
ONLINE SCREEN SHARING

Enrol. No. 081402

 081404

 081408

 081418

Name of Student Rohit Soni

 Anurag Kakkar

 Shivam Gupta

 Zeeshan Hussain

Name of supervisor(s) Dr. Ravi Rastogi

May – 2012

Submitted in partial fulfillment of the Degree of

Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

TABLE OF CONTENTS

Chapter No. Topics Page No.

 Certificate from the Supervisor II

 Acknowledgement III

 Summary IV

Chapter-1 Introduction

 Purpose Of Project

 Objectives Of Project

Chapter-2 Software Development Life Cycle

 Feasibility Study

 Software and Hardware requirement

 Language Used

Chapter-3 System Design

 Coding

 Testing

 System Implementation

 Frame Layout

 Conclusion

 References

CERTIFICATE

This is to certify that the work titled “Online Screen Sharing” submitted by “Rohit Soni, Anurag

Kakkar, Shivam Gupta, Zeeshan Hussain” in partial fulfillment for the award of degree of

B.Tech of Jaypee University of Information Technology, Waknaghat has been carried out under my

supervision. This work has not been submitted partially or wholly to any other University or

Institute for the award of this or any other degree or diploma.

Signature of Supervisor ……………………..

Name of Supervisor ……………………..

Designation ……………………..

Date ……………………..

ACKNOWLEDGEMENT

We owe a great thanks to all the people who helped us throughout this project duration and make it

a worthwhile experience.

Our deepest thanks to project guide Dr.Ravi Rastogi for guiding and leading us throughout the

duration of project.He has taken pain to go through the project and make necessary corrections as

and when needed.

We express our thanks to HOD sir Brig.S. P. Ghrera for extending his support.

We would also like to thank my institution and my faculty members without whom this project

would have been a distant reality.We would also like to extend our heartfelt thanks to our family.

 …………………….. …………………….. …………………….. ……………………..

 Shivam Gupta Rohit Soni Anurag Kakkar Zeeshan Hussain

Date:28 May 2012

SUMMARY

Our aim is to develop a screen sharing system in which client’s screen or client’s system is

controlled by server. To accomplish our aim we have created an online screen sharing system by

using JAVA as front end. The desktop sharing software works by mimicking the display of remote

computer, the host, on the display of the connecting computer, the client. It does this by copying the

client’s display and redrawing it on the hosts display. Keyboard and mouse gestures from the client

are transmitted to the host, where the machine interprets them as if they had been inputted locally.

Because the service only needs to send small amounts of information (keyboard, mouse, and

display) over the network and often takes advantage of compression technologies, it therefore works

well in low-bandwidth scenarios. Once connected to a remote machine through a remote desktop

connection, you have access to all of its applications and data. PC remote control is a vital feature

for remote desktop solutions, as it enables the users to administer online computer support . Tech

support departments in particular benefit immensely from the flexibility they gain by being able to

respond quickly to server and workstation problems occurring anywhere within the network from

any computer to which they have remote desktop access .

 __________________ _________________

 Signature of Student Signature of Supervisor

 Name Name: Mr Ravi Rastogi

 Date Date

http://www.mikogo.com/guide/online-computer-support/
http://www.mikogo.com/guide/online-computer-support/
http://www.mikogo.com/guide/tech-support/
http://www.mikogo.com/guide/remote-desktop-access/

Chapter 1

INTRODUCTION

The term online screen sharing refers to a software or an operating system feature allowing

applications, either command line programs or graphical applications, to be run remotely on a

server, while being displayed locally. Screen sharing or remote desktop applications have varying

features. Some allow attaching to an existing user's session and “remote controlling”. Taking over a

desktop remotely is a form of remote administration. Screen sharing allows you to show a live view

of your computer screen to anyone else on the Internet. It allows remote observance or control of

any machine on the local network that has Screen Sharing activated. The user is provided with a

user-friendly graphical interface for remotely accessing all of the remote computer’s applications,

files, and network resources. These resources become available to the user as if they were directly

in front of the remote workstation. The server displays a copy of the image received from the

client's display screen. The copy is updated on a time interval. The software on server transmits its

own keyboard and mouse activity to the client, where the remote control software implements these

actions. The client computer behaves as if the actions were performed directly at that computer.

This is widely used by many computer manufacturers and large businesses help desks for technical

troubleshooting of their customers’ problems.

PURPOSE OF PROJECT

Screen sharing is the ability of the client to share any application or window from their own

computer and show it the server. Remote desktop technology offers many benefits for businesses

and to people who want access to their office computer while at home, or to their home computer

while at the office, or access to either while travelling. The effect this technology has had in the

business world has been dramatic. As the stability of the Internet has grown, remote access has

matured from convenience to necessity for most businesses. Tech support departments in particular

benefit immensely from the flexibility they gain by being able to respond quickly to server and

workstation problems occurring anywhere within the network from any computer to which

they have remote desktop access.Screen sharing will make life convenient and easy, any number of

clients can be connected to a particular server at a time and can solve their problem.

OBJECTIVES OF PROJECT

1) The main objective of the online screen sharing Java project is to design a Remote

Administration environment in computer networks.

2) Desktop sharing software provides support to its entire client over the network.

3) Using this application we can share our desktop all over the world.

4) This can behave as a network administrator to its client to provide remote services like

remote messaging, remote file transfer and remote software installation, remote shutdown,

remote restart, remote logoff, remote desktop sharing and remote chatting.

5) It should work on all windows platform and written in java.

6) It should be cost effective and should utilize few kbs of memory space.

7) Since it is cheap and efficient so it should have a good market penetration.

Chapter-2

SOFTWARE DEVELOPMENT LIFE CYCLE

\

Software Development Life Cycle is a structured imposed on the development of a software

product. There are several models for such processes, each describing approaches to a variety of

tasks or activities that take place during the process. Several steps involve in development of

software are :-

1) Project Planning : Determines the project’s goals and results in a high- level view of the

potential project. A feasibility study may be undertaken as part of this phase.

2) Requirement Analysis : Results in the creation of well-defined functions from the

defined project goals.

3) Software Design : Describes desired features and operations in detail, including screen

layouts, business rules, process diagrams, pseudocode and other documentation.

4) Software Coding : The analyst translates the code or the programs in such a way that they

become machine readable form.

5) Software Testing : Brings all the pieces of code together into a special testing environment,

then checks for errors, bugs and interoperability.

6) Depolyment : The final stage of initial development, where the software is put into

production and runs actual business.This is a vital stage as analyst waits for positive

feedback.

7) Maintenance : The last stage of the SDLC is that the analyst needs to maintain the system

and see to it that it working within the standards set. He needs to maintain the system by

removing the defects of flaws occured.

SOFTWARE DEVELOPMENT MODEL USED

Structured Evolutionary Prototyping Model

It refers to the activity of creating prototypes of software applications i.e. incomplete versions of the

software program being developed. A prototype typically simulates only a few aspects of ,and may

be completely different from the final product. Steps involved in this model are :-

1) A preliminary project plan is developed.

2) An partial high-level paper model is created.

3) The model is source for a partial requirements specification.

4) A prototype is built with basic and critical attributes.

5) We can demonstrate the prototype and evaluated for problems and made improvements.

6) This loop continues until we get satisfied.

Strengths

1) We can see the system requirements as they are being gathered.

2) We learned from various prototypes made.

3) A more accurate end product.

4) It allows for flexible design and development.

5) Visible signs of progress produced.

6) Our interaction with various prototypes simulates additional needed functionality.

Weakenesses

1) This prototype takes time and no space for bad and dirty methods.

2) Overall improvement of software may be overlooked.

3) Process may continue forever since every prototype stage may require a new functionality to

be added.

FEASIBILITY STUDY

Feasibility study aims to objectively and rationally uncover the strengths and weaknesses of the

existing software, opportunities and threats as presented by the environment and ultimately the

prospects for success .In its simplest terms, the two criteria to judge feasibility are cost required and

value to be attained. Generally, feasibility study precede technical development and project

implementation. Feasibility study concentrates on following areas :-

1) Technical feasibility : Since the software is based on simple java.The various features of

java that are being used are swing, AWT, socket programming and we are acquainted with

this language very well. So the software is fairly feasible to develop after enough research.

2) Operational Feasibility : Since the software is easy to install and uses less RAM memory

of 256 Mb.It works only on windows based platform and easy to use and has a simple

interface to work on so it has high usability and can work effectively in large organisations.

3) Economic Feasibility : We believe in open source software and kept it cost free for users.

 Project Technology Server Client Multiple

Sessions

Encryption Authenti

cation

Image

Quality

FILE

TRANSFER

CHAT

 AJAX

Remote

Desktop

Viewer

Socket ✓ ✓ ✓ X X X X X

 Dayon! Socket ✓ ✓ X X X ✓ X X

 Java

Remote

Desktop

RMI ✓ ✓ ✓ ✓ ✓ ✓ ✓ X

 VNC

Viewer

Socket X ✓ ✓ X ✓ ✓ ✓ ✓

 Online

Screen

Sharing

Socket ✓ ✓ ✓ X ✓ ✓ X X

Comparison table for various Java remote desktop applications.

SOFTWARE REQUIREMENT

NetBeans:

 NetBeans refers to both a platform framework for Java desktop applications, and

an integrated development environment(IDE) for developing with Java, JavaScript, PHP,

Python, Groovy, C, C++ and others. The NetBeans IDE is written in Java Coffee and can

run anywhere a JVM is installed, including Windows, Mac OS, Linux, and Solaris. A JDK is

required for Java development functionality. The NetBeans Platform is a reusable

framework for simplifying the development of Java Swing desktop applications.

Applications can install modules dynamically. Any application can include the Update

Center module to allow users of the application to download upgrades and new features

directly into the running application. Reinstalling an upgrade or a new release does not force

users to download the entire application again.

 The platform offers reusable services common to desktop applications,

 allowing developers to focus on the logic specific to their application.

 Among the features of platform are:

 User interface management (e.g. menus and toolbars)

 User settings management

 Storage management (saving and loading any kind of data)

 Window management

 Wizard framework (supports step-by-step dialogs)

 NetBeans Visual Library

 Integrated development tools

 NetBeans IDE is a free, open-source, cross-platform IDE with built-in-

 support for java programming language.

HARDWARE REQUIREMENT

 Operating System: Windows XP and above

RAM: 160 MB(minimum)

Hard Disk: 80 GB(minimum)

Lanwire (for local area connection)

LANGUAGE USED

JAVA :

 Java is a programming language originally developed by James Gosling at Sun

Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core

component of Sun Microsystems' Java platform. The language derives much of its syntax from C

and C++ but has a simpler object model and fewer low-level facilities. Java applications are

typically compiled to bytecode (class file) that can run on any Java Virtual Machine (JVM)

regardless of computer architecture. Java is a general-purpose, concurrent, class-based, object-

oriented language that is specifically designed to have as few implementation dependencies as

possible. It is intended to let application developers "write once, run anywhere" (WORA), meaning

that code that runs on one platform does not need to be recompiled to run on another. Java is

currently one of the most popular programming languages in use, particularly for client-server web

applications, with a reported 10 million users.

http://en.wikipedia.org/wiki/Java_bytecode

Java Platform :

 One characteristic of Java is portability, which means that computer programs

written in the Java language must run similarly on any hardware/operating-system platform. This is

achieved by compiling the Java language code to an intermediate representation called Java

bytecode, instead of directly to platform-specific machine code. Java bytecode instructions are

analogous to machine code, but are intended to be interpreted by a virtual machine written

specifically for the host hardware. End-users commonly use a Java Runtime Environment(JRE)

installed on their own machine for standalone Java applications, or in a Web browser for Java

applets.

Standardized libraries provide a generic way to access host-specific features such as graphics,

threading, and networking.

A major benefit of using bytecode is porting. However, the overhead of interpretation means that

interpreted programs almost always run more slowly than programs compiled to native executables

would. Just-in-Time (JIT) compilers were introduced from an early stage that compile bytecodes to

machine code during runtime.

Chapter 3

SYSTEM DESIGN

UseCaseDiagram :

A Use Case diagram is a diagram which shows interaction between various users, also known as

Actors and various functionalities provided by a software, also known as Use Cases.

Class diagram :

A Class Diagram is a diagram representing the various structure of a system by showing them as

classes, their attributes, operations and relationships among the classes.

Sequence Diagram :

A sequence diagram is a digram which shows how processes operate with one another. A Sequence

diagram shows interaction between different objects arranged in time sequence. It represents the

objects and classes involved in the scenario and the sequence of messages exchange between

different objects to carry out the functionality of the scenario. Sequence diagram depicts the logical

view of system under development.

DFD level 0 :

Data Flow Diagram is the graphical representation of flow of data. It is a preliminary step used to

create the overview of system that can be elaborated later on. DFD can also be used for structure

design and data processing. A DFD describes the type of input and output given to the system and

from where this data come, go and where the data will be stored. It does not show whether the

processes will operate in a timely manner.

DFD level 1 :

CODING

Client Remote Control:

1. Client Initiator Class

packageremoteclient;

importjava.awt.AWTException;

importjava.awt.Dimension;

importjava.awt.GraphicsDevice;

importjava.awt.GraphicsEnvironment;

importjava.awt.Rectangle;

importjava.awt.Robot;

importjava.awt.Toolkit;

importjava.awt.event.ActionEvent;

importjava.awt.event.ActionListener;

importjava.io.IOException;

importjava.net.Socket;

importjava.net.UnknownHostException;

importjavax.swing.JButton;

importjavax.swing.JFrame;

importjavax.swing.JOptionPane;

/*

 * This class is responsible for connecting to the server

 * and starting ScreenSpyer and ServerDelegate classes

 */

public class ClientInitiator {

 Socket socket = null;

 public static void main(String[] args)

 {

 String ip = JOptionPane.showInputDialog("Please enter server IP");

 String port = JOptionPane.showInputDialog("Please enter server port");

 newClientInitiator().initialize(ip, Integer.parseInt(port));

 }

public void initialize(String ip, int port)

 {

 Robot robot = null; //Used to capture the screen

 Rectangle rectangle = null; //Used to represent screen dimensions

 try

 {

System.out.println("Connecting to server");

socket = new Socket(ip, port);

System.out.println("Connection Established.");

 //Get default screen device

GraphicsEnvironmentgEnv=GraphicsEnvironment.getLocalGraphicsEnvironment();

GraphicsDevicegDev=gEnv.getDefaultScreenDevice();

 //Get screen dimensions

 Dimension dim = Toolkit.getDefaultToolkit().getScreenSize();

rectangle = new Rectangle(dim);

 //Prepare Robot object

robot = new Robot(gDev);

 //draw client gui

drawGUI();

 //ScreenSpyer sends screenshots of the client screen

newScreenSpyer(socket,robot,rectangle);

 //ServerDelegaterecievesserver commands and execute them

newServerDelegate(socket,robot);

 }

catch (UnknownHostException ex)

 {

ex.printStackTrace();

 }

 catch (IOException ex)

 {

ex.printStackTrace();

 }

catch (AWTException ex)

 {

ex.printStackTrace();

 }

 }

private void drawGUI() {

JFrame frame = new JFrame("Remote Admin");

JButton button= new JButton("Terminate");

frame.setBounds(100,100,150,150);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.add(button);

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(0);

 }

 }

);

frame.setVisible(true);

 }

}

2. Enum Commands

packageremoteclient;

/*

 * Used to represent commands which can be sent by the server

 */

publicenumEnumCommands {

 PRESS_MOUSE(-1),

 RELEASE_MOUSE(-2),

 PRESS_KEY(-3),

 RELEASE_KEY(-4),

 MOVE_MOUSE(-5);

privateint abbrev;

EnumCommands(int abbrev){

this.abbrev = abbrev;

 }

publicintgetAbbrev(){

return abbrev;

 }

}

3. ScreenSpyer

packageremoteclient;

importjava.awt.Rectangle;

importjava.awt.Robot;

importjava.awt.image.BufferedImage;

importjava.io.IOException;

importjava.io.ObjectOutputStream;

importjava.net.Socket;

importjavax.swing.ImageIcon;

/*

 * This class is responisble for sending sreenshotevery predefined duration

 */

classScreenSpyer extends Thread {

 Socket socket = null;

 Robot robot = null; // Used to capture screen

 Rectangle rectangle = null; //Used to represent screen dimensions

booleancontinueLoop = true; //Used to exit the program

publicScreenSpyer(Socket socket, Robot robot,Rectanglerect) {

this.socket = socket;

this.robot = robot;

rectangle = rect;

start();

 }

public void run(){

ObjectOutputStreamoos = null; //Used to write an object to the streem

try{

 //Prepare ObjectOutputStream

oos = new ObjectOutputStream(socket.getOutputStream());

 /*

 * Send screen size to the server in order to calculate correct mouse

 * location on the server's panel

 */

oos.writeObject(rectangle);

}

catch(IOException ex)

{

ex.printStackTrace();

 }

while(continueLoop){

 //Capture screen

BufferedImage image = robot.createScreenCapture(rectangle);

 /* I have to wrap BufferedImage with ImageIcon because BufferedImage class

 * does not implement Serializable interface

 */

ImageIconimageIcon = new ImageIcon(image);

 //Send captured screen to the server

try {

System.out.println("before sending image");

oos.writeObject(imageIcon);

oos.reset(); //Clear ObjectOutputStream cache

System.out.println("New screenshot sent");

 }

 catch (IOException ex)

{

ex.printStackTrace();

 }

 //wait for 100ms to reduce network traffic

try{

Thread.sleep(100);

}

catch(InterruptedException e)

{

e.printStackTrace();

 }

 }

 }

}

4. Server Delegate

packageremoteclient;

importjava.awt.Robot;

importjava.io.IOException;

importjava.net.Socket;

importjava.util.Scanner;

/*

 * Used to recieve server commands then execute them at the client side

 */

classServerDelegate extends Thread {

 Socket socket = null;

 Robot robot = null;

booleancontinueLoop = true;

publicServerDelegate(Socket socket, Robot robot) {

this.socket = socket;

this.robot = robot;

start(); //Start the thread and hence calling run method

 }

public void run(){

 Scanner scanner = null;

try {

 //prepare Scanner object

System.out.println("Preparing InputStream");

scanner = new Scanner(socket.getInputStream());

while(continueLoop){

 //recieve commands and respond accordingly

System.out.println("Waiting for command");

int command = scanner.nextInt();

System.out.println("New command: " + command);

switch(command){

case -1:

robot.mousePress(scanner.nextInt());

break;

case -2:

robot.mouseRelease(scanner.nextInt());

break;

case -3:

robot.keyPress(scanner.nextInt());

break;

case -4:

robot.keyRelease(scanner.nextInt());

break;

case -5:

robot.mouseMove(scanner.nextInt(), scanner.nextInt());

break;

 }

 }

 }

catch (IOException ex)

{

ex.printStackTrace();

 }

 }

}

Remote Server:

1. Client Command Sender

packageremoteserver;

importjava.awt.Rectangle;

importjava.awt.event.KeyEvent;

importjava.awt.event.KeyListener;

importjava.awt.event.MouseEvent;

importjava.awt.event.MouseListener;

importjava.awt.event.MouseMotionListener;

importjava.io.IOException;

importjava.io.PrintWriter;

importjava.net.Socket;

importjavax.swing.JPanel;

classClientCommandsSender implements KeyListener,

MouseMotionListener,MouseListener {

private Socket cSocket = null;

privateJPanelcPanel = null;

privatePrintWriter writer = null;

private Rectangle clientScreenDim = null;

ClientCommandsSender(Socket s, JPanel p, Rectangle r) {

cSocket = s;

cPanel = p;

clientScreenDim = r;

 //Associate event listners to the panel

cPanel.addKeyListener(this);

cPanel.addMouseListener(this);

cPanel.addMouseMotionListener(this);

try {

 //Prepare PrintWriter which will be used to send commands to

 //the client

writer = new PrintWriter(cSocket.getOutputStream());

 }

 catch (IOException ex)

{

ex.printStackTrace();

 }

 }

 //Not implemeted yet

public void mouseDragged(MouseEvent e) {

 }

public void mouseMoved(MouseEvent e) {

doublexScale = clientScreenDim.getWidth()/cPanel.getWidth();

System.out.println("xScale: " + xScale);

doubleyScale = clientScreenDim.getHeight()/cPanel.getHeight();

System.out.println("yScale: " + yScale);

System.out.println("Mouse Moved");

writer.println(EnumCommands.MOVE_MOUSE.getAbbrev());

writer.println((int)(e.getX() * xScale));

writer.println((int)(e.getY() * yScale));

writer.flush();

 }

 //this is not implemented

public void mouseClicked(MouseEvent e) {

 }

public void mousePressed(MouseEvent e) {

System.out.println("Mouse Pressed");

writer.println(EnumCommands.PRESS_MOUSE.getAbbrev());

int button = e.getButton();

intxButton = 16;

if (button == 3) {

xButton = 4;

 }

writer.println(xButton);

writer.flush();

 }

public void mouseReleased(MouseEvent e) {

System.out.println("Mouse Released");

writer.println(EnumCommands.RELEASE_MOUSE.getAbbrev());

int button = e.getButton();

intxButton = 16;

if (button == 3) {

xButton = 4;

 }

writer.println(xButton);

writer.flush();

 }

 //not implemented

public void mouseEntered(MouseEvent e) {

 }

 //not implemented

public void mouseExited(MouseEvent e) {

 }

 //not implemented

public void keyTyped(KeyEvent e) {

 }

public void keyPressed(KeyEvent e) {

System.out.println("Key Pressed");

writer.println(EnumCommands.PRESS_KEY.getAbbrev());

writer.println(e.getKeyCode());

writer.flush();

 }

public void keyReleased(KeyEvent e) {

System.out.println("Mouse Released");

writer.println(EnumCommands.RELEASE_KEY.getAbbrev());

writer.println(e.getKeyCode());

writer.flush();

 }

}

2. Client Handler

packageremoteserver;

importjava.awt.BorderLayout;

importjava.awt.Rectangle;

importjava.beans.PropertyVetoException;

importjava.io.IOException;

importjava.io.ObjectInputStream;

importjava.net.Socket;

importjavax.swing.JDesktopPane;

importjavax.swing.JInternalFrame;

importjavax.swing.JPanel;

classClientHandler extends Thread {

privateJDesktopPane desktop = null;

private Socket cSocket = null;

privateJInternalFrameinterFrame = new JInternalFrame("Client Screen",

true, true, true);

privateJPanelcPanel = new JPanel();

publicClientHandler(Socket cSocket, JDesktopPane desktop) {

this.cSocket = cSocket;

this.desktop = desktop;

start();

 }

 /*

 * Draw GUI per each connected client

 */

public void drawGUI(){

interFrame.setLayout(new BorderLayout());

interFrame.getContentPane().add(cPanel,BorderLayout.CENTER);

interFrame.setSize(100,100);

desktop.add(interFrame);

try {

 //Initially show the internal frame maximized

interFrame.setMaximum(true);

 }

catch (PropertyVetoException ex)

{

ex.printStackTrace();

 }

 //this allows to handleKeyListener events

cPanel.setFocusable(true);

interFrame.setVisible(true);

 }

public void run(){

 //used to represent client screen size

 Rectangle clientScreenDim = null;

 //Used to read screenshots and client screen dimension

ObjectInputStreamois = null;

 //start drawing GUI

drawGUI();

try{

 //Read client screen dimension

ois = new ObjectInputStream(cSocket.getInputStream());

clientScreenDim =(Rectangle) ois.readObject();

}catch(IOException ex){

ex.printStackTrace();

}catch(ClassNotFoundException ex){

ex.printStackTrace();

 }

 //Start recieveing screenshots

newClientScreenReciever(ois,cPanel);

 //Start sending events to the client

newClientCommandsSender(cSocket,cPanel,clientScreenDim);

 }

}

3. Client Screen Receiever

packageremoteserver;

importjava.awt.Graphics;

importjava.awt.Image;

importjava.io.IOException;

importjava.io.ObjectInputStream;

importjavax.swing.ImageIcon;

importjavax.swing.JPanel;

/**

* ClientScreenReciever is responsible for recieving client screenshot and displaying

 * it in the server. Each connected client has a separate object of this class

 */

classClientScreenReciever extends Thread {

privateObjectInputStreamcObjectInputStream = null;

privateJPanelcPanel = null;

privatebooleancontinueLoop = true;

publicClientScreenReciever(ObjectInputStreamois, JPanel p) {

cObjectInputStream = ois;

cPanel = p;

 //start the thread and thus call the run method

start();

 }

public void run(){

try {

 //Read screenshots of the client then draw them

while(continueLoop){

 //Recieve client screenshot and resize it to the current panel size

ImageIconimageIcon = (ImageIcon) cObjectInputStream.readObject();

System.out.println("New image recieved");

 Image image = imageIcon.getImage();

image = image.getScaledInstance(cPanel.getWidth(),cPanel.getHeight()

,Image.SCALE_FAST);

 //Draw the recieved screenshot

 Graphics graphics = cPanel.getGraphics();

graphics.drawImage(image, 0, 0, cPanel.getWidth(),cPanel.getHeight(),cPanel);

 }

 }

 catch (IOException ex)

{

ex.printStackTrace();

 }

 catch(ClassNotFoundException ex)

{

ex.printStackTrace();

 }

 }

}

4. Enum Commands

packageremoteserver;

/**

 * Used to represent commands which can be sent by the server

 */

publicenumEnumCommands {

 PRESS_MOUSE(-1),

 RELEASE_MOUSE(-2),

 PRESS_KEY(-3),

 RELEASE_KEY(-4),

 MOVE_MOUSE(-5);

privateint abbrev;

EnumCommands(int abbrev){

this.abbrev = abbrev;

 }

publicintgetAbbrev(){

return abbrev;

 }

}

5. Server Initiator

packageremoteserver;

importjava.awt.BorderLayout;

importjava.io.IOException;

importjava.net.ServerSocket;

importjava.net.Socket;

importjavax.swing.JDesktopPane;

importjavax.swing.JFrame;

importjavax.swing.JOptionPane;

/*

 * This is the entry class of the server

 */

public class ServerInitiator {

 //Main server frame

privateJFrame frame = new JFrame();

 //JDesktopPane represents the main container that will contain all

 //connected clients' screens

privateJDesktopPane desktop = new JDesktopPane();

public static void main(String args[]){

 String port = JOptionPane.showInputDialog("Please enter listening port");

newServerInitiator().initialize(Integer.parseInt(port));

 }

public void initialize(int port){

try {

ServerSocketsc = new ServerSocket(port);

 //Show Server GUI

drawGUI();

 //Listen to server port and accept clients connections

while(true){

 Socket client = sc.accept();

System.out.println("New client Connected to the server");

 //Per each client create a ClientHandler

newClientHandler(client,desktop);

 }

 }

catch (IOException ex)

 {

ex.printStackTrace();

 }

 }

 /*

 * Draws the main server GUI

 */

public void drawGUI(){

frame.add(desktop,BorderLayout.CENTER);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 //Show the frame in a maximized state

frame.setExtendedState(frame.getExtendedState()|JFrame.MAXIMIZED_BOTH);

frame.setVisible(true);

 }

}

TESTING

Unit Testing:

Unit Testing basically involves the individual testing of various modules of program together with

associated data, using procedures to analyse whether they are fit for use or not.

Each test case is different from the other ones. With the help of unit testing complexity of testing is

managed. It facilitates debugging and encourages parallel testing. Modules are combined using two

approaches:

(i) Non- incremental – all the modules are tested independently and then all the modules are

combined and whole program is tested.

(ii) Incremental – in incremental each module is added to the tested collection or we can say

step wise retesting takes place.

Firstly we tested all the modules on client side to see whether there was any syntactical error in any

of the modules to be run at client side.

Secondly, all the modules of server side are tested individually for syntactical errors.

Integration testing:

It is a phase in software testing in which various software modules are combined and tested as a

group. It takes place after unit testing and before validation testing. The modules that have been unit

tested are inputted in integration testing, are then aggregated in larger groups and applies tests

defined in an integrated test plan to those aggregates.

 The purpose of integration testing is to fulfill functional, performance and reliability requirements.

Some different types of integration testing are Big Bang, Top Down and Bottom up.

Big Bang Testing: In big bang approach all the developed modules are aggregated to form a

complete software system and then used for integration testing. This method is very effective in

saving time. However if test cases and their results are not recorded properly, the whole integration

process will be highly complicated.

Bottom Up Testing: Bottom up testing is an approach to integrated testing where the lower level

components are tested first and then moving on to the testing of higher level components and the

process is repeated until the component at the top level of hierarchy is tested. This approach is very

helpful only when all the modules of same development level are ready.

Top Down Testing: It is an approach to integrated testing where the top level modules are tested

first and the lower modules are tested step by step until the end of the related module.

Sandwich testing is an approach in which top down and bottom up testing are combined.

In our project integration testing is being performed by the use of Bing Bang approach.

All the modules were combined initially together both at client and server side. At the client side

errors regarding the sending of screen co-ordinates came initially. The co-ordinates did not map

well at the server side.

At Server side co-ordinates were passed but screen view could not be received properly. Also the

key strokes were getting passed on to the client side but mouse movement was producing the time

lag.

Verification and validation Testing: It is a process in which a software system meets

specifications and then fulfills the intended purpose. It is also known as software quality control.

Validation checks the product design i.e. the software meets the user requirements or not. It is the

process of evaluating software during or at the end of development process to determine whether it

satisfies the specified requirements.

Verification testing is the process of evaluating software to determine whether the products satisfy

the condition imposed at the start f that phase. Both verification and validation are related to the

concepts of quality and software quality assurance.

In this method we compared the various softwares in market and tried to analyse the quality of

software made by us. We checked upon the various requirements of user to be met. Since ours is a

diagnostic tool to be used a source for desktop monitoring, emphasis was on to remove all the

discrepancies in our product and make the software as much user friendly as it can be made.

SYSTEM IMPLEMENTATION

Server Side Authentication

Client Side Authentication

Port Number Should Be Same On Both Client And Server Side

Server captures the screen of client.

Connection is established with the server at the client side.

Video played at client side is captured and viewed at server side.

Video played at client side to be shared at server side.

Document opened at client side, viewed at server side and content is being typed from server

side.

Document opened at client side while the content is entered from server side.

CONCLUSION

At last we can conclude that after completing this project we have learned how to work with various

java technologies like AWT, Swing and Robot Class. We also learnt how to work under extreme

pressure conditions and delivering high performance.

Our overall learning in this project has been splendid. We all learnt how to work together in a team

in spite of all the odds which came in our path.

We faced various difficulties while implementing this project, most of which were overcome by the

help of our project guide Dr. Ravi Rastogi.

Also we have some proposed future work for this project like the video lag needs to be minimized

much more and also the audio transfer feature is to be included so that the sound played at client

side could be heard at the server side.

References

1) Comparison of Java Remote Desktop Projects – Wikipedia the free encyclopedia,

http://en.wikipedia.org/wiki/Comparison_of_Java_Remote_Desktop_projects

accessed on 10th ferbuary 2012.

2) Remote desktop software – Wikipedia the free encyclopedia,

http://en.wikipedia.org/wiki/Remote_desktop_software accesses on 12th november

2011.

3) The Software Development Life Cycle, 2000-2005 Digital Publications LLC

4) A Tutorial on Socket Programming in Java, Natarajan Meghanathan, Jackson State

University.

5) Software Testing Techniques, Lu Luo, Institute For Software Research International,

Carnegie Mellon University

6) Advanced Java Programming Swing,Eran Werner, Tel-Aviv University Summer,2005

7) Java 2 Black Book, Steven Holzener et al., Paraglyph Press

http://en.wikipedia.org/wiki/Comparison_of_Java_Remote_Desktop_projects
http://en.wikipedia.org/wiki/Remote_desktop_software

