) &&

NextCalledMethod.equalsIgnoreCase(CalledMethod))

{

JLabel lNext = new JLabel(NextCurrentClass +"." +NextCurrentMethod);

Font labelFont7=INext.getFont () ;

Font labelFont8=labelFont7.deriveFont (16.0f) ;

INext.setFont(labelFont8);

pCurrent.add(lNext) ;

pCalledMethod.add(pCurrent);

j++;

}

else

break;

}

pCalledMethod. add (pCurrent) ;

pCalledClass.add(pCalledMethod) ;

PreviousMethod = CalledMethod;

if(!NextCalledClass.equals(CalledClass))

break;

69 | P a g e

}

}

pMethod.add(pCalledClass) ;

}

PreviousClass = CalledClass;

}

JScrollPane scroll = new JScrollPane(pMethod);

scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAY

S);

frame2.getContentPane() .add(scroll);

//Create and set up the window.

frame2.setDefaultCloseOperation(frame2.DISPOSE_ON_CLOSE) ;

//Display the window.

frame2.pack();

frame2.setVisible(true);

}

catch (Exception e)

{

}

}}

70 | P a g e

APPENDIX E

SOURCE CODE : MainFrame.java

import java.io.*;

import java.awt.*;

import java.awt.event.*

import javax.swing.*;

import javax.swing.filechooser.*;

public class MainFrame extends JPanel implements ActionListener

{

//frame

private JFrame frame=new JFrame("Reverse Engineering Project") ;

//Panels

private JPanel pTitle = new JPanel();

private JPanel pUploaded = new JPanel();

private JPanel pBottom = new JPanel();

private JPanel pBottom2 = new JPanel();

private JPanel pFileChooser = new JPanel();

private JPanel buttonPanel = new JPanel();

private JPanel pGenerator = new JPanel();

//Labels

Constants myConstants = new Constants();

private JLabel lTitle = new JLabel(newImagelcon(myConstants.title));

private JLabel lUploaded = new JLabel("Files Uploaded:",SwingConstants.LEFT);

private JLabel 1generator = new JLabel(newImagelcon(myConstants.generator));

// Buttons

private JButton bReset = new JButton("Reset Application");

private JButton bOpenFile = new JButton("Open File To Read");

//Menu

71 | P a g e

private JMenuBar m = new JMenuBar(); // Menubar

private JMenu mFile = new JMenu("File");

private JMenultem miQuit = new JMenultem("Quit");

private JMenu mHelp = new JMenu("Help"); //Help Menu entry

private JMenultem miAbout = new JMenultem("About");

//text areas

private JTextArea tFileList =new JTextArea();

//file chooser

private JFileChooser fc= new JFileChooser();

public MainFrame()

{

//set up the text area

tFileList = new JTextArea(5,20);

tFileList.setMargin(new Insets(5,5,5,5));

tFileList.setEditable(false) ;

JScrollPane logScrollPane = new JScrollPane(tFileList);

//Set menubar

frame.setJMenuBar(m);

//Build Menus

mFile.add(miQuit);

mHelp.add(miAbout);

m.add(mFile);

m.add(mHelp) ;

lTitle.setVerticalAlignment(SwingConstants.TOP);

lTitle.setBorder (BorderFactory.createLineBorder (Color. black)) ;

lTitle.setForeground(Color.black);

pTitle.add(lTitle);

pTitle.setBorder (BorderFactory.createEmptyBorder (8, 8, 8,8)) ;

lUploaded.setVerticalAlignment(SwingConstants.CENTER);

72 | P a g e

lUploaded.setForeground(Color.black);

Font labelFontl = lUploaded.getFont();

Font labelFont2 = labelFontl.deriveFont(16.0f);

lUploaded.setFont(labelFont2);

pUploaded.add(lUploaded);

pUploaded.setBorder (BorderFactory.createEmptyBorder (8, 8,8, 8));

//set up the the actions

bOpenFile.addActionListener(this);

bGenerateByClass.addActionListener(this);

bGenerateByMethod.addActionListener(this);

bReset.addActionListener(this);

miQuit.addActionListener(new ListenMenuQuit());

//Add Buttons

buttonPanel.add(bOpenFile) ;

pBottom.add(bGenerateByClass);

pBottom.add(bGenerateByMethod);

pBottom2.add(bReset);

pGenerator.add(lgenerator) ;

//set up the frame

frame.setSize(800, 400);

frame.getContentPane() .setLayout(new BoxLayout(frame.getContentPane(),

BoxLayout.Y_AXIS));

frame.getContentPane() .add(pTitle);

frame.getContentPane() .add(buttonPanel);

frame.getContentPane() . add (pFileChooser) ;

frame.getContentPane() .add(pUploaded);

frame.getContentPane() .add(logScrollPane);

frame.getContentPane() . add (pBottom) ;

frame.getContentPane() .add(pBottom2);

73 | P a g e

frame.getContentPane() .add(pGenerator);

// Allows the Swing App to be closed

frame.addWindowListener(new ListenCloseWdw());

}

public class ListenMenuQuit implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

}

public class ListenCloseWdw extends WindowAdapter

{

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

}

public void actionPerformed(ActionEvent e)

{

GenerateDiagrams generate Diagrams = new

GenerateDiagrams();

IIHandle button action.

if (e.getSource() == bOpenFile)

{

int returnVal = fc.showOpenDialog(MainFrame.this);

if (returnVal == JFileChooser.APPROVE OPTION)

{

74 | P a g e

File file = fc.getSelectedFile();

tFileList.append(file.getName() + "\n");

FileHandler fileHandler = new FileHandler();

try

{

fileHandler.readFile(file) ;

}

catch (Exception e2)

{

}

}

}

else if (e.getSource() == bGenerateByClass)

{

generateDiagrams.generateDiagramByClass();

}

else if (e.getSource() == bGenerateByMethod)

generateDiagrams.generateDiagramByMethod();

else if (e.getSource() == bReset)

{

DatabaseMethods dataMethods =new

DatabaseMethods();

try

{

dataMethods.resetApplication();

}

catch (Exception e3)

{

}

75 | P a g e

private void ShowGUI()

{

//Create and set up the window.

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Display the window.

frame.pack();

frame.setVisible(true);

}

public static void main(String[] args)

{

MainFrame mf new MainFrame();

mf.ShowGUI();

}

}

