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SUMMARY

Social network analysis is a new research field in data mining. The clustering in social
network analysis is different from traditional clustering. It requires grouping objects into
classes based on their links as well as their attributes. While traditional clustering algorithms
group objects only based on objects’ similarity, and it can't be applied to social network
analysis. So on the basis of BSP (business system planning) clustering algorithm, a social
network clustering analysis algorithm is proposed. The proposed algorithm, different from
traditional BSP clustering algorithms, can group objects in a social network into different
classes based on their links and identify relation among classes dynamically & require less
amount of memory .
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INTRODUCTION

A social network is a social structure made up of individuals (or organizations) called
"nodes”, which are tied (connected) by one or more specific types of interdependency, such
as friendship, kinship, common interest, financial exchange, dislike, sexual relationships, or
relationships of beliefs, knowledge or prestige.

Social network analysis views social relationships in terms of network theory consisting of
nodes and ties (also called edges, links, or connections). Nodes are the individual actors
within the networks, and ties are the relationships between the actors. The resulting graph-
based structures are often very complex. There can be many kinds of ties between the nodes.
Research ina number of academic fields has shown that social networks operate on many
levels, from families up to the level of nations, and play a critical role in determining the way
problems are solved, organizations are run, and the degree to which individuals succeed in
achieving their goals.

In its simplest form, a social network is a map of specified ties, such as friendship, between
the nodes being studied. The nodes to which an individual is thus connected are the social
contacts of that individual. The network can also be used to measure social capital — the value
that an individual gets from the social network. These concepts are often displayed in a social
network diagram, where nodes are the points and ties are the lines.

Social network analysis

Social network analysis (related to network theory) has emerged as a key technique in
modern sociology. It has also gained a significant following in anthropology,

biology, communication studies, economics, geography, information science,

organizational studies, social psychology, and sociolinguistics, and has become a

popular topic of speculation and study. People have used the idea of "social

network" loosely for over a century to connote complex sets of relationships

between members of social systems at all scales, from interpersonal to international.

In 1954, J. A. Barnes started using the term systematically to denote patterns of ties,
encompassing concepts traditionally used by the public and those used by social

scientists: bounded groups (e.g., tribes, families) and social categories (e.g., gender,
ethnicity). Scholars suchas S.D. Berkowitz, Stephen Borgatti, Ronald Burt, Kathleen

Carley, Martin Everett, Katherine Faust, Linton Freeman, Mark Granovetter, David

Knoke, David Krackhardt, Peter Marsden, Nicholas Mullins, Anatol Rapoport, Stanley
Wasserman, Barry Wellman, Douglas R. White, and Harrison White expanded the use of
systematic social network analysis.

Social network analysis has now moved from being a suggestive metaphor to an analytic
approach to a paradigm, with its own theoretical statements, methods, social network analysis
software, and researchers. Analysts reason from whole to part; from structure to relation to
individual; from behavior to attitude. They typically either study whole networks (also known
as complete networks), all of the ties containing specified relations ina defined population, or
personal networks (also known as egocentric networks), the ties that specified people have,
such as their "personal communities™. The distinction between whole/complete networks and
personal/egocentric networks has depended largely on how analysts were able to gather data.
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That is, for groups such as companies, schools, or membership societies, the analyst was
expected to have complete information about who was in the network, all

participants being both potential egos and alters. Personal/egocentric studies were typically
conducted when identities of egos were known, but not their alters. These studies rely on the
egos to provide information about the identities of alters and there is no expectation that the
various egos or sets of alters will be tied to each other. A snowball network refers to the idea
that the alters identified inan egocentric survey then become egos themselves

and are able in turnto nominate additional alters. While there are severe logistic limits to
conducting snowball network studies, a method for examining hybrid networks has recently
been developed in which egos in complete networks can nominate alters otherwise not listed
who are then available for all subsequent egos to see. The hybrid network may be valuable
for examining whole/complete networks that are expected to include important players
beyond those who are formally identified. For example, employees of a company often work
with non-company consultants who may be part of a network that cannot fully be defined
prior to data collection Several analytic tendencies distinguish social network analysis:

There is no assumption that groups are the building blocks of society: the approach is opento
studying less-bounded social systems, from nonlocal communities to links among websites.
Rather than treating individuals (persons, organizations, states) as discrete units of analysis, it
focuses on how the structure of ties affects individuals and their relationships.

In contrast to analyses that assume that socialization into norms determines behavior,
network analysis looks to see the extent to which the structure and composition of ties affect
norms.

The shape of a social network helps determine a network's usefulness to its individuals.
Smaller, tighter networks can be less useful to their members than networks with lots of loose
connections (weak ties) to individuals outside the main network. More open networks, with
many weak ties and social connections, are more likely to introduce new ideas and
opportunities to their members than closed networks with many redundant ties. In other
words, a group of friends who only do things with each other already share the same
knowledge and opportunities. A group of individuals with connections to other social worlds
is likely to have access to a wider range of information. It is better for individual success to
have connections to a variety of networks rather than many connections within a

single network. Similarly, individuals can exercise influence or act as brokers within their
social networks by bridging two networks that are not directly linked (called filling structural
holes).

The power of social network analysis stems from its difference from traditional social
scientific studies, which assume that it is the attributes of individual actors—whether they are
friendly or unfriendly, smart or dumb, etc.—that matter. Social network analysis produces an
alternate view, where the attributes of individuals are less important than their relationships
and ties with other actors within the network. This approach has turned out to be

useful for explaining many real-world phenomena, but leaves less room for individual
agency, the ability for individuals to influence their success, because so much of it rests
within the structure of their network.

Social networks have also been used to examine how organizations interact with each other,
characterizing the many informal connections that link executives together, as well as
associations and connections between individual employees at different organizations. For
example, power within organizations often comes more from the degree to whichan
individual within a network is at the center of many relationships than actual job title. Social
networks also play a key role in hiring, in business success, and in job performance.
Networks provide ways for companies to gather information, deter competition, and collude
In setting prices or policies.
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History of social network analysis

A summary of the progress of social networks and social network analysis has been written
by Linton Freeman. Precursors of social networks in the late 1800s include Emile Durkheim
and Ferdinand Tonnies. Ténnies argued that social groups can exist as personal and direct
social ties that either link individuals who share values and belief (gemeinschaft) or
impersonal, formal, and instrumental social links (gesellschaft). Durkheim gave a
non-individualistic explanation of social facts arguing that social phenomena arise when
interacting individuals constitute a reality that can no longer be accounted for in terms of the
properties of individual actors. He distinguished between a traditional society — "mechanical
solidarity” — which prevails if individual differences are minimized, and the modern society —
"organic solidarity" — that develops out of cooperation between differentiated individuals
with independent roles.

Georg Simmel, writing at the turn of the twentieth century, was the first scholar to think
directly in social network terms. His essays pointed to the nature of network size on
interaction and to the likelihood of interaction in ramified, loosely-knit networks rather than
groups (Simmel, 1908/1971).

After a hiatus in the first decades of the twentieth century, three main traditions in social
networks appeared. Inthe 1930s, J.L. Moreno pioneered the systematic recording and
analysis of social interaction in small groups, especially classrooms and work groups
(sociometry), while a Harvard group led by W. Lloyd Warner and Elton Mayo explored
interpersonal relations at work. In 1940, A.R. Radcliffe-Brown's presidential address to
British anthropologists urged the systematic study of networks. However, it took about 15
years before this call was followed-up systematically.

Social network analysis developed with the kinship studies of Elizabeth Bott in England in
the 1950s and the 1950s-1960s urbanization studies of the University of Manchester group of
anthropologists (centered around Max Gluckman and later J. Clyde Mitchell) investigating
community networks in southern Africa, India and the United Kingdom. Concomitantly,
British anthropologist S.F. Nadel codified a theory of social structure that was influential

in later network analysis.

In the 1960s-1970s, a growing number of scholars worked to combine the different tracks and
traditions. One group was centered around Harrison White and his students at the Harvard
University Department of Social Relations: Ivan Chase, Bonnie Erickson, Harriet Friedmann,
Mark Granovetter, Nancy Howell, Joel Levine, Nicholas Mullins, John Padgett, Michael
Schwartz and Barry Wellman. Also independently active in the Harvard Social Relations
department at the time were Charles Tilly, who focused on networks in political and
community sociology and social movements, and Stanley Milgram, who developed the "six
degrees of separation” thesis.

Mark Granovetter and Barry Wellman are among the former students of White who have
elaborated and popularized social network analysis. Significant independent work was also
done by scholars elsewhere: University of California Irvine social scientists
interested in mathematical applications, centered around Linton Freeman, including John
Boyd, Susan Freeman, Kathryn Faust, A. Kimball Romney and Douglas White; quantitative
analysts at the University of Chicago, including Joseph Galaskiewicz, Wendy Griswold,
Edward Laumann, Peter Marsden, Martina Morris, and John Padgett; and communication
scholars at Michigan State University, including Nan Lin and Everett Rogers. A
substantively-oriented University of Toronto sociology group developed in the 1970s,
centered on former students of Harrison White: S.D. Berkowitz, Harriet Friedmann, Nancy
Leslie Howard, Nancy Howell, Lorne Teppermanand Barry Wellman, and also including
noted modeler and game theorist Anatol Rapoport.In terms of theory, it critiqued
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methodological individualism and group-based analyses, arguing that seeing the world as
social networks offered more analytic leverage.

Research

Social network analysis has been used in epidemiology to help understand how patterns of
human contact aid or inhibit the spread of diseases such as HIV in a population. The
evolution of social networks can sometimes be modeled by the use of agent based models,
providing insight into the interplay between communication rules, rumor spreading and social
structure.

SNA may also be an effective tool for mass surveillance — for example the Total Information
Awareness program was doing in-depth research on strategies to analyze social networks to
determine whether or not U.S. citizens were political threats. Diffusion of innovations theory
explores social networks and their role in influencing the spread of new ideas and practices.
Change agents and opinion leaders often play major roles in spurring the adoption of
innovations, although factors inherent to the innovations also play a role.

Robin Dunbar has suggested that the typical size of an egocentric network is constrained to
about 150 members due to possible limits in the capacity of the human communication
channel. The rule arises from cross-cultural studies in sociology and especially anthropology
of the maximum size ofa village (in modern parlance most reasonably understood as an
ecovillage). It is theorized in evolutionary psychology that the number may be some kind of
limit of average human ability to recognize members and track emotional facts about all
members of a group. However, it may be due to economics and the need to track "free
riders", as it may be easier in larger groups to take advantage of the benefits of living ina
community without contributing to those benefits.

Mark Granovetter found in one study that more numerous weak ties can be important in
seeking information and innovation. Cliques have a tendency to have more homogeneous
opinions as well as share many common traits. This homophilic tendency was the reason for
the members of the cliques to be attracted together in the first place. However, being similar,
each member of the clique would also know more or less what the other members knew. To
find new information or insights, members of the clique will have to look beyond the clique
to its other friends and acquaintances. This is what Granovetter called "the strength of weak
ties". Guanxi is a central concept in Chinese society (and other East Asian cultures) that can
be summarized as the use of personal influence. Guanxi can be studied from a social network
approach. The small world phenomenon is the hypothesis that the chain of social
acquaintances required to connect one arbitrary person to another arbitrary person anywhere
in the world is generally short. The concept gave rise to the famous phrase six degrees of
separation after a 1967 small world experiment by psychologist Stanley Milgram. In
Milgram's experiment, a sample of US individuals were asked to reach a particular target
person by passing a message along a chain of acquaintances. The average length of
successful chains turned out to be about five intermediaries or six separation steps (the
majority of chains in that study actually failed to complete). The methods (and ethics as well)
of Milgram's experiment was later questioned by an American scholar, and some further
research to replicate Milgram's findings had found that the degrees of connection needed
could be higher. Academic researchers continue to explore this phenomenon as Internet-
based communication technology has supplemented the phone and postal systems available
during the times of Milgram. A recent electronic small world experiment at Columbia
University found that about five to seven degrees of separation are sufficient for connecting
any two people through e-mail.
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Collaboration graphs can be used to illustrate good and bad relationships between humans. A
positive edge between two nodes denotes a positive relationship (friendship, alliance, dating)
and a negative edge between two nodes denotes a negative relationship (hatred, anger).
Signed social network graphs can be used to predict the future evolution of the graph. In
signed social networks, there is the concept of "balanced™ and "unbalanced” cycles. A
balanced cycle is defined as a cycle where the product of all the signs are positive. Balanced
graphs represent a group of people who are unlikely to change their opinions of the other
people in the group. Unbalanced graphs represent a group of people who are very likely to
change their opinions of the people in their group. For example, a group of 3 people (A, B,
and C) where A and B have a positive relationship, B and C have a positive relationship,

but C and A have a negative relationship is an unbalanced cycle. This group is very likely to
morph into a balanced cycle, such as one where B only has a good relationship with A, and
both A and B have a negative relationship with C. By using the concept of balances and
unbalanced cycles, the evolution of signed social network graphs can be predicted.

One study has found that happiness tends to be correlated in social networks. When a person
is happy, nearby friends have a 25 percent higher chance of being happy themselves.
Furthermore, people at the center of a social network tend to become happier in the future
than those at the periphery. Clusters of happy and unhappy people were discerned within the
studied networks, with a reach of three degrees of separation: a person's happiness was
associated with the level of happiness of their friends' friends' friends. (See also Emotional
contagion.)

Some researchers have suggested that human social networks may have a genetic basis.
Using a sample of twins from the National Longitudinal Study of Adolescent Health, they
found that in-degree (the number of times a person is named as a friend), transitivity (the
probability that two friends are friends with one another), and betweenness centrality (the
number of paths in the network that pass through a given person) are all significantly
heritable.

Existing models of network formation cannot account for this intrinsic node variation, so the
researchers propose an alternative "Attract and Introduce™ model that can explain heritability
and many other features of human social networks.

Metrics (measures) in social network analysis

Betweenness

The extent to which a node lies between other nodes in the network. This measure takes into
account the connectivity of the node's neighbors, giving a higher value for nodes which
bridge clusters. The measure reflects the number of people who a person is connecting
indirectly through their direct links.

Bridge
Anedge is said to be a bridge if deleting it would cause its endpoints to lie in different
components of a graph.

Centrality

This measure gives a rough indication of the social power of a node based on how well they
"connect” the

network. "Betweenness”, "Closeness”, and "Degree" are all measures of centrality.
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Centralization

The difference between the number of links for each node divided by maximum possible sum
of differences. A centralized network will have many of its links dispersed around one or a
few nodes, while a decentralized network is one in which there is little variation between the
number of links each node possesses.

Closeness

The degree an individual is near all other individuals in a network (directly or indirectly). It
reflects the ability to access information through the “grapevine™ of network members. Thus,
closeness is the inverse of the sum of the shortest distances between each individual and
every other person in the network. (See also: Proxemics)

The shortest path may also be known as the "geodesic distance".

Clustering coefficient
A measure of the likelihood that two associates of a node are associates themselves. A higher
clustering coefficient indicates a greater ‘cliquishness'.

Cohesion

The degree to which actors are connected directly to each other by cohesive bonds. Groups
are identified as ‘cliques’ if every individual is directly tied to every other individual, ‘social
circles’ if there is less stringency of direct contact, which is imprecise, or as structurally
cohesive blocks if precision is wanted.[20]

Degree
The count of the number of ties to other actors in the network. See also degree (graph theory).

(Individual- level)

Density
The degree a respondent's ties know one another/ proportion of ties among an individual's

nominees. Network or global-level density is the proportion of ties in a network relative to
the total number possible (sparse versus dense networks).

Flow betweenness centrality
The degree that a node contributes to sum of maximum flow between all pairs of nodes (not
that node).

Eigenvector centrality

A measure of the importance ofa node in a network. It assigns relative scores to all nodes in
the network based on the principle that connections to nodes having a high score contribute
more to the score of the node in question.

Local bridge
Anedge is a local bridge if its endpoints share no common neighbors. Unlike a bridge, a local

bridge is contained ina cycle.

Path length
The distances between pairs of nodes in the network. Average path-length is the average of

these distances between all pairs of nodes.



7|Page

Prestige
Ina directed graph prestige is the term used to describe a node's centrality. "Degree Prestige",

"Proximity Prestige", and "Status Prestige" are all measures of Prestige. See also degree
(graph theory).

Radiality
Degree an individual’s network reaches out into the network and provides novel information

and influence.

Reach
The degree any member of a network can reach other members of the network.

Structural cohesion

The minimum number of members who, if removed from a group, would disconnect the
[21]

group.

Structural equivalence
Refers to the extent to which nodes have a common set of linkages to other nodes in the
system. The nodes don’t need to have any ties to each other to be structurally equivalent.

Structural hole

Static holes that can be strategically filled by connecting one or more links to link together
other points. Linked to ideas of social capital: if you link to two people who are not linked
you can control their communication.

Network analytic software

Network analytic tools are used to represent the nodes (agents) and edges (relationships) in a
network, and to analyze the network data. Like other software tools, the data can be saved in
external files. Additional information comparing the various data input formats used by
network analysis software packages is available at NetWiki. Network analysis

tools allow researchers to investigate large networks like the Internet, disease transmission,
etc. These tools provide mathematical functions that can be applied to the network model.

Visualization of networks

Visual representation of social networks is important to understand the network data and
convey the result of the analysis. Many of the analytic software have modules for network
visualization. Exploration of the data is done through displaying nodes and ties in various
layouts, and attributing colors, size and other advanced properties to

nodes.

Typical representation of the network data are graphs in network layout (nodes and ties).
These are not very easy-to-read and do not allow an intuitive interpretation. Various new
methods have been developed in order to display network data in more intuitive format (e.qg.
Sociomapping). Especially when using social network analysis as a tool for facilitating
change, different approaches of participatory network mapping have proven useful. Here
participants / interviewers provide network data by actually mapping out the network (with
penand paper or digitally) during the data collection session. One benefit of this approach is
that it allows researchers to collect qualitative data and ask clarifying questions while the
network data is collected. Examples of network mapping techniques are Net-Map (pen-and-
paper based) and VennMaker (digital)




8|Page

Patents

]
2
:. 1 -__,.{
i 250 per year growth
i ::_.-"ffdf
i o
i o
3 o
H -
-l
2
2
1
Py 004 200e ro = 8 a7 o
Fear Pulglished

backlog in examination

Growth in “Sochl Network™ LIS Patent Applications

e o
e LR

There has been rapid growth in the number of US
patent applications

that cover new technologies related to social
networking. The number

of published applications has been growing at about
250% per year

over the past five years. There are now over 2000
published

applications. Only about 100 of these applications
have issued as

patents, however, largely due to the multi-year

of business method patents and ethical issues connected with this

patent category



9|Page

Analysis Software

Social network analysis software

Social network analysis software is used to identify, represent, analyze, visualize, or simulate
nodes (e.g. agents, organizations, or knowledge) and edges (relationships) from various types
of input data (relational and non-relational), including mathematical models of social
networks. The output data can be saved in external files.Various input and output file formats
exist. Network analysis tools allow researchers to investigate representations of networks of
different size - from small (e.g. families, project teams) to very large (e.g. the Internet,
disease transmission). The various tools provide mathematical and statistical routines that can
be applied to the network model.

Visual representations of social networks are important to understand network data and
convey the result of the analysis. Visualization is often used as an additional or standalone
data analysis method. With respect to visualization, network analysis tools are used to change
the layout, colors, size and other properties of the network representation.

Social network tools are:

* For scholarly research tools like UCINet , Pajek , ORA, the statnet suite of packages in R,
and GUESS are popular.

» Examples of business oriented social network tools include iPoint, NetMiner , InFlow,
Keyhubs, Sentinel Visualizer, KXEN Social Network, NodeXL. For large networks with
millions of nodes, try

Sonamine or ORA. For mobile telecoms Idiro SNA Plus

Is recommended

» An open source package with GUI for Linux, Windows and Mac, is Social Networks
Visualizer or SocNetV ,developed in Qt/C++.

* Another generic open source package for Windows, Linux and OS X with interfaces to
Pythonand R is "igraph”

* Another generic open source package with [GUI] for Windows, Linux and OS X is "Tulip
* RapidNet is a generic freely available open source solution for network analysis and
interactive visual network exploration and drill-down.

* For Mac OS X a related package installer of SocNetV is available.

* For integrated egocentric data collectionand visualization A systematic overview and
comparison of a selection of software packages for social network analysis was provided by
Huisman and Van Duijn. The International Network for Social Network Analysis (INSNA)
maintains a large list of software packages and libraries.
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Produet

Main
Funectionality

Input Format

Output Format

Platform

License and cost

Notes

AllegroGraph
[25]

Graph
Database. RDF
with Gruff
visuahzation
ool

RDF

RDF

Linux, Mac,
Windows

Free and

Commercial

AllegroGraph s a
graph database_ It is
disk-based, fully
transactional OLTP
database that stores
data structured in
graphs rather than in
tables. AllegroGraph
includes a Social
Metworking Analytics
library 1281, Grufr 127)
is a freely
downloadable
triple-store browser
that displays visual
graphs of subsets of a
store’s resources and
their hnks. By
selecting particular
resources and
predicates, you can
build a visual graph
that displays a variety
of the relationships in a
triple-store. Gruff can
also display tables of
all properties of
selected resources or
generate tables with
SPARQL quernes, and
resources in the tables
can be added o the
visual graph.
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AutoMap [25]

Network Text
Analysis

Xt

DyNetML [29].

JO5Y

Any (it's in
Java)

Freeware for
non-commercial

e

Text mining tool that
supports the extraction
of relational data from
texts. Distills three
types of information:
content analysis,
semantic networks,
ontologically coded
networks. In order to
do this, a vanety of
Matural Language
Processing/
Information Extraction
routines is provided
(e.g. Stemming. Parts
of Speech Tagging,
MNamed-Entity
Recognition, usage of
user-defined
ontologies, reduction
and normalization,
Anaphora Resolution,
email data analysis,
feature wentification,
entropy computation,
reading and writing
from and w default or
user-spect fied
database).

CFinder [30]

Finding and
visualizing

communities

-Ixt

Axt, phd, ps, sve,
svg, .emf, gif,
raw, ppm, bmp,
Jpg.-png. -whmp

Linux, Mac
05 X,
Windows,
Solars

Freeware for
nom-commercial

use

A software for finding
and visualizing
overlapping dense
communities in
networks, based on the
cligue percolation
method. It enables
customizable
visualization and
allows easy strolling
over the found
communities. The
package contains a
command line version
of the program as well,
suitable for scripting.
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Commetrix [31]

Dynamic
network
visualization &

analysis

Commetrix-Files,
direct import from
data sources/DB's,
{standard DB and
File Specs

upcoming)

CSV Tables for
SNA Metrics over
time,{ Graph
Wideos per
Screencast),
Keywords, Graphs,
ete. in GUI

Any system
supporting
Java
(developed
for
Windows
Platform)

Free trial,
commercial
licenses, free
research
collaboration (in

beta-user group),

Commetrix is a
Software Framework
and Tool for Dynamic
Metwork Analysis and
Visualization. It
provides easy
exploratory access o
network graphs and has
been applied o study
co-authorship, Instant
Messaging, manual
SMA surveys, e-mail,
newsgroups, elc. Each
node and each linking
event can have
properties. e.g. types of
messages or rank of
nodes, but also types,
Topics, or e stamps.
This allows animations
of network growth,
structural change, and
topic diffusion. A short
introductory video 15
available on the

wehsite.

CoSBiLab
Graph [32]

Metwork
visualization,
analysis and
manipulation

o, txt,
AUCTINet),

speci BetaWH),
(MEMC)

dot, txt,

AN UCINe), Axt
(MEMC),
pmiPRISM). png

Windows
(.MET 3.5
reguired)

Freeware for
non-commercial

Lse

CoSBilab Graph 15 an
application for
visualization analysis
and manipulation of
networks. It provides a
high customizable
graphical
representation of
networks based on
local properties. Nodes
can be aggregated and
armanged on the space
manually or by
choosing from a list of
predefined layouts. A
set of indices is
provided for measuring
the positional
importance of nodes in
the network and they
can be combined
together defining new
mathematical
expressions. The
manual and a set of
examples are available
on the website.
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commercial ask for

licenses quotation.

General SIF (Simple SIF, XGMML, Any system | Open source An open source
complex Intersction Format, | GML, GraphML, | supporting [ (LGPL) platform for complex
network data | GraphML. Cytoscape Java network data
integration, NGMML, GML, Session(.cys), integration, analysis,
analysis, and KGML, SBML., vectorfbitmap and visualization,
visualization. | BioPAX, Excel, and | images including Originally Cytoscape
text tables jpg. png, pdf. ps. wis developed for
Cytoscape [33] (including csv, wh bivinformatics research
delimited tables) and now it 15 a problem
domain independent
platform. Many plugins
are available for users
and developers can
expand iis functionality
by writing them.
Social Network | esv, txt, XML and csv, i, XML and | Any system | Commercial A platform that can
Analysis for databases native Oracle supporting process billions {often
insurance or database Java at national scale) of
banking fraud. multi-format data
crime sources and builds
detection, social networks. In
intelligence, doing so, a single view
ax evasion, of entity (customer,
border control business. telephone,
and network bank account, vehicle,
risk based address, citizen, etc.)
targeting can be generated across
multiple, poor quality
Detica data sources. Social
NetReveal [34] networks and entities
can be scored using a
range of powerful
analytics and a full free
text entily centric
search is available
weross all records. The
platform includes
network visualization
tools, workflow and
real time rules engine
10 SCOre Incoming
events in real time.
Gruph csv, jdbe csv, graphml, Linux & Free evaluation DEX is a
database for graphviz Windows version {up to | high-performance
query Million nodes, no | graph database written
processing and restricion on in Java and C++ . One
network edges, | concurrent | of its main
analysis. user). For larger chamcleristics is its
DEX [35] graphs or performance storage

and retrieval for large
graphs, in the onder of
billions of nodes, edges
and attributes, allowing
the analysis of large

scale networks.
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Some Definitions

Betweenness

Within graph theory and network analysis, there are various measures of the centrality ofa
vertex within a graph that determine the relative importance ofa vertex within the graph (for
example, how important a person is within a social network, or, in the theory of space syntax,
how important a room is within a building or how well-used a road is within an urban
network).

There are four measures of centrality that are widely used in network analysis: degree
centrality, betweenness, closeness, and eigenvector centrality. For a review as well as
generalizations to weighted networks, see Opsahl et al.(2010).

Degree centrality

The first, and simplest, is degree centrality. Degree centrality is defined as the number of
links incident upon a node (i.e., the number of ties that a node has). Degree is often
interpreted in terms of the immediate risk of node for catching whatever is flowing through
the network (suchas a virus, or some information). If the network is directed

(meaning that ties have direction), then we usually define two separate measures of degree
centrality, namely indegree and outdegree. Indegree is a count of the number of ties directed
to the node, and outdegree is the number of ties that the node directs to others. For positive
relations such as friendship or advice, we normally interpret indegree as a form of popularity,
and outdegree as gregariousness.

For a graph (G := {V, E]l with n vertices, the degree centrality C'Dl:-v}fur vertex 17is:
deg(w
Cp(v) = E:_( 1}

Calculating degree centrality for all nodes §7in a graph takes e(vz}in a dense adjacency matrix representation of

the graph, and for edges [/ in a graph takes 'B[E}in a sparse matrix representation.
The definition of centrality can be extended to graphs. Let ©# be the node with highest degree centrality in (7 . Let
X = (Y, Z]he the 7 node connected graph that maximizes the following quantity (with }* being the node
with highest degree centrality in X
Y]
H =) Cp(y=) — Cp(y;)
j=1
Then the degree centrality of the graph (7 is defined as follows:
[Vl
Z [CI.J (vx) — Cu{’”i}]
Co(G) ==
(@) -

H is maximized when the graph X contains one node that is connected to all other nodes and all other nodes are

connected only to this one central node (a star graph). In this case

H:(n—l}[l—ﬁ]zn—ﬂ

so the degree centrality of (3 reduces to:

[V

Y [Colv+) — Cp(vs)]
C;_}[:G) — =1

n—2
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Betweenness centrality

Betweenness 15 a centrality measure of a vertex within a
graph (there is also edge betweenness, which is not
discussed here). Vertices that occur on many shortest
paths between other vertices have higher betweenness

than those that do not.
For a graph (& := {V’ E} with n vertices, the
betweenness CB [:f,[,r] for wvertex ©is computed as

follows:

. For each pair of vertices (s.t). compute all shortest
paths between them.

2. For each pair of vertices (s.t), determine the fraction of
shortest paths that pass through the vertex in guestion

(here, vertex v).

3. Sum this fraction over all pairs of vertices (s.t).

; [2] Hue (from red=0 to blue=max}) shows the node betweenness.
Or, more succinctly:

'DIB ("u) i Z 0 5t (U)

stvticy  Tat
where gt is the number of shortest paths from s to 1, and rJ',,,,l:i;] is the number of shortest paths from s to r that

pass through a vertex v. This may be normalised by dividing through the number of pairs of vertices not including v,
which is (1 — 1)(n — 2)for directed graphs and (rn — 1)(n — 2)/2for undirected graphs. For example, in an
undirected star graph, the center vertex (which is contaimed in every possible shortest path) would have a
betweenness of (n — l}[n - 2)}"2“ if normalised) while the leaves (which are contained in no shortest paths)
would have a betweenness of (.

Calculating the betweenness and closeness centralities of all the vertices in a graph involves calculating the shortest
paths between all pairs of vertices on a graph. This takes G(Vﬂdmc with the Floyd—Warshall algorithm, modified
to not only find one but count all shortest paths between two nodes. On a sparse graph, Johnson's algorithm may be
more efficient, taking O[Vz lggV + VE}lirm:. On unweighted graphs, calculating betweenness centrality takes
O(V E)time using Brandes' algorithm'™! .

In calculating betweenness and closeness centralities of all vertices in a graph, it is assumed that graphs are
undirected and connected with the allowance of loops and multiple edges. When specifically dealing with network
graphs, oftentimes graphs are without loops or multiple edges to maintain simple relationships (where edges
represent connections between two people or vertices). In this case, using Brandes' algorithm will divide final

. . .3
centrality scores by 2 to account for each shortest path being counted twice!).

Closeness centrality

In topology and related areas in mathematics, closeness is one of the basic concepts in a
topological space. Intuitively we say two sets are close if they are arbitrarily near to each
other. The concept can be defined naturally in a metric space where a notion of distance
between elements of the space is defined, but it can be generalized to topological spaces
where we have no concrete way to measure distances.

In graph theory closeness is a centrality measure ofa vertex withina graph. Vertices that are
'shallow' to other vertices (that is, those that tend to have short geodesic distances to other
vertices within the graph) have higher closeness. Closeness is preferred in network analysis to
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mean shortest-path length, as it gives higher values to more central vertices, and so is usually
positively associated with other measures such as degree.

In the network theory, closeness is a sophisticated measure of centrality. It is defined as the
mean geodesic distance (i.e., the shortest path) between a vertex vand all other vertices
reachable from it:

Z d{;[ﬂ: 'ﬁ]

eV
n—1

Where ™ 2 2 s the size of the network's ‘connectivity component' V reachable from v.
Closeness can be regarded as a measure of how long it will take information to spread from a
given vertex to other reachable vertices in the network[4].

Some define closeness to be the reciprocal of this quantity, but either way the information
communicated is the same (this time estimating the speed instead of the timespan). The
closeness for a vertex is the reciprocal of the sum of geodesic distances to all other vertices of
V[5]:

Cf.?('”:l — Z E—dr:[t‘:t] )
tEVie

Different methods and algorithms can be introduced to measure closeness, like the random-
walk centrality introduced by Noh and Rieger (2003) that is a measure of the speed with
which randomly walking messages reach a vertex from elsewhere in the network—a sort of
random-walk version of closeness centrality.
The information centrality of Stephenson and Zelen (1989) is another closeness measure,
which bears some similarity to that of Noh and Rieger. In essence it measures the harmonic
mean length of paths ending at a vertex i, which is smaller if i has many short paths
connecting it to other vertices. Dangalchev (2006), in order to measure the network
vulnerability, modifies the definition for closeness so it can be used for disconnected graphs
and the total closeness is easier to calculate:

Celv) = Z g—de(vt)

teVie

Eigenvector Centrality

Eigenvector centrality is a measure of the importance ofa node in a network. It assigns
relative scores to all nodes in the network based on the principle that connections to high-
scoring nodes contribute more to the score of the node in question than equal connections to
low-scoring nodes. Google's PageRank is a variant of the Eigenvector centrality measure.
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Using the adjacency matrix to find eigenvector centrality

Let T denote the score of the ith node. Let A,-J be the adjacency matrix of the network. Hence A,,J = lif the ith
node is adjacent to the jth node, and AQ_J = [otherwise. More generally, the entries in A can be real numbers

representing connection strengths, as in a stochastic matrix.
For the 3'4”3 node, let the centrality score be proportional to the sum of the scores of all nodes which are connected to

it. Hence

1 N
=Y D, z;= ;Zﬂfﬂj
FEMI) j=1
where ‘M[ijis the set of nodes that are connected to the 3'“3 node, N is the total number of nodes and } is a

constant. In vector notation this can be rewritten as

1
X = EAX- or as the eigenvector equation A = Ax

In general, there will be many different eigenvalues A for which an eigenvector solution
exists. However, the additional requirement that all the entries in the eigenvector be positive
implies (by the Perron—Frobenius theorem) that only the greatest eigenvalue results in the
desired centrality measure. The i"" component of the related eigenvector then gives the
centrality score of the i" node in the network. Power iteration is one of many eigenvalue
algorithms that may be used to find this dominant eigenvector.
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Equivalence relation

In mathematics, an equivalence relation is, loosely, a relation that specifies how to partition a
set such that every element of the set is in exactly one of the blocks in the partition, and the
union of all the blocks equals the original set. Two elements of the set are considered
equivalent (with respect to the equivalence relation) if and only if they are elements of the
same block.

Notation

Although various notations are used throughout the literature to
denote that two elements a and b ofa set are equivalent with
respect to an equivalence relation R, the most common are "a ~
b"and "a =b",which are used when R is the obvious relation
being referenced, and variations of "a~g b", "a=gr b", or "aRb".

Definition

A givenbinary relation ~ ona set A is said to be an equivalence
relation if and only if it is reflexive, symmetric and transitive.
Equivalently, for all a, b and ¢ in A:

* a ~ a. (Reflexivity)

* ifa~b thenb ~ a. (Symmetry)

. L. An equivalence relation partitions a set into
sifa~bandb~cthena~c. (TTanSlthlty) several disjoint subsets, called equivalence

classes. All the elements in a given eguivalence

class are equivalent among themselves, and no
element is equivalent with any element from a

different class.

A together with the relation ~ is called a setoid. The equivalence class of a under ~, denoted
[a], is defined as:

[a] = {b€ Ala~ b}
Reflexivity follows from symmetry and transitivity if for every element a€ A, there exists
another element beA such that a~b holds. However, reflexivity does not follow from
symmetry and transitivity alone. For example, let A be the set of integers, and let two
elements of A be related if they are both even numbers. This relation is clearly symmetric
and transitive, but in view of the existence of odd numbers, it is not reflexive.
Onthe other hand, let A be the set of integers, and let two elements of A be related if their
difference is even. This is an equivalence relation, which partitions the integers into two
equivalence classes, the evenand odd integers.

Examples
Equivalence relations

The following are all equivalence relations:

* "Has the same birthday as" on the set of all people.

* "Is similar to" or "congruent to" on the set of all triangles.

* "Is congruent to modulo n" on the integers.

* "Has the same image under a function" on the elements ofthe domain of the function.
* '"Is parallel to" on the set of subspaces of an affine space.
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Relations that are not equivalences

* The relation ">" between real numbers is reflexive and transitive, but not symmetric. For
example, 7> 5 does not imply that 5 > 7. It is, however, a partial order.

* The relation "has a common factor greater than 1 with" between natural numbers greater
than 1, is reflexive and symmetric, but not transitive. (Example: The natural numbers 2 and 6
have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2
and 3 do not have a common factor greater than 1).

* The empty relation R on a non-empty set X (i.e. aRb is never true) is vacuously symmetric
and transitive, but not reflexive. (If X is also empty then R is reflexive.)

* The relation "is approximately equal to" between real numbers, even if more precisely
defined, is not an equivalence relation, because although reflexive and symmetric, it is not
transitive, since multiple small changes can accumulate to become a big change. However, if
the approximation is defined asymptotically, for example by saying that two functions fand g
are approximately equal near some point if the limit of f-g is 0 at that point, then

this defines an equivalence relation.

* The relation "is a sibling of" (used to connote pairs of distinct people who have the same
parents) on the set of all human beings is not an equivalence relation. Although siblinghood is
symmetric (if A isasibling of B, then B is a sibling of A) and transitive on any 3 distinct
people (if A isasibling of Band C is a sibling of B, then A isa sibling of C, provided A is
not C), it is not reflexive (A cannot be a sibling of A).

Connections to other relations

* A partial order is a relation that is reflexive, antisymmetric, and transitive.

* A congruence relation is an equivalence relation whose domain X is also the underlying set
for an algebraic structure, and which respects the additional structure. In general, congruence
relations play the role of kernels of homomorphisms, and the quotient of a structure by a
congruence relation can be formed. In many important cases congruence relations have an
alternative representation as substructures of the structure on which they are

defined. E.g. the congruence relations on groups correspond to the normal subgroups.

* Equality is both an equivalence relation and a partial order. Equality is also the only relation
on a set that is reflexive, symmetric and antisymmetric.

* A strict partial order is irreflexive, transitive, and asymmetric.

* A partial equivalence relation is transitive and symmetric. Transitive and symmetric imply
reflexive if and only if for all aeX exists beX such that a~b.

* A dependency relation is reflexive and symmetric.

* A preorder is reflexive and transitive.

* A compatibility relation is reflexive and symmetric.

Well-definedness under an equivalence relation

If~ is an equivalence relation on X, and P(x) is a property of elements of X, such that
whenever x ~ 'y, P(X) is true if P(y) is true, then the property P is said to be well-defined or a
class invariant under the relation ~.

A frequent particular case occurs when f is a function from X to another set Y; if x 1 ~ x2
implies f(x1) = f(x2) then f is said to be a morphism for ~, a class invariant under ~, or simply
invariant under ~. This occurs, e.g. in the character theory of finite groups. The latter case
with the function f can be expressed by a commutative triangle. See also invariant. Some
authors use "compatible with ~" or just "respects ~" instead of "invariant under ~".

More generally, a function may map equivalent arguments (under an equivalence relation ~A
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) to equivalent values(under an equivalence relation ~B). Such a function is known as a
morphism from~A to ~B

Equivalence class, quotient set, partition

Let X be a nonempty set, and let a.Tb € X . Some definitions:

Equivalence class

The set of all g and b for which a ~ b holds make up an equivalence class of X by - Let [g,] = {:[: [ X|.’1': . a,}

denote the equivalence class to which a belongs. Then all elements of X equivalent to each other are also elements of

the same equivalence class.

Quotient set

The set of all possible equivalence classes of X by ~, denoted X/ ~:= {[z]|z € X} .is the quotient set of X by

~. If X is a topological space, there is a natural way of transforming X/~ into a topological space: see quotient space

for the details.

Projection

The projection of - is the function 7 ; X — X}f ~~ defined by 71'(;1:] = [;1';] which maps elements of X into their

respective equivalence classes by .
Theorem on |:|n|:1::«_]'4:v:ti1:|11!;:[lJ Let the function f: X — B be such that @ - b — fia) = fib). Then there is a unique
function g : X/~ — B, such that f = gm. If fis a surjection and a - b <+ fia) = fik), then g is a bijection.

Equivalence kernel

The equivalence kernel of a function fis the equivalence relation ~ defined by £ ~ ¢ <+ f{:z:) — _f(y) . The

equivalence kermel of an injection is the identity relation.

Partition

A partition of X is a set P of subsets of X, such that every element of X is an element of a single element of P. Each

element of P is a cell of the partition. Moreover, the elements of P are pairwise disjoint and their union is X.

Counting possible partitions
Let X be a finite set with n elements. Since every equivalence relation over X comresponds to a partition of X, and

vice versa, the number of possible equivalence relations on X equals the number of distinct partitions of X, which is
the nth Bell number B,!:

l.'T:II—'

— k"
LW

where the above is one of the ways to write the nth Bell number.
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Fundamental Theorem of Equivalence Relations

A key result links equivalence relations and partitions:

* An equivalence relation ~ on a set X partitions X.

* Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X.
In both cases, the cells of the partition of X are the equivalence classes of X by ~. Since each
element of X belongs to

a unique cell ofany partition of X, and since each cell of the partition is identical to an
equivalence class of X by ~,

each element of X belongs to a unique equivalence class of X by ~. Thus there is a natural
bijection from the set of all

possible equivalence relations on X and the set of all partitions of X

Comparing equivalence relations

If~ and = are two equivalence relations on the same set S, and a~b implies a~b for all a,b €
S, then = is said to be a coarser relation than ~, and ~ is a finer relation than =. Equivalently,
* ~ is finer than = if every equivalence class of ~ is a subset of an equivalence class of =, and
thus every equivalence class of= is a union of equivalence classes of ~.

» ~ is finer than = if the partition created by ~ is a refinement of the partition created by ~.
The equality equivalence relation is the finest equivalence relation on any set, while the
trivial relation that makes all pairs of elements related is the coarsest.

The relation "~ is finer than =" on the collection of all equivalence relations on a fixed set is
itself a partial order relation.

Generating equivalence relations

» Given any set X, there is an equivalence relation over the set [ X— X] ofall possible
functions X— X. Two such functions are deemed equivalent when their respective sets of
fixpoints have the same cardinality, corresponding to cycles of length one ina permutation.
Functions equivalent in this manner form an equivalence class on

[X—X], and these equivalence classes partition [ X—X].

* An equivalence relation ~ on X is the equivalence kernel of its surjective projectionn : X —
X/~.[4] Conversely, any surjection between sets determines a partition on its domain, the set
of preimages of singletons in the codomain. Thus an equivalence relation over X, a partition
of X, and a projection whose domain is X, are three equivalent ways of specifying the same
thing.

* The intersection of any collection of equivalence relations over X (viewed as a subset of X
x X) is also an equivalence relation. This yields a convenient way of generating an
equivalence relation: given any binary relation R on X, the equivalence relation ge nerated by
R is the smallest equivalence relation containing R. Concretely, R generates the equivalence
relationa ~ b if and only if there exist elements x1, X2, ..., xn in X such thata = x1, b = xn

, and (xi,xi+ 1)ER or (xi+1,xi)€R, i=1, ..., n-1. Note that the equivalence relation generated
in this manner can be trivial. For instance, the equivalence relation ~ generated by:

* Any total order on X has exactly one equivalence class, X itself, because x ~ y for all x and
Y;

 Any subset of the identity relation on X has equivalence classes that are the singletons of X.
* Equivalence relations can construct new spaces by "gluing things together." Let X be the
unit Cartesian square [0,1] x [0,1], and let ~ be the equivalence relation on X defined by va,
b €[0,1] ((a, 0) ~ (a, 1) A (0, b) ~ (1, b)).

Then the quotient space X/~ can be naturally identified with a torus: take a square piece of
paper, bend and glue together the upper and lower edge to forma cylinder, then bend the
resulting cylinder so as to glue together its two open ends, resulting in a torus.
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Algebraic structure

Much of mathematics is grounded in the study of equivalences, and order relations. It is very
well known that lattice theory captures the mathematical structure of order relations. Even
though equivalence relations are as ubiquitous in mathematics as order relations, the
algebraic structure of equivalences is not as well known as that of orders. The

former structure draws primarily on group theory and, to a lesser extent, on the theory of
lattices, categories, and groupoids.

Group theory

Just as order relations are grounded in ordered sets, sets closed under pairwise supremum and
infimum, equivalence relations are grounded in partitioned sets, which are sets closed under
bijections and preserve partition structure. Since all such bijections map an equivalence class
onto itself, such bijections are also known as permutations. Hence permutation groups (also
known as transformation groups) and the related notion of orbit shed light on the
mathematical structure of equivalence relations.

Let "~' denote an equivalence relation over some nonempty set A, called the universe or underlying set. Let & denote
the set of bijective functions over A that preserve the partition structure of A: Wx € A ¥Wg € & (g(x) € [x]). Then the

; 5
following three connected theorems hold:1”!

* ~ partitions A into equivalence classes. (This is the Fundamental Theorem of Equivalence
Relations, mentioned above);

* Given a partition of A, G is a transformation group under composition, whose orbits are the
cells of the partition;

* Given a transformation group G over A, there exists an equivalence relation ~ over A,
whose equivalence classes are the orbits of G.

In sum, given an equivalence relation ~ over A, there exists a transformation group G over A
whose orbits are the equivalence classes of A under ~. This transformation group
characterisation of equivalence relations differs fundamentally from the way lattices
characterize order relations. The arguments of the lattice theory operations meet and join are
elements of some universe A. Meanwhile, the arguments of the transformation group
operations composition and inverse are elements ofa set ofbijections, A — A.

Moving to groups in general, let H be a subgroup of some group G. Let ~ be anequivalence
relation on G, suchthata~ b < (ab—1 € H). The equivalence classes of ~—also called the
orbits of the action of H on G—are the right cosets of H in G. Interchanging a and b yields
the left cosets.

iProof.[8] Let function composition interpret group multiplication, and function inverse
interpret group inverse. Then G is a group under composition, meaning that Yx€ Avge G
([9(X¥)] = [X]), because G satisfies the following four conditions:

* G is closed under composition. The composition of any two elements of G exists, because
the domain and codomain ofany element of G is A. Moreover, the composition of bijections
is bijective;

* Existence of identity element. The identity function, [(x)=x, is an obvious element of G;

* Existence of inverse function. Every bijective function g has an inverse g—1

, such that gg—1=1;

» Composition associates. f(gh) = (fg)h. This holds for all functions over all domains.

Let fand g be any two elements of G. By virtue of the definition of G, [g(f(x))] = [f(x)] and
[f(x)] = [X], so that [g(f(X))] = [X]. Hence G is also a transformation group (and an
automorphism group) because function composition preserves the partitioning of A.

Related thinking can be found in Rosen (2008: chpt. 10).
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Categories and groupoids

The composition of morphisms central to category theory, denoted here by concatenation,
generalizes the composition of functions central to transformation groups. The axioms of
category theory assert that the composition of morphisms associates, and that the left and
right identity morphisms exist for any morphism. Ifa morphism f has an inverse, fis an
isomorphism, i.e., there exists a morphism g such that the compositions fg and gf equal the
appropriate identity morphisms. Hence the category-theoretic concept nearest to an
equivalence relation is a (small) category whose morphisms are all isomorphisms. Groupoid
is another name for a small category of this nature.

Let G be asetand let "~" denote an equivalence relation over G. Then we can form a
groupoid representing this equivalence relation as follows. The objects are the elements of G,
and for any two elements x and y of G, there exists a unique morphism from xto y if and
only if x~y. The elements x and y are “"equivalent" if there is an element g of the groupoid
from x to y. There may be many such g, each of which can be regarded as a distinct "proof"
that x and y are equivalent.

The advantages of regarding an equivalence relation as a special case ofa groupoid include:
» Whereas the notion of "free equivalence relation™ does not exist, that of a free groupoid on a
directed graph does. Thus it is meaningful to speak ofa "presentation of an equivalence
relation," i.e., a presentation of the corresponding groupoid;

* Bundles of groups, group actions, sets, and equivalence relations can be regarded as special
cases of the notion of groupoid, a point of view that suggests a number of analogies;

* [In many contexts "quotienting," and hence the appropriate equivalence relations often called
congruences, are important. This leads to the notion of an internal groupoid in a category.

Lattices

The possible equivalence relations on any set X, when ordered by set inclusion, form a
complete lattice, called Con X by convention. The canonical map ker: X*X — Con X, relates
the monoid XX of all functions on X and Con X. ker is surjective but not injective. Less
formally, the equivalence relation ker on X, takes each function f: X— X to its kernel ker f.
Likewise, ker(ker) is an equivalence relation on X*X. Equivalence relations and
mathematical logic Equivalence relations are a ready source of examples or counterexamples.
For example, an equivalence relation with exactly two infinite equivalence classes is an easy
example of a theory which is w-categorical, but not categorical for any larger cardinal
number. An implication of model theory is that the properties defining a relation can be
proved independent of each other (and hence necessary parts of the definition) if and only if,
for each property, examples can be found of relations not satisfying the given property while
satisfying all the other properties. Hence the three defining properties of equivalence relations
can be proved mutually independent by the following three examples:

* Reflexive and transitive: The relation < on N. Or any preorder;

» Symmetric and transitive: The relation R on N, defined as aRb < ab # 0. Or any partial
equivalence relation;

* Reflexive and symmetric: The relation R on Z, defined as aRb <~ "a — b is divisible by at
least one of 2 or 3." Or any dependency relation.

Properties definable in first-order logic that an equivalence relation may or may not possess
include:

* The number of equivalence classes is finite or infinite;

* The number of equivalence classes equals the (finite) natural number n;



24 |Page

* Allequivalence classes have infinite cardinality;
* The number of elements in each equivalence class is the natural number n

Euclidean relations

Euclid's The Elements includes the following "Common Notion 1™

Things which equal the same thing also equal one another. Nowadays, the property described
by Common Notion 1 is called Euclidean (replacing "equal” by "are inrelation with™). The
following theorem connects Euclidean relations and equivalence relations:

Theorem.
Ifarelation is Euclidean and reflexive, it is also symmetric and transitive.

Proof:

* (aRc AbRc) — aRb [a/c] = (aRa A bRa) — aRb [reflexive; erase TA] = bRa — aRb. Hence
R is symmetric.

* (aRc AbRc) — aRb [symmetry] = (aRc A cRb) — aRb. Hence R is transitive.

Hence an equivalence relation is a relation that is Euclidean and reflexive. The Elements
mentions neither symmetry nor reflexivity, and Euclid probably would have deemed the
reflexivity of equality too obvious to warrant explicit mention.

Centralization

Centralisation, or centralization (see spelling differences), is the process by which the
activities of an organisation, particularly those regarding planning decision-making, become
concentrated within a particular location and/or group. In political science, this refers to the
concentration of a government's power - both geographically and politically, into a
centralised government. In neuroscience, centralization refers to the evolutionary trend of the
nervous system to be partitioned into a central nervous system and peripheral nervous system.
In business studies centralisation and decentralisation is about where decisions are taken in
the chain of command.

Clustering coefficient

In graph theory, a clustering coefficient is a measure of degree to which nodes in a grap h tend
to cluster together. Evidence suggests that in most real-world networks, and in particular
social networks, nodes tend to create tightly knit groups characterised by a relatively high
density of ties (Holland and Leinhardt, 1971P. W. Holland and S. Leinhardt (1998).
"Transitivity in structural models of small groups". Comparative Group Studies 2: 107-124.;
Watts and Strogatz, 1998D. J. Watts and Steven Strogatz (June 1998). "Collective dynamics
of 'small-world' networks". Nature (journal)Nature 393 (6684): 440-442. doi:10.1038/30918.
PMID 9623998. .). Inreal-world networks, this likelihood tends to be greater than the
average probability of a tie randomly established between two nodes (Holland and Leinhardt,
1971; Watts and Strogatz, 1998).Two versions of this measure exist: the global and

the local. The global version was designed to give an overall indication of the clustering in
the network, whereas the local gives an indication of the embeddedness of single nodes.
Global clustering coefficient The global clustering coefficient is based on triplets of nodes. A
triplet is three nodes that are connected by either two (open triplet) or three (closed triplet)
undirected ties. A triangle consists of three closed triplets, one centred on each of the nodes.
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The global clustering coefficient is the number of closed triplets (or 3 x triangles) over the
total number of triplets (both open and closed). The first attempt to measure it was made by
Luce and Perry (1949)R. D. Luce and A. D. Perry (1949). "A method of matrix analysis of
group structure™. Psychometrika 14 (1): 95-116. doi:10.1007/BF02289146.

PMID 18152948.. This measure gives an indication of the clustering in the whole network
(global), and can be applied to both undirected and directed networks (often called
transitivity, see Wasserman and Faust, 1994, page 243Stanley Wasserman, Kathrine Faust,
1994. Social Network Analysis: Methods and Applications. Cambridge: Cambridge
University Press.). Formally, it has been defined as: C = \frac{3 \times \mbox{number of
triangles} }{\mbox{number of connected triples of vertices}} = \frac{\mbox{number of
closed triplets}}{\mbox{number of connected triples of vertices}}.A generalisation to
weighted networks was proposed by Opsahl and Panzarasa (2009) Tore Opsahl and Pietro
Panzarasa (2009). "Clustering in Weighted Networks". Social Networks 31 (2): 155-163.
doi:10.1016/j.socnet.2009.02.002. ., and a redefinition to two-mode networks (both

binary and weighted) by Opsahl (2009) Tore Opsahl (2009). "Clustering in Two-mode
Networks". Conference and Workshop on Two-Mode Social Analysis (Sept 30-Oct 2, 2009).
.. Local clustering coefficient Example local clustering coefficient onan undirected graph.
The local clustering coefficient of the light blue node is computed as the proportion of
connections among its neighbors which are actually realized compared with the number of all
possible connections. In the figure, the light blue node has three neighbours, which can have
a maximum of 3 connections among them. In the top part of the figure all three possible
connections are realised (thick black segments), giving a local clustering coefficient of 1. In
the middle part of the figure only one connection is realized (thick black line) and 2
connections are missing (dotted red lines), giving a local cluster coefficient of 1/3. Finally,
none of the possible connections among the neighbours of the light blue node are realised,
producing a local clustering coefficient value of 0. The local clustering coefficient of a vertex
(graph theory)vertex in a Graph (mathematics)graph quantifies how close its Neighbourhood
(graph theory)neighbors are to being a Clique (graph theory)clique (complete graph). Duncan
J. Watts and Steven Strogatz introduced the measure in 1998 to determine whether a graph is
a small-world network.A graph G=(V,E) formally consists of a set of vertices V and a set of
edges E betweenthem. Anedge e_{ij} connects vertex i with vertex j. The Neighbourhood
(graph theory)neighbourhood N for a vertex v_i is defined as its immediately connected
neighbours as follows:N_i=\{v_j :e_{ij} \in E\and e_{ji} \in E\}. The degree
(mathematics)degree k_i ofa vertex is defined as the number of vertices, [N_i, in its
neighbourhood N_i. The local clustering coefficient C_i for a vertex v_i is then given by the
proportion of links between the vertices within its neighbourhood divided by the number of
links that could possibly exist between them. For a directed graph, e_{ij} is distinct from
e_{ji}, and therefore for each neighbourhood N_i there are k_i(k_i-1) links that could exist
among the vertices within the neighbourhood (k_i is the total (in + out) degree of the

vertex). Thus, the local clustering coefficient for directed graphs is givenasC_i=
\frac{|\{e_{JkF\}Hk_i(k_i-1)} : v_j,v_k\in N_i, e_{jk} \in E.An undirected graph has the
property thate_{ij} and e_{ji} are considered identical. Therefore, if a vertex v_i has k_i
neighbours, \frac{k i(k_i-1)}{2} edges could exist among the vertices within the
neighbourhood. Thus, the local clustering coefficient for undirected graphs can be defined
asC_i= \frac{2|\{e_{jk}\}}Hk i(k_i-1)} : v j,v_k\in N_i,e_{jk} \in E.Let\lambda_G(v) be
the number of triangles on v \in V(G) for undirected graph G. That is, \lambda_G(v) is the
number of subgraphs of G with 3 edges and 3 vertices, one of which is v. Let \tau_G(v) be
the number of triples on v\in G. That is, \tau_G(V) is the number of subgraphs (not
necessarily induced) with 2 edges and 3 vertices, one of which is vand such that v is incident
to both edges. Then we can also define the clustering coefficientas C_i=
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\frac{\lambda_G(v)}{\tau_G(Vv)}.It is simple to show that the two preceding definitions are
the same, since \tau_G(v) = C({k_i},2) = \frac{1}{2}k_i(k_i-1). These measures are 1 if
every neighbour connected to v_i is also connected to every other vertex within the
neighbourhood, and O if no vertex that is connected to v_i connects to any other vertex that is
connected to v_i. Network average clustering coefficient The clustering coefficient for the
whole network is given by Watts and Strogatz as the average of the local clustering
coefficients ofall the vertices n : \bar{C} = \frac{1}{n}\sum_{i=1}*{n} C_i.A graphis
considered Small-world networksmall-world, if its average clustering coefficient \bar{C} is
significantly higher than a random graph constructed on the same vertex set, and if the graph
has approximately the same distance (graph theory)mean-shortest path length as its
corresponding random graph. A generalisation to weighted networks was proposed by Barrat
etal. (2004)A. Barrat and M. Barthelemy and R. Pastor-Satorras and A. Vespignani (2004).
"The architecture of complex weighted networks". Proceedings of the National Academy of
Sciences 101 (11): 3747-3752. doi:10.1073/pnas.0400087101. PMID 15007165.

PMC 374315., and a redefinition to bipartite graphs (also called two-mode networks) by
Latapy et al. (2008)M. Latapy and C. Magnien and N. Del Vecchio (2008). "Basic Notions
for the Analysis of Large Two-mode Networks". Social Networks 30 (1): 31-48.
doi:10.1016/j.socnet.2007.04.006. and Opsahl (2009) Tore Opsahl (2009). "Clustering in
Two-mode Networks™

Conference and Workshop on Two-Mode Social Analysis (Sept 30-Oct 2, 2009). .. This
formula is not, by default, defined for graphs with isolated vertices; see Kaiser, (2008)Marcus
kaiser (2008). "Mean clustering coefficients: the role of isolated nodes and leafs on clustering
measures for small-world networks". New Journal of Physics 10 (8): 083042.
doi:10.1088/1367-2630/10/8/083042. . and Barmpoutis et al. D.Barmpoutis and R.M. Murray
(2010). "Networks with the Smallest Average Distance and the Largest Average Clustering™.
ArXiv Digital Library. . The networks with the largest possible average clustering coefficient
are found to have a modular structure, and at the same time, they have the smallest possible
average distance among the different nodes.
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Structural cohesion

Structural cohesion is the sociological and graph theory conception and measurement of
cohesion for maximal social group or graphical boundaries where related elements cannot be
disconnected except by removal of a certain minimal number of other nodes. The solution to
the boundary problem for structural cohesion is found by the vertex-cut version of Menger's
theorem. The boundaries of structural endogamy are a special case of structural

cohesion. It is also useful to know that k-cohesive graphs (or k-components) are always a
subgraph of a k-core, although a k-core is not always k-cohesive. A k-core is simply a
subgraph in which all nodes have at least k neighbors but it need not even be connected.

Software

Cohesive.blocking is the R program for computing structural cohesion according to the
Moody-White (2003) algorithm. This wiki site provides numerous examples and a tutorial for
use with R.

Examples
Some illustrative examples are presented in the gallery below:

The f-node ring in the graph has The 6-node component (1-connected ) has an A f-node cligue is a
connectivity-2 or a level 2 of embedded 2-component, nodes 1-5 S-component, structural
structural cohesion because the cohesion 5

removal of two nodes is needed

to disconnect it

Perceived cohesion

Perceived Cohesion Scale (PCS) is a six item scale that is used to measure structural cohesion
in groups. In 1990, Bollen and Hoyle used the PCS and applied it to a study of large groups
which were used to assess the psychometric qualities of their scale.
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Mathematics of Graphs

Graph (mathe matics)

In mathematics, a graph is an abstract
representation of a set of objects where some
pairs of the objects are connected by links. The
interconnected objects are represented by
mathematical abstractions called vertices, and the
links that connect some pairs of vertices are
called edges. Typically, a graph is depicted

in diagrammatic form as a set of dots for the
vertices, joined by lines or curves for the edges.
Graphs are one of the objects of study in discrete
mathematics. The edges may be directed
(asymmetric) or undirected (symmetric). For
example, if the vertices represent people at a
party, and there is an edge between two people if
they shake hands, then this is an undirected graph, because if person A shook hands with
person B, then person B also shook hands with person A. On the other hand, if the vertices
represent people at a party, and there is an edge from person A to person B when person A
knows of person B, then this graph is directed, because knowing of someone is not
necessarily a symmetric relation (that is, one person knowing ofanother person does not
necessarily imply the reverse; for example, many fans may know of a celebrity, but the
celebrity is unlikely to know of all their fans). This latter type of graph is called a directed
graph and the edges are called directed edges or arcs; in contrast, a graph where the edges are
not directed is called undirected. Vertices are also called nodes or points, and edges are also
called lines. Graphs are the basic subject studied by graph theory. The word “graph™ was first
used in this sense by James Joseph Sylvester in 1878.

A drawing of a labeled graph on 6 vertices and 7 edges.

Definitions
Definitions in graph theory vary. The following are some of the more basic ways of defining
graphs and related mathematical structures.

Graph

In the most common sense of the term,a graph is an ordered pair

G = (V, E) comprising a set V of vertices or nodes together with a set E of
edges or lines, which are 2-element subsets of V (i.e., an edge is related
with two vertices, and the relation is represented as unordered pair of the
vertices with respect to the particular edge). To avoid ambiguity, this type
of graph may be described precisely as undirected and simple.

Other senses of graph stem from different conceptions of the edge set. In
one more generalized notion, E is a set together with a relationof
incidence that associates with each edge two vertices. In another
generalized notion, E is a multiset of unordered pairs of (not necessarily
distinct) vertices. Many authors call this type of object a multigraph or
pseudograph.

All of these variants and others are described more fully below.

The vertices belonging to an edge are called the ends, endpoints, or end

A general example of a graph
[actually, a pseudograph) with
three vertices and six edges.
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vertices of the edge. A vertex may exist in a graph and not belong to an edge.

V and E are usually taken to be finite, and many of the well-known results are not true (or are
rather different) for infinite graphs because many of the arguments fail in the infinite case.
The order ofa graph is (the number of vertices). A graph's size is, the number ofedges. The
degree ofa vertex is the number of edges that connect to it, where an edge that connects to
the vertex at both ends (a loop) is counted twice. For anedge {u, v}, graph theorists usually
use the somewhat shorter notation uv.

Adjacency relation

The edges E of an undirected graph G induce a symmetric binary relation~ on V that is
called the adjacency relation of G. Specifically, for each edge {u, v} the vertices uand v are
said to be adjacent to one another, which is denoted u ~ v.

Types of graphs

Distinction in terms of the main definition

As stated above, in different contexts it may be useful to define the term graph with different
degrees of generality. Whenever it is necessary to draw a strict distinction, the following
terms are used. Most commonly, in modern texts in graph theory, unless stated otherwise,
graph means "undirected simple finite graph™ (see the definitions below).

Undirected graph
A graph in which edges have no orientation, i.e., they are not ordered pairs, but sets {u, v} (or
2-multisets) of vertices.

Directed graph

A directed graph or digraph is an ordered pair D = (V, A) with

» V a set whose elements are called vertices or nodes, and

* A a set ofordered pairs of vertices, called arcs, directed

edges, or arrows. Anarc a = (X, y) is considered to be directed

from x to y; y is called the head and x is called the tail of the

arc; y is said to be a direct successor of x, and x is said to be

a direct predecessor of y. Ifa path leads from xto y, theny is

said to be a successor of x and reachable from x, and x is said

to be a predecessor of y. The arc (y, x) is called the arc (X, y) A directed graph.
inverted. A directed graph D is called symmetric if, for every

arc in D, the corresponding inverted arc also belongs to D. A

symmetric loopless directed graph D = (V, A) is equivalent to a simple undirected graph

G = (V, E), where the pairs of inverse arcs in A correspond 1-to-1 with the edges in E; thus
the edges in G number |E| = |A|/2, or half the number of arcs in D.

A variation on this definition is the oriented graph, in which not more than one of (X, y) and
(y, X) may be arcs.

Mixed graph

A mixed graph G is a graph in which some edges may be directed and some may be
undirected. It is written as an ordered triple G = (V, E, A) with V, E, and A defined as above.
Directed and undirected graphs are special cases.
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Multigraph

A loop is anedge (directed or undirected) which starts and ends on the same vertex; these
may be permitted or not permitted according to the application. In this context, an edge with
two different ends is called a link.

The term "multigraph” is generally understood to mean that multiple edges (and sometimes
loops) are allowed. Where graphs are defined so as to allow loops and multiple edges, a
multigraph is often defined to mean a graph without loops, however, where graphs are
defined so as to disallow loops and multiple edges, the term is often defined to mean a
"graph" which can have both multiple edges and loops, although many use the term
"pseudograph” for this meaning.

Simple graph

A simple graph with three vertices and three edges. Each vertex

has degree two, so this is also a regular graph.

As opposed to a multigraph, a simple graph is an undirected

graph that has no loops and no more than one edge between any

two different vertices. Ina simple graph the edges of the graph

forma set (rather than a multiset) and each edge is a pair of

distinct vertices. Ina simple graph with n vertices every vertex

has a degree that is less than n (the converse, however, is not

true - there exist non-simple graphs with n vertices in which A simple graph with three vertices
every vertex has a degree smaller than n). and three edges. Each vertex has

degree two, so this is also a
regular graph.

Weighted graph

A graph is a weighted graph if a number (weight) is assigned to
each edge. Such weights might represent, for example, costs, lengths or capacities, etc.
depending on the problem.

The weight of the graph is the sum of the weights given to all edges.

Half-edges, loose edges
In exceptional situations it is even necessary to have edges with only one end, called half-
edges, or no ends (loose edges); see for example signed graphs and biased graphs.

Important graph classes

Regular graph

Aregular graph is a graph where each vertex has the same number of neighbors, i.e., every
vertex has the same degree or valency. A regular graph with vertices of degree k is called a
k-regular graph or regular graph of degree k.

Complete graph
Complete graphs have the feature that each pair of vertices has an edge connecting
them.

Finite and infinite graphs

A finite graph is a graph G = (V, E) such that VV and E are finite sets. An infinite

graph is one with an infinite set of vertices or edges or both. Most commonly in graph theory
it is implied that the graphs discussed are finite. If the graphs are infinite, that is usually
specifically stated.
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Graph classes in terms of connectivity

Inan undirected graph G, two vertices uand v are called connected if G contains a

path from uto v. Otherwise, they are called disconnected. A graph is called connected if
every pair of distinct vertices in the graph is connected; otherwise, it is called disconnected.
A graph is called k-vertex-connected or k-edge-connected if no set of k-1 vertices
(respectively, edges) exists that disconnects the graph. A k-vertex-connected graph is often
called simply k-connected. A directed graph is called weakly connected if replacing all of its
directed edges with undirected edges produces a connected (undirected) graph. It is strongly
connected or strong if it contains a directed path from uto vand a directed path from vto u
for every pair of vertices u, v.

Properties of graphs

Two edges of a graph are called adjacent (sometimes coincident) if they share a common
vertex. Two arrows ofa directed graph are called consecutive if the head of the first one is at
the nock (notch end) of the second one. Similarly, two vertices are called adjacent if they
share a common edge (consecutive if they are at the notch and at the head of an arrow), in
which case the common edge is said to join the two vertices. Anedge and a vertex on that
edge are called incident.

The graph with only one vertex and no edges is called the trivial graph. A graph with only
vertices and no edges is known as an edgeless graph. The graph with no vertices and no edges
is sometimes called the null graph or empty graph, but the terminology is not consistent and
not all mathematicians allow this object. Ina weighted graph or digraph, each edge is
associated with some value, variously called its cost, weight, length or

other term depending on the application; such graphs arise in many contexts, for example in
optimal routing problems such as the traveling salesman problem.

Normally, the vertices ofa graph, by their nature as elements of a set, are distinguishable.
This kind of graph may be called vertex-labeled. However, for many questions it is better to
treat vertices as indistinguishable; then the graph may be called unlabeled. (Of course, the
vertices may be still distinguishable by the properties of the graph itself, Graph (mathematics)
66 e.g., by the numbers of incident edges). The same remarks apply to edges, so that graphs
which have labeled edges are called edge-labeled graphs. Graphs with labels attached to
edges or vertices are more generally designated as labeled. Consequently, graphs in which
vertices are indistinguishable and edges are indistinguishable are called unlabeled. (Note that
in the literature the term labeled may apply to other kinds of labeling, besides that which
serves only to distinguish different vertices or edges.)

The diagram at right is a graphic representation of the following
graph:

V={1234,5,6}

E=.

by a directed multigraph in which the objects of the

category represented as vertices and the morphisms as e
directed edges. Then, the functors between categories .o

* In category theory a small category can be represented a

induce some, but not necessarily all, of the digraph

morphisms of the graph. e
* In computer science, directed graphs are used to e
represent knowledge (e.g., Conceptual graph), finite

statemachines, and many other discrete structures. A graph with six nodes.
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* A binary relation R ona set X defines a directed graph. Anelement x of X is a direct
predecessor ofanelement y of X iff xRy

Important graphs

Basic examples are:

* Ina complete graph, each pair of vertices is joined by an edge; that is, the graph contains all
possible edges.

* In a bipartite graph, the vertex set can be partitioned into two sets, W and X, so that no two
vertices in W are adjacent and no two vertices in X are adjacent. Alternatively, it isa graph
with a chromatic number of 2.

* Ina complete bipartite graph, the vertex set is the union of two disjoint sets, W and X, so
that every vertex in W is adjacent to every vertex in X but there are no edges within W or X.
* In a linear graph or path graph of length n, the vertices can be listed in order, v0, vl

, .., VN, SO that the edges are v i—1 vi for eachi=1, 2, ..., n. Ifa linear graph occurs as a
subgraph of another graph, it is a path in that graph.

* Ina cycle graph of length n> 3, vertices can be named vl, ..., vn so that the edges are vi—1
viforeachi=2,...,ninadditionto vnvl. Cycle graphs can be characterized as connected 2-
regular graphs. If a cycle graph occurs as a subgraph of another graph, it is a cycle or circuit
in that graph.

* A planar graph is a graph whose vertices and edges can be drawn in a plane such that no
two of the edges

intersect (i.e., embedded ina plane).

* A tree is a connected graph with no cycles.

* A forest is a graph with no cycles (ie. the disjoint union of one or more trees).

More advanced kinds of graphs are:

* The Petersen graph and its generalizations

* Perfect graphs

* Cographs

* Other graphs with large automorphism groups: vertex-transitive, arc-transitive, and
distance-transitive graphs.

* Strongly regular graphs and their generalization distance-regular graphs.

Ope rations on graphs

There are several operations that produce new graphs from old ones, which might be
classified into the following categories:

* Elementary operations, sometimes called "editing operations" on graphs, which create a
new graph from the original one by a simple, local change, such as addition or deletion ofa
vertex or an edge, merging and splitting of vertices, etc.

* Graph rewrite operations replacing the occurrence of some pattern graph within the host
graph by an instance of the corresponding replacement graph.

* Unary operations, which create a significantly new graph from the old one. Examples:

* Line graph

* Dual graph

* Complement graph

* Binary operations, which create new graph from two initial graphs. Examples:
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* Disjoint union of graphs

* Cartesian product of graphs

* Tensor product of graphs

* Strong product of graphs

* Lexicographic product of graphs

Generalizations
Ina hypergraph, an edge can join more than two vertices.

An undirected graph can be seen as a simplicial complex consisting of 1-simplices (the
edges) and 0-simplices (the vertices). As such, complexes are generalizations of graphs since
they allow for higher-dimensional simplices. Every graph gives rise to a matroid. In model
theory, a graph is just a structure. But in that case, there is no limitation on the number of
edges: it can be any cardinal number, see continuous graph. In computational biology, power
graph analysis introduces power graphs as an alternative representation of

undirected graphs.

Bridge (graph theory)

In graph theory, a bridge (also known as a cut-edge or cut arc
or an isthmus) is an edge whose deletion increases the
number of connected components. Equivalently, an edge is a
bridge if and only if it is not contained in any cycle.

A graph is said to be bridgeless if it contains no bridges. It is
easy to see that this is equivalent to 2-edge-connectivity of
each nontrivial component.

Cycle double cover conjecture

An important open problem involving bridges is the cycle
double cover conjecture, due to Seymour and Szekeres (1978
and 1979, independently), which states that every bridgeless
graph admits a set of cycles which contains each edge exactly
twice.

Bridge-Finding Algorithm

An o(lvl+|El) algorithm for finding bridges ina
connected graph was found by Tarjan in 1974.

Definitions: A non-tree edge between v and W is denoted
by ¥~ W Anin-tree edge with as the parent ¥ is
denoted by vV —* W-

-0
O

A graph with & bnidges (highlighted in red)

An undirected connected graph
with no cut edges
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.MD{'U} =1+ Z N-D{w} where 17is the parent node of w.

L{v) = min({vﬂju}fﬂ{v] +1}U{L(w) | v = w}U{w | v— —w})

I, detects connections to nodes further left or further down in the tree.

H(v) = max({v} U{H(w) |v = w}U{w | v— —w})
H detects connections to nodes further right or further up in the tree.
Algorithm:

l. Find a spanning tree of {3

2. Create a rooted tree J" from the spanning tree

3. Traverse the tree T'in postorder and number the nodes. Parent nodes in the tree now have higher numbers than
child nodes.

4. for each node from | to 1 (the root node of the tree) do:

. Compute the number of descendants N'D{UJ for this node.
2. Compute L{v)and H(v)
3. for each Wsuch that ¥ — W:if H(w) < wand L{w) > w — ND(w)then (v, w)is a bridge.

Cutarcin trees
Anedge orarce =uvofatree Gis acutarc of G ifand only if the degree of the vertices u
and v are greater than 1. Cut arcs are also defined for directed graphs.

Graph theory

In mathematics and computer science,

graph theory is the study of graphs:

mathematical structures used to model

pairwise relations between objects froma

certain collection. A "graph" in this context

refers to a collection of vertices or 'nodes' 0
and a collection of edges that connect pairs

of vertices. A graph may be undirected,

meaning that there is no distinction

between the two vertices associated with

each edge, or its edges may be directed

from one vertex to another; see graph

(mathematics) for more detailed definitions

and for other variations in the types of graphs that are
commonly considered. The graphs studied in graph
theory should not be confused with “"graphs of functions"” and other kinds of graphs. Graphs

are one of the prime objects of study in Discrete Mathematics. Refer to Glossary of graph
theory for basic definitions in graph theory.

A drawing of a graph
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History
The paper written by Leonhard Euler on the Seven

Bridges of Konigsberg and published in 1736 is regarded
as the first paper in the history of graph theory. This
paper, as well as the one written by Vandermonde on the
knight problem, carried on with the analysis situs initiated
by Leibniz. Euler's formula relating the number of edges,
vertices, and faces of a convex polyhedron was

studied and generalized by Cauchy and L'Huillier,

and is at the origin of topology.

More than one century after Euler's paper on the bridges
of Konigsberg and while Listing introduced topology,
Cayley was led by the study of particular analytical forms The Konigsberg Bridge problem
arising from differential calculus to study a particular

class of graphs, the trees. This study had many implications in theoretical chemistry. The
involved techniques mainly concerned the enumeration of graphs having particular
properties. Enumerative graph theory then rose from the results of Cayley and the
fundamental results published by Pélya between 1935 and 1937 and the generalization of
these by De Bruijn in 1959. Cayley linked his results on trees with the contemporary studies
of chemical composition. The fusion of the ideas coming from mathematics with those
coming from chemistry is at the origin of a part of the standard terminology of graph theory.
In particular, the term "graph” was introduced by Sylvester in a paper published in 1878 in
Nature, where he draws an analogy between "quantic invariants" and "co-variants" of algebra
and molecular diagrams:

"[...] Every invariant and co-variant thus becomes expressible by a graph precisely identical
with a Kekuléan diagram or chemicograph. [...] | give a rule for the geometrical
multiplication of graphs, i.e. for constructing a graph to the product of in- or co-variants
whose separate graphs are given. [...]" (italics as in the original). One of the most famous and
productive problems of graph theory is the four color problem: "Is it true that any map

drawn in the plane may have its regions colored with four colors, in such a way that any two
regions having a common border have different colors?" This problem was first posed by
Francis Guthrie in 1852 and its first written record is in a letter of De Morgan addressed to
Hamilton the same year. Many incorrect proofs have been proposed,

including those by Cayley, Kempe, and others. The study and the generalization of this
problem by Tait, Heawood, Ramsey and Hadwiger led to the study of the colorings of the
graphs embedded on surfaces with arbitrary genus. Tait's reformulation generated a new class
of problems, the factorization problems, particularly studied by Petersen

and KOnig. The works of Ramsey on colorations and more specially the results obtained by
Turan in 1941 was at the origin of another branch of graph theory, extremal graph theory.
The four color problem remained unsolved for more thana century. In 1969 Heinrich Heesch
published a method for solving the problem using computers. A computer-aided proof
produced in 1976 by Kenneth Appel and Wolfgang Haken makes fundamental use of the
notion of "discharging" developed by Heesch.

The proof involved checking the properties of 1,936 configurations by computer, and was not
fully accepted at the time due to its complexity. A simpler proof considering only 633
configurations was given twenty years later by Robertson, Seymour, Sanders and Thomas.
The autonomous development of topology from 1860 and 1930 fertilized graph theory back
through the works of Jordan, Kuratowskiand Whitney. Another important factor of common
development of graph theory and topology came from the use of the techniques of modern
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algebra. The first example of such a use comes from the work of the physicist Gustav
Kirchhoff, who published in 1845 his Kirchhoffs circuit laws for calculating the voltage and
current in electric circuits. The introduction of probabilistic methods in graph theory,
especially in the study of Erdés and Rényi of the asymptotic probability of graph
connectivity, gave rise to yet another branch, known as random graph theory, which

has been a fruitful source of graph-theoretic results.

Drawing graphs

Graphs are represented graphically by drawing a dot for every vertex, and drawing an arc
between two vertices if they are connected by an edge. Ifthe graph is directed, the direction
is indicated by drawing an arrow. A graph drawing should not be confused with the graph
itself (the abstract, non-visual structure) as there are several ways to structure the graph
drawing. All that matters is which vertices are connected to which others by how many
edges and not the exact layout. In practice it is often difficult to decide if two drawings
represent the same graph. Depending on the problem domain some layouts may be better
suited and easier to understand than others.

Graph-theoretic data structures

There are different ways to store graphs in a computer system. The data structure used
depends on both the graph structure and the algorithm used for manipulating the graph.
Theoretically one can distinguish between list and matrix structures but in concrete
applications the best structure is often a combination of both. List structures are

often preferred for sparse graphs as they have smaller memory requirements. Matrix
structures on the other hand provide faster access for some applications but can consume
huge amounts of memory.

List structures

Incidence list
The edges are represented by an array containing pairs (tuples if directed) of vertices (that the edge connects)
and possibly weight and other data. Vertices connected by an edge are said to be adjacent.

Adjacency list
Much like the incidence list, each vertex has a list of which vertices it is adjacent to. This causes redundancy
in an undirected graph: for example, if vertices A and B are adjacent, A's adjacency list contains B, while B's

list contains A. Adjacency queries are faster, at the cost of extra storage space.

Matrix structures

Incidence matrix
The graph is represented by a matrix of size [V | (number of vertices) by |El (number of edges) where the entry
[vertex, edge] contains the edge's endpoint data (simplest case: 1 - incident, () - not incident).

Adjacency matrix
This is an n by » matrix A, where n is the number of vertices in the graph. If there is an edge from a vertex x to
a vertex v, then the element @ yis 1 (or in general the number of xy edges), otherwise it is 0. In computing,
this matrix makes it easy to find subgraphs, and to reverse a directed graph.

Laplacian matrix or Kirchhoff matrix or Admittance matrix
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This is defined as I} = A, where D is the diagonal degree matrix. It explicitly contains both adjacency
information and degree information. (However, there are other, similar matrices that are also called "Laplacian
matrices" of a graph.)

Distance matrix
A symmetric n by n matrix D whose element dﬂ::yis the length of a shortest path between x and : if there is

no such path dm:u= infinity. It can be derived from powers of A

d.y = min{n | A*[z,y] # 0}.

Proble ms in graph theory

Enume ration
There is a large literature on graphical enumeration: the problem of counting graphs meeting
specified conditions. Some of this work is found in Harary and Palmer (1973).

Subgraphs, induced subgraphs, and minors

A common problem, called the subgraph isomorphism problem, is finding a fixed graph as a
subgraph in a given graph. One reason to be interested insuch a question is that many graph
properties are hereditary for subgraphs, which means that a graph has the property if and only
if all subgraphs have it too. Unfortunately, finding maximal subgraphs of a certain kind is
often an NP-complete problem.

* Finding the largest complete graph is called the clique problem (NP-complete).

A similar problem is finding induced subgraphs in a given graph. Again, some important
graph properties are hereditary with respect to induced subgraphs, which means that a graph
has a property if and only if all induced subgraphs also have it. Finding maximal induced
subgraphs of a certain kind is also often NP-complete. For example,

* Finding the largest edgeless induced subgraph, or independent set, called the independent
set problem (NP-complete).

Still another such problem, the minor containment problem, is to find a fixed graph as a
minor of a given graph. A minor or subcontraction of a graph is any graph obtained by taking
a subgraph and contracting some (or no) edges.

Many graph properties are hereditary for minors, which means that a graph has a property if
and only ifall minors have it too. A famous example:

+ A graph is planar if it contains as a minor neither the complete bipartite graph K3 3(See the Three-cottage

problem) nor the complete graph Ky
Another class of problems has to do with the extent to which various species and generalizations of graphs are

determined by their point-deleted subgraphs, for example:

= The reconstruction conjecture
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Graph coloring

Many problems have to do with various ways of coloring graphs, for example:
* The four-color theorem

* The strong perfect graph theorem

* The Erdés—Faber—Lovasz conjecture (unsolved)

* The total coloring conjecture (unsolved)

* The list coloring conjecture (unsolved)

» The Hadwiger conjecture (graph theory) (unsolved)

Route problems

* Hamiltonian path and cycle problems

* Minimum spanning tree

* Route inspection problem (also called the "Chinese Postman Problem™)
* Seven Bridges of Konigsberg

* Shortest path problem

* Steiner tree

* Three-cottage problem

* Traveling salesman problem (NP-complete)

Network flow

There are numerous problems arising especially from applications that have to do with
various notions of flows in networks, for example:

* Max flow min cut theorem

Visibility graph problems
* Museum guard problem

Covering problems

Covering problems are specific instances of subgraph-finding problems, and they tend to be
closely related to the clique problem or the independent set problem.

* Set cover problem

* Vertex cover problem

Graph classes

Many problems involve characterizing the members of various classes of graphs.
Overlapping significantly with other types in this list, this type of problem includes, for
instance:

* Enumerating the members ofa class

* Characterizing a class in terms of forbidden substructures

* Ascertaining relationships among classes (e.g., does one property of graphs imply another)
* Finding efficient algorithms to decide membership ina class

* Finding representations for members ofa class

Applications

Graphs are among the most ubiquitous models of both naturaland human-made structures.
They can be used to model many types of relations and process dynamics in physical,
biological and social systems. Many problems of practical interest can be represented by
graphs.
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In computer science, graphs are used to represent networks of communication, data
organization, computational devices, the flow of computation, etc. One practical example:
The link structure of a website could be represented by a directed graph. The vertices are the
web pages available at the website and a directed edge from page A to page B

exists if and only if A contains a link to B. A similar approach can be taken to problems in
travel, biology, computer chip design, and many other fields. The development of algorithms
to handle graphs is therefore of major interest in computer science. There, the transformation
of graphs is often formalized and represented by graph rewrite systems.

They are either directly used or properties of the rewrite systems (e.g. confluence) are
studied. Complementary to graph transformation systems focussing on rule-based in-memory
manipulation of graphs are graph databases geared towards transaction-safe, persistent
storing and querying of graph-structured data.

Graph-theoretic methods, in various forms, have proven particularly useful in linguistics,
since natural language often lends itself well to discrete structure. Traditionally, syntax and
compositional semantics follow tree-based structures, whose expressive power lies in the
Principle of Compositionality, modeled in a hierarchical graph. Within lexical semantics,
especially as applied to computers, modeling word meaning is easier when a given word is
understood in terms of related words; semantic networks are therefore important in
computational linguistics. Still other methods in phonology (e.g. Optimality Theory, which
uses lattice graphs) and morphology (e.g. finite-state morphology, using finite-state
transducers) are common in the analysis of language as a graph. Indeed, the usefulness of this
area of mathematics to linguistics has borne organizations such as TextGraphs [10], as well
as various 'Net' projects, such as WordNet, VerbNet, and others.

Graph theory is also used to study molecules in chemistry and physics. In condensed matter
physics, the three dimensional structure of complicated simulated atomic structures can be
studied guantitatively by gathering statistics on graph-theoretic properties related to the
topology of the atoms. For example, Franzblau's shortest-path (SP) rings. In chemistry a
graph makes a natural model for a molecule, where vertices represent atoms and edges bonds.
This approach is especially used in computer processing of molecular structures, ranging
from chemical editors to database searching. In statistical physics, graphs can represent local
connections between interacting parts of a system, as well as the dynamics of a physical
process on such systems.

Graph theory is also widely used in sociology as a way, for example, to measure actors'
prestige or to explore diffusion mechanisms, notably through the use of social network
analysis software. Likewise, graph theory is useful in biology and conservation efforts where
a vertex can represent regions where certain species exist (or habitats) and the edges represent
migration paths, or movement between the regions. This information is important when
looking at breeding patterns or tracking the spread of disease, parasites or how

changes to the movement can affect other species. In mathematics, graphs are useful in
geometry and certain parts of topology, e.g. Knot Theory. Algebraic graph

theory has close links with group theory. A graph structure can be extended by assigning a
weight to each edge of the graph. Graphs with weights, or weighted graphs, are used to
represent structures in which pairwise connections have some numerical values. For

example if a graph represents a road network, the weights could represent the length ofeach
road. A digraph with weighted edges in the context of graph theory is called a network.
Network analysis have many practical applications, for example, to model and analyze traffic
networks. Applications of network analysis split broadly into three categories:

1. First, analysis to determine structural properties ofa network, such as the distribution of
vertex degrees and the diameter of the graph. A vast number of graph measures exist, and the
production of useful ones for various domains remains an active area of research.
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2. Second, analysis to find a measurable quantity within the network, for example, for a
transportation network, the level of vehicular flow within any portion of it.
3. Third, analysis of dynamical properties of networks.
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Network theory

For the sociological theory, see Social network

Network theory is an area of computer science and network science and part of graph theory.
It has application in many disciplines including particle physics, computer science, biology,
economics, operations research, and sociology. Network theory concerns itself with the study
of graphs as a representation of either symmetric relations or, more generally, of asymmetric
relations between discrete objects. Applications of network theory include logistical
networks, the World Wide Web, gene regulatory networks, metabolic networks, social
networks, epistemological networks, etc. See list of network theory topics for more examples.

Network optimization

Network problems that involve finding an optimal way of doing something are studied under
the name of combinatorial optimization. Examples include network flow, shortest path
problem, transport problem, transshipment problem, location problem, matching problem,
assignment problem, packing problem, routing problem, Critical Path Analysis and PERT
(Program Evaluation & Review Technique).

Network analysis

Social network analysis

Social network analysis maps relationships between individuals in social networks.

Such individuals are often persons, but may be groups (including cliques and cohesive
blocks), organizations, nation states, web sites, or citations between scholarly publications
(scientometrics). Network analysis, and its close cousin traffic analysis, has significant use in
intelligence. By monitoring the communication patterns between the network nodes, its
structure can be established. This can be used for uncovering insurgent networks of both
hierarchical and leaderless nature.

Biological network analysis

With the recent explosion of publicly available high throughput biological data, the analysis
of molecular networks has gained significant interest. The type of analysis in this content are
closely related to social network analysis, but often focusing on local patterns in the network.
For example network motifs are small subgraphs that are over-represented in the network.
Activity motifs are similar over-represented patterns in the attributes of nodes and

edges in the network that are over represented given the network structure.

Link analysis

Link analysis is a subset of network analysis, exploring associations between objects. An
example may be examining the addresses of suspects and victims, the telephone numbers
they have dialed and financial transactions that they have partaken in during a given
timeframe, and the familial relationships between these subjects as a part of police
investigation. Link analysis here provides the crucial relationships and associations between
very many objects of different types that are not apparent from isolated pieces of information.

Computer-assisted or fully automatic

computer-based link analysis is increasingly employed by banks and insurance agencies in
fraud detection, by telecommunication operators in telecommunication network analysis, by
medical sector in epidemiology and pharmacology, in law enforcement investigations, by
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search engines for relevance rating (and conversely by the spammers for spamdexing and by
business owners for search engine optimization), and everywhere else where
relationships between many objects have to be analyzed.

Web link analysis

Several Web search ranking algorithms use link-based centrality metrics, including (in order
of appearance) Marchiori's Hyper Search, Google's PageRank, Kleinberg's HITS algorithm,
and the TrustRank algorithm. Link analysis is also conducted in information science and
communication science in order to understand and extract information from the structure of
collections of web pages. For example the analysis might be of the interlinking

between politicians' web sites or blogs.

Centrality measures

Information about the relative importance of nodes and edges ina graph can be obtained
through centrality measures, widely used in disciplines like sociology. For example,
eigenvector centrality uses the eigenvectors of the adjacency matrix to determine nodes that
tend to be frequently visited.

Spread of content in networks

Content ina complex network can spread via two major methods: conserved spread and non-
conserved spread. In conserved spread, the total amount of content that enters a complex
network remains constant as it passes through. The model of conserved spread can best be
represented by a pitcher containing a fixed amount of water being poured into a series of
funnels connected by tubes . Here, the pitcher represents the original source and the water is
the content being spread. The funnels and connecting tubing represent the nodes and the
connections between nodes, respectively. As the water passes fromone funnel into another,
the water disappears instantly from the funnel that was previously exposed to the water. In
non-conserved spread, the amount of content changes as it enters and passes through a
complex network. The model of non-conserved spread can best be represented by a
continuously running faucet running through a series of funnels connected by tubes. Here, the
amount of water from the original source is infinite. Also, any funnels that have been exposed
to the water continue to experience the water even as it passes into successive funnels. The
non-conserved model is the most suitable for explaining the transmission of most infectious
diseases.

Implementations

* Orange, a free data mining software suite, module orngNetwork

* Pajek ,program for (large) network analysis and visualization

* Tulip, a free data mining and visualization software dedicated to the analysis and
visualization of relational data.
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Closeness (graph theory)

Within graph theory and network analysis, there are various measures of the centrality ofa
vertex within a graph that determine the relative importance of a vertex within the graph (for
example, how important a person is within a social network, or, in the theory of space syntax,
how important a room is within a building or how well-used a road is within an urban
network).

There are four measures of centrality that are widely used in network analysis: degree
centrality, betweenness, closeness, and eigenvector centrality. For a review as well as
generalizations to weighted networks, see Opsahl et al. (2010)

Degree centrality

The first, and simplest, is degree centrality. Degree centrality is defined as the number of
links incident upon a node (i.e., the number of ties that a node has). Degree is often
interpreted in terms of the immediate risk of node for catching whatever is flowing through
the network (such as a virus, or some information). Ifthe network is directed

(meaning that ties have direction), then we usually define two separate measures of degree
centrality, namely indegree and outdegree. Indegree is a count of the number of ties directed
to the node, and outdegree is the number of ties that the node directs to others. For positive
relations such as friendship or advice, we normally interpret indegree as a form of popularity,
and outdegree as gregariousness.

For a graph (3 := {V, E} with n vertices, the degree centrality C'”[:y}fur vertex 7 is:

deg(v)
n-—1
Calculating degree centrality for all nodes 1/in a graph takes Q(Vg}in a dense adjacency matrix representation of

Cp(v) =

the graph, and for edges [ in a graph takes 'B'[E} in a sparse matrix representation.
The definition of centrality can be extended to graphs. Let ©# be the node with highest degree centrality in (3 . Let
X = [:}”J Z]he the 1 node connected graph that maximizes the following guantity (with }* being the node
with highest degree centrality in X ):

|¥]

H= ZG’;;{y*} — Cp(y;)

Then the degree centrality of the graph (3 is defined as follows:
V]
Z [CI.J[U*] - C:J{T-'i}]
CJ}(G} — =1 H

H is maximized when the graph X contains one node that is connected to all other nodes and all other nodes are

connected only to this one central node (a star graph). In this case

H:{:ﬂ.—l:}[l—ﬁ]:n—ﬂ

so the degree centrality of (3 reduces to:
V]
Z [Cp(v+) — Cp(v;)]
Cj_}(G) — =1

n—2
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Closeness centrality

In topology and related areas in mathematics, closeness is one of the basic concepts in a
topological space. Intuitively we say two sets are close if they are arbitrarily near to each
other. The concept can be defined naturally in a metric space where a notion of distance
between elements of the space is defined, but it can be generalized to topological spaces
where we have no concrete way to measure distances. In graph theory closeness is a
centrality measure of a vertex within a graph. Vertices that are 'shallow' to other

vertices (that is, those that tend to have short geodesic distances to other vertices with in the
graph) have higher closeness. Closeness is preferred in network analysis to mean shortest-
path length, as it gives higher values to more central vertices, and so is usually positively
associated with other measures such as degree. In the network theory, closeness is a
sophisticated measure of centrality. It is defined as the mean geodesic distance

(i.e., the shortest path) between a vertex v and all other vertices reachable from it:

Z d(;[‘i.i': f-]

el
n—1
where 11 2> 2is the size of the network’s ‘connectivity component' V reachable from v. Closeness can be regarded as
a measure of how long it will take information to spread from a given vertex to other reachable vertices in the
network!*! .
Some define closeness to be the reciprocal of this quantity, but either way the information communicated is the same

(this time estimating the speed instead of the timespan). The closeness Cc{ﬁ}fura vertex ¥/is the reciprocal of the

R . 5
sum of geodesic distances to all other vertices of Wil

1
= {'u] Etevyu de(v, t},
Different methods and algorithms can be introduced to measure closeness, like the random-
walk centrality introduced by Noh and Rieger (2003) that is a measure of the speed with
which randomly walking messages reach a vertex fromelsewhere in the network—a sort of
random-walk version of closeness centrality.
The information centrality of Stephenson and Zelen (1989) is another closeness measure,
which bears some similarity to that of Noh and Rieger. Inessence it measures the har monic
mean length of paths ending at a vertex i, which is smaller if i has many short paths
connecting it to other vertices. Dangalchev (2006), in order to measure the network
vulnerability, modifies the definition for closeness so it can be used for disconnected graphs
and the total closeness is easier to calculate:

CC('“] — Z E—dr.’[t‘:t] )
tEVw
An extension to networks with disconnected components has been proposed by Opsahl (2010)
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Eigenvector centrality

Eigenvector centrality is a measure of the importance of a node in a network. It assigns
relative scores to all nodes in the network based on the principle that connections to high-
scoring nodes contribute more to the score of the node in question than equal connections to
low-scoring nodes. Google's PageRank is a variant of the Eigenvector centrality measure.

Using the adjacency matrix to find eigenvector centrality

Let I denote the score of the ith node. Let A,;J-bc the adjacency matrix of the network. Hence Ah_, = 1if the ith
node i1s adjacent to the jth node, and A,,J = Ootherwise. More generally, the entries in A can be real numbers

representing connection strengths, as in a stochastic matrix.
For the 3'-“1 node, let the centrality score be proportional to the sum of the scores of all nodes which are connected to

it. Hence
N

1 1
Ti=5 2 7=y AT
JEM{H) i=1
where _M[-i)is the set of nodes that are connected to the 3'551 node, N is the total number of nodes and ) is a

constant. In vector notation this can be rewritten as

1
X = IA){. or as the eigenvector equation Ax = Ax

In general, there will be many different eigenvalues ) for which an eigenvector solution exists. However, the

additional requirement that all the entries in the eigenvector be positive implies (by the Perron—Frobenius theorem)

1) The jth component of the related

that only the greatest eigenvalue results in the desired centrality measure.
eigenvector then gives the centrality score of the 3'551 node in the network. Power iteration is one of many eigenvalue

algorithms that may be used to find this dominant eigenvector.

Dense Graph

In mathematics, a dense graph is a graph in which the number of edges is close to the maximal number of edges.
The opposite, a graph with only a few edges, is a sparse graph.
The distinction between sparse and dense graphs is rather vague. One possibility is to choose a number k with
1 <« k < Qand to define a sparse graph to be a graph with I1E] = Dfl'b-"lk}, where |E| denotes the number of edges, |W
the number of vertices, and the letter O refers to the Big O notation (Preiss 1998, p. 534).
For undirected simple graphs, the graph density is defined as:
b 2E]

VI(vi-1)
The maximum number of edges is Y2 IV1 (1V1=1), so the maximal density is | (for complete graphs) and the minimal
density is 0 (Coleman & Moré 1983).
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Upper density

Upper density is an extension of the concept of graph density defined above from finite
graphs to infinite graphs. Intuitively, an infinite graph has arbitrarily large finite subgraphs
with any density less than its upper density, and does not have arbitrarily large finite
subgraphs with density greater than its upper density. Formally, the upper density of a graph
G is the infimum of the values a such that the finite subgraphs of G with density o have a
bounded number of vertices. It can be shown using the Erdds-Stone theorem that the upper
density can only be 1 or one of the superparticular ratios 0, 1/2, 2/3, 3/4, 4/5, ... n/(n + 1), ...
(see, e.g., Diestel, p. 189).

Sparse and tight graphs

Streinu & Theran (2008) define a graph as being (k,l)-sparse if every nonempty subgraph
with n vertices has at most kn— I edges, and (k,I)-tight if it is (k,I)-sparse and has exactly
kn— I edges. Thus trees are exactly the (1,1)-tight graphs, forests are exactly the (1,1)-sparse
graphs, and graphs with arboricity k are exactly the (k,k)-sparse graphs.

Pseudoforests are exactly the (1,0)-sparse graphs, and the Laman graphs arising in rigidity
theory are exactly the (2,3)-tight graphs. Other graph families not characterized by their
sparsity can also be described in this way. For instance the facts that any planar graph with n
vertices has at most 3n - 6 edges, and that any subgraph of a planar graph is planar, together
imply that the planar graphs are (3,6)-sparse. However, not every (3,6)-sparse graph is planar.
Similarly, outerplanar graphs are (2,3)-sparse and planar bipartite graphs are (2,4)-sparse.
Streinu and Theran show that testing (k,I)-sparsity may be performed in polynomial time
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Directed Graphs

A directed graph or digraph is a pair (7 = [:V; A:]{s;crmetimfs G = {V} E])

of:"]

= aset V, whose elements are called vertices or nodes,

* aset A of ordered pairs of vertices, called ares, directed edges. or arrows (and
sometimes simply edges with the comresponding set named E instead of A).

It differs from an ordinary or undirected graph. in that the latter is defined in terms

of unordered pairs of vertices, which are usually called edges.

Sometimes a digraph is called a simple digraph to distinguish it from a directed

multigraph, in which the arcs constitute a multiset, rather than a set. of ordered

A directed graph.

pairs of vertices. Also, in a simple digraph loops are disallowed. (A loop is an arc that pairs a vertex to itself.) On the

other hand, some texts allow loops, multiple arcs, or both in a digraph.

Basic terminology

Anarc g = {z, y]is considered to be directed from x to I ; I/is called the head and 7 is called the tail of the

arc: Iis said to be a direct successor of T . and T is said to be a direct predecessor of ¥ . If a path made up of

one or more successive arcs leads from Fto Y, then I is said to be a successor of T, and 7 is said to be a

predecessor of Y. The arc (y} :1:} 15 called the arc {g:? y] inverted.

A directed graph & is called symmetrie if. for every arc that belongs to @, the comresponding inverted arc also 2

belongs to G. A symmetric loopless directed graph is equivalent to an undirected graph with the pairs of inverted 1

arcs replaced with edges; thus the number of edges is equal to the number of arcs halved.

The orientation of a simple undirected graph is obtained by assigning a direction to each edge. Any directed graph

constructed this way is called an oriented graph. A distinction between a simple directed graph and an oriented

graph is that if 2 and Y are vertices, a simple directed graph allows both (:,_l:} y:]and (-y, :,;:]as edges, while only

one is permitted in an oriented graph.lzl Bl

A weighted digraph is a digraph with weights assigned for its arcs, similarly to the weighted graph.
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The adjacency matrix of a digraph {with loops and multiple arcs) is the integer-valued matrix with rows and columns
cormesponding to the digraph nodes, where a nondiagonal entry @;;is the number of arcs from node § to node j, and
the diagonal entry @y;is the number of loops at node i The adjacency matrix for a digraph is unique up to the

permutations of rows and columns.
Another matrix representation for a digraph is its incidence matrix.

See Glossary of graph theory#Direction for more definitions.

Indegree and outdegree

For a node, the number of head endpoints adjacent to a node is called

the indegree of the node and the number of tail endpoints is its H

outdegree. @
vertex with deg™ ['U} = (Jis called a source, as it is the origin of
each of its incident edges. Similarly, a vertex with deg"’ (-u] = (Jis @

called a sink. . A digraph with vertices labeled (indegree,
The degree sum formula states that, for a directed graph - )

The indegree is denoted deg_ (1;] and the outdegree as deg+ [:-u:].,A

> deg™(v) = ) deg”(v) = 4.

vel vEV
If for every node, v € V, deg"'{u:] = deg ™ (v). the graph is called a balanced digraph.

Digraph connectivity

A digraph G is called weakly connected (or just connected”! ) if the undirected underlying graph obtained by
replacing all directed edges of G with undirected edges is a connected graph. A digraph is strongly connected or
strong if it contains a directed path from « to v and a directed path from v to u for every pair of vertices w,v. The

strong components are the maximal strongly connected subgraphs.

Classes of digraphs

An acyclic digraph (occasionally called a dag or DAG for "directed acyclic graph”,
although it is not the same as an orientation of an acyclic graph) is a directed graph with

no directed cycles.

A rooted tree naturally defines an acyclic digraph, if all edges of the underlying tree are

directed away from the root. L2

A simple directed acyclic
graph
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Atournament is an oriented graph obtained by choosing a direction

for each edge in an undirected complete graph.nin the theory of Lie
groups, a quiver Q is a directed graph serving as the domain of, and .—".

thus characterizing the shape of, a representation V defined as a

functor, specifically an object of the functor category FinVctK F(Q) T >< l
where F(Q) is the free category on Q consisting of paths in Q and

FinVctK is the category of finite dimensional vector spaces over a .1—.
field K. Representations of a quiver label its vertices with vector

spaces and its edges (and hence paths) compatibly with linear A tournament an 4 vertices

transformations between them, and transform via natural
transformation.

Vertex(Graph Theory)

In graph theory, a vertex (plural vertices) or node is
the fundamental unit out of which graphs are formed:
an undirected graph consists ofa set of vertices and a
set of edges (unordered pairs of vertices), while a
directed graph consists of a set of vertices and a set of
arcs (ordered pairs of vertices). From the point of
view of graph theory, vertices are treated as
featureless and indivisible objects, although they may
have additional structure depending on the application
from which the graph arises; for instance, a semantic vertex 0 6 on the fareft is 2 beaf vertex or s
network is a graph in which the vertices represent pendant vertex.

concepts or classes of objects. The two vertices

forming an edge are said to be its endpoints, and the

edge is said to be incident to the vertices. A vertex w is said to be

adjacent to another vertex v if the graph contains an edge (v,w). The neighborhood of a
vertex v is an induced subgraph of the graph, formed by all vertices adjacent to v.

The degree ofa vertex in a graph is the number of edges incident to it. An isolated vertex is a
vertex with degree zero; that is, a vertex that is not an endpoint of any edge. A leaf vertex
(also pendant vertex) is a vertex with degree one. In a directed graph, one can distinguish the
outdegree (number of outgoing edges) from the indegree (number of incoming edges); a
source vertex is a vertex with indegree zero, while a sink vertex is a vertex with outdegree
zero.

A cut vertex is a vertex the removal of which would disconnect the remaining graph; a vertex
separator is a collection of vertices the removal of which would disconnect the remaining
graph into small pieces. A k-vertex-connected graph is a graph in which removing fewer than
k vertices always leaves the remaining graph connected. An independent set is a set of
vertices no two of which are adjacent, and a vertex cover is a set of vertices

that includes the endpoint of each edge in the graph. The vertex space ofa graph is a vector
space having a set of basis vectors corresponding with the graph's vertices.

A graph is vertex-transitive if it has symmetries that map any vertex to any other vertex. In
the context of graph enumeration and graph isomorphism it is important to distinguish
between labeled vertices and unlabeled vertices. A labeled vertex is a vertex that is associated
with extra information that enables it to be distinguished from other labeled vertices; two
graphs can be considered isomorphic only if the correspondence between their vertices pairs

A graph with & vertices and 7 edges where the
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up vertices with equal labels. An unlabeled vertex is one that can be substituted for any other

vertex based only on its adjacencies in the graph and not based on any additional information.

Vertices in graphs are analogous to, but not the same as, vertices of polyhedra: the skeleton of

a polyhedron forms a graph, the vertices of which are the vertices of the polyhedron, but

polyhedron vertices have additional structure (their geometric location) that is not assumed to

be present in graph theory. The vertex figure of a vertex ina polyhedron is analogous to the
neighborhood ofa vertex in a graph.
In a directed graph. the forward star of a node 2 is defined as its outgoing edges. In a Graph {J with the set of

vertices | and the set of edges [, the forward star of 14 can be described as

{(w,v) € E}."

Flow Network

In graph theory, a flow network is a directed graph where each edge has a capacity and each
edge receives a flow. The amount of flow on an edge cannot exceed the capacity of the edge.
Often in Operations Research, a directed graph is called a network, the vertices are called
nodes and the edges are called arcs. A flow must satisfy the restriction that the amount of
flow into a node equals the amount of flow out of it, except when it is a source, which

has more outgoing flow, or sink, which has more incoming flow. A network can be used to
model traffic in a road system, fluids in pipes, currents in an electrical circuit, or anything
similar in which something travels through a network of nodes.

Definition

G(V E}is a finite directed graph in which every edge (u,-u]l € FE has a non-negative, real-valued capacity
c{u? -u]. If (-u, 'U} Q’ E' . we assume that p::[:'u,J -u) = (). We distinguish two vertices: a source §and a sink £ . A
flow network is a real function f : 1V X V' — IR with the following three properties for all nodes 14 and ¥ :

Capacity f(u,v) < c(u, v). The flow along an edge cannot exceed its capacity.
constraints:

Skew symmetry: f(u‘ ‘U] = --f(r,', u). The net flow from 2% to ¥ must be the opposite of the net flow from ¥ to Y (see example).

Flow conservation: z f(u u'] =)
7
weV
flow, and the sink, which "consumes” flow.

,unless ¥ = Sor w = {. The net flow to a node is zero, except for the source, which “produces”

Notice that f (u, 1))is the net flow from % to v . If the graph represents a physical network, and if there is a real

flow of, for example, 4 units from % to ¥, and a real flow of 3 units from ¥ to 2, we have f(u, v) = ]land

f(v:u) ==L

The residual capacity of an edge is (:f(u: v) — c(u, 1)) - f(u’ v). This defines a residual network denoted
GI(V, Ef). giving the amount of available capacity. See that there can be an edge from % to ¥ in the residual

network, even though there is no edge from %to ¥in the original network. Since flows in opposite directions
cancel out, decreasing the flow from g to {4 is the same as increasing the flow from 9 to . An augmenting

path is a path ('Ul-, Uy, ... ,uk)in the residual network, where %7 = 8, uy = ¢t . and c!(u‘-, ui+1) >0.A

network is at maximum flow if and only if there is no augmenting path in the residual network.
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Example:

To the right you see a flow network with source labeled g, sink ¢, and four additional

(=
nodes. The flow and capacity is denoted _ﬂ'c MNotice how the network upholds skew __f».f;q: F\{T‘ﬂ
0} ! L)
= 2.8
oz 2o

A fow network showing

symmetry, capacity constraints and flow conservation. The total amount of flow from g
to ¢ is 5. which can be easily seen from the fact that the total outgoing flow from g is 5,
which is also the incoming flow to § . We know that no flow appears or disappears in flow and capacity

any of the other nodes.

Residual netwaork for the above flow network,

showing residual capacities

Below you see the residual network for the given flow. Notice how there is positive residual capacity on some edges

where the original capacity is zero, for example for the edge {d, c]. This flow is not a maximum flow. There is
available capacity along the paths {5: a,e, tJ, {5’ a, b, d, i}and {5, a,b,d,c, t}. which are then the
augmenting paths. The residual capacity of the first path is
min(e(s,a) — f(s,a),cla,c) — fla,c), ele, t) — f(e, t))

= m]n{5 -3,3-2,2-1)= min{?j 1, 1} — ]. Notice that augmenting path {ssujb,{i o, t}dnes not

exist in the original network, but you can send flow along it, and stll get a legal flow.
If this is a real network, there might actually be a flow of 2 from ato } . and a flow of 1 from f to @ . but we only

maintain the net flow.

Applications:

Picture a series of water pipes, fitting into a network. Each pipe is of a certain diameter, so it
canonly maintain a flow of a certain amount of water. Anywhere that pipes meet, the total
amount of water coming into that junction must be equal to the amount going out, otherwise
we would quickly run out of water, or we would have a build up of water. We have a water
inlet, which is the source, and an outlet, the sink. A flow would then be one possible way for
water to get from source to sink so that the total amount of water coming out of the outlet is
consistent. Intuitively, the total flow of a network is the rate at which water comes out of the
outlet. Flows can pertain to people or material over transportation networks, or to electricity
over electrical distribution systems. For any such physical network, the flow coming into any
intermediate node needs to equal the flow going out of that node. Bollobas characterizes this
constraint in terms of Kirchhoff's current law, while later authors (i.e.: Chartrand) mention its
generalization to some conservation equation.

Flow networks also find applications in ecology: flow networks arise naturally when
considering the flow of nutrients and energy between different organizations in a food web.
The mathematical problems associated with such networks are quite different from those that
arise in networks of fluid or traffic flow. The field of ecosystem network analysis, developed
by Robert Ulanowicz and others, involves using concepts from information theory and
thermodynamics to study the evolution of these networks over time. The simplest and most
common problem using flow networks is to find what is called the maximum flow, which
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provides the largest possible total flow from the source to the sink ina given graph. There are
many other problems which can be solved using max flow algorithms, if they are
appropriately modeled as flow networks, such as bipartite matching, the assignment problem
and the transportation problem. Ina multi-commodity flow problem, you have multiple
sources and sinks, and various "commodities™ which are to flow from a given source to a
givensink. This could be for example various goods that are produced at various

factories, and are to be delivered to various given customers through the same transportation
network.

In a minimum cost flow problem, each edge U, Vhas a given cost k{u1 'uJ_ and the cost of sending the flow
f(u] .u}ucmh's the edge is _f[:-u,:l 1;] . k(u] u]_ThE objective is to send a given amount of flow from the source to
the sink, at the lowest possible price.

In a circulation problem, you have a lower bound I{u, -;u}{m the edges, in addition to the upper bound g(u, ,”}_
Each edge also has a cost. Often, flow conservation holds for all nodes in a circulation problem. and there is a

connection from the sink back to the source. In this way, you can dictate the total flow with E[:t, sj and c[:t: 5}.

The flow circulates through the network, hence the name of the problem.
In a network with gains or generalized network each edge has a gain, a real number (not zero) such that, if the

edge has gain g, and an amount x flows into the edge at its tail, then an amount gr flows out at the head.

Cycle(Graph Theory)

In graph theory, the term cycle may refer to several closely related objects.

* A closed walk, with repeated vertices allowed. See path (graph theory). (This usage is
common in computer science. In graphtheory it is more often called a closed walk.)

* A closed (simple) path, with no other repeated vertices or edges other than the starting and
ending vertices. (This usage is common in graph theory, see "Cycle graph™) This may also be
called a simple cycle, circuit, circle, or polygon.

* A closed directed walk, with repeated vertices allowed. (This usage is common in computer
science. In graph theory it is more often called a closed directed walk.)

* A closed directed (simple) path, with no repeated vertices other than the starting and ending
vertices. (This usage is common in graph theory.) This may also be called a simple (directed)
cycle.

* The edge set ofan undirected closed path without repeated vertices or edges. This may also
be called a circuit, circle, or polygon.

* An element of the binary or integral (or real, complex, etc.) cycle space ofa graph. (This is
the usage closest to that in the rest of mathematics, in particular algebraic topology.) Such a
cycle may be called a binary cycle, integral cycle, etc.

* Anedge set which has even degree at every vertex; also called an even edge set or, when
taken together with its vertices, an even subgraph. This is equivalent to a binary cycle, since a
binary cycle is the indicator function of an edge set of this type.

Chordless cycles in a graph are sometimes called graph holes. A graph antihole is the
complement of a graph hole.
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Adjacency Matrix

In mathematics and computer science, an adjacency matrix is a means of representing which
vertices ofa graph are adjacent to which other vertices. Another matrix representation for a
graph is the incidence matrix.

Specifically, the adjacency matrix of a finite graph G on n vertices is the n x n matrix where
the non-diagonal entry aij is the number of edges from vertex i to vertex j, and the diagonal
entry aii, depending on the convention, is either once or twice the number of edges (loops)
from vertex i to itself. Undirected graphs often use the former convention

of counting loops twice, whereas directed graphs typically use the latter convention. There
exists a unigque adjacency matrix for each isomorphism class of graphs (up to permuting rows
and columns), and it is not the adjacency matrix of any other isomorphism class of graphs. In
the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on
its diagonal. Ifthe graph is undirected, the adjacency matrix is symmetric.

The relationship between a graph and the eigenvalues and eigenvectors of its adjacency
matrix is studied in spectral graph theory.

Examples:
* Here is an example ofa labeled graph and its adjacency matrix. The convention followed

here is that an adjacent edge counts 1 in the matrix for an undirected graph. (X,Y coordinates
are 1-6)

Labeled graph Adjacency matrix
11001080

G 1 01 @10
oo 810100
’ I U
eo 1 10100
‘ 0oo0D10a0

* The adjacency matrix of a complete graph is all 1's except for 0's on the diagonal.
* The adjacency matrix of an empty graph is a zero matrix.

Adjacency Matrix of a Bi-Partite Graph

The adjacency matrix A of a bipartite graph whose parts have r and 5 vertices has the form

0O B
-3 2)

where B is an r % 5 matrix and @ is an all-zero matrix. Clearly, the matrix B uniquely represents the bipartite graphs,
and it is commonly called its biadjacency matrix.

Formally, let G = (U, V. E) be a bipartite graph or bigraph with parts U/ = w4, ..., Upand V =1y, ..., ¥,. Anrx
5 -1 matrix B is called the biadjacency matrix if B;-J- = 1l iff (uh 7-'j:| cE.

If (7 is a bipartite multigraph or weighted graph then the elements .El'i!j- are taken to be the number of edges between

or the weight of {u,;1 'i.-‘_.,-}rexpetlix-‘c]}'.
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Properties

The adjacency matrix of an undirected simple graph is symmetric, and therefore has a complete set of real
eigenvalues and an orthogonal eigenvector basis. The set of eigenvalues of a graph is the spectrum of the graph.
Suppose two directed or undirected graphs (Gyand (Ggwith adjacency matrices Aqand Agare given. (& and
(Gqare isomorphic if and only if there exists a permutation matrix [Psuch that

PA P! = A,.
In particular, A,and Apare similar and therefore have the same minimal polynomial, characteristic polynomial,
eigenvalues, determinant and trace. These can therefore serve as isomorphism invariants of graphs. However, two
graphs may possess the same set of eigenvalues but not be isomorphic.
If A is the adjacency matrix of the directed or undirected graph &, then the matrix A" (i.e., the matrix product of n
copies of A) has an interesting interpretation: the entry in row § and column j gives the number of (directed or
undirected) walks of length »n from vertex i to vertex j. This implies, for example, that the number of triangles in an
undirected graph & is exactly the trace of A7 divided by 6.
The main diagonal of every adjacency matrix corresponding to a graph without loops has all zero entries.

For [d} -regular graphs, d is also an eigenvalue of A for the vector ¢ = (], oy 1], and (7 is connected if and

only if the multiplicity of ¢fis L. It can be shown that — is also an eigenvalue of A if G is a connected bipartite

graph. The above are results of Perron—Frobenius theorem.

Variations

The Seidel adjacency matrix or (0,-1,1)-adjacency matrix of a simple graph has zero on the diagonal and entry
fij = — 1if ijis an edge and +1 if it is not. This matrix is used in studying strongly regular graphs and two-graphs.

A distance matrix is like a higher-level adjacency matrix. Instead of only providing information about whether or not
two vertices are connected, also tells the distances between them. This assumes the length of every edge is 1. A

variation is where the length of an edge is not necessarily 1.

Data Structures

When used as a data structure, the main alternative for the adjacency matrix is the adjacency list. Because each entry
in the adjacency matrix requires only one bit, they can be represented in a very compact way, occupying only ﬂ,ifS
bytes of contiguous space, where 71 1s the number of vertices. Besides just avoiding wasted space, this compactness
encourages locality of reference.

On the other hand, for a sparse graph, adjacency lists win out, because they do not use any space to represent edges
which are nor present. Using a naive array implementation on a 32-bit computer, an adjacency list for an undirected

graph requires about 8 bytes of storage, where €is the number of edges.
Noting that a simple graph can have at most niedges, allowing loops, we can let f = er,:"nzdenme the density of

the graph. Then, 8¢ = nﬂjg, or the adjacency list representation occupies more space, precisely when d = ]_J,n"ﬁ.—.}

. Thus a graph must be sparse indeed to justify an adjacency list representation.
Besides the space tradeoff, the different data structures also facilitate different operations. Finding all vertices

adjacent to a given vertex in an adjacency list is as simple as reading the list. With an adjacency matrix, an entire
row must instead be scanned. which takes O(n) time. Whether there is an edge between two given vertices can be
determined at once with an adjacency matrix, while requiring time proportional to the minimum degree of the two

vertices with the adjacency list.
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Tree (Graph Theory)

Trees

A labeled ree with 6 vertices and 5 edges

Vertices v

Edges v-1

Chromatic number | 2 1f v |

In mathematics, more specifically graph theory, a tree is an undirected graph in which any
two vertices are connected by exactly one simple path. In other words, any connected graph
without cycles is a tree. A forest is a disjoint union of trees.

The various kinds of data structures referred to as trees in computer science are similar to
trees in graph theory, except that computer science trees have directed edges. Although they
do not meet the definition given here, these graphs are referred to in graph theory as ordered
directed trees (see below).

Definitions

Atree is an undirected simple graph G that satisfies any of the following equivalent
conditions:

* G is connected and has no cycles.

* G has no cycles, and a simple cycle is formed if any edge is added to G.

* G is connected, and it is not connected anymore if any edge is removed fiom G.

* G is connected and the 3-vertex complete graph is not a minor of G.

 Any two vertices in G can be connected by a unique simple path.

If G has finitely many vertices, say n of them, then the above statements are also equivalent
to any of the following conditions:

* G is connected and has n— 1 edges.

* G has no simple cycles and has n— 1 edges.

An irreducible (or series-reduced) tree is a tree in which there is no vertex of degree 2.

A forest is an undirected graph, all of whose connected components are trees; in other words,
the graph consists of a disjoint union of trees. Equivalently, a forest is an undirected cycle-
free graph. As special cases, an empty graph, a single tree, and the discrete graph on a set of
vertices (that is, the graph with these vertices that has no edges), all are

examples of forests.

The term hedge sometimes refers to an ordered sequence of trees.

A polytree or oriented tree is a directed graph with at most one undirected path between any
two vertices. In other words, a polytree is a directed acyclic graph for which there are no
undirected cycles either.
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A directed tree is a directed graph which would be a tree if the directions on the edges were
ignored. Some authors restrict the phrase to the case where the edges are all directed towards
a particular vertex, or all directed away froma particular vertex (see arborescence).

Atree is called a rooted tree if one vertex has been designated the root, in which case the
edges have a natural orientation, towards or away from the root. The tree-order is the partial
ordering on the vertices ofa tree with u< v if and only if the unique path from the root to v
passes through u. A rooted tree which is a subgraph of some graph G is a normal tree if the
ends of every edge in G are comparable in this tree-order whenever those ends are vertices of
the tree (Diestel 2005, p. 15). Rooted trees, often with additional structure such as ordering of
the neighbors at each vertex, are a key data structure in computer science; see tree data
structure. Ina context where trees are supposed to have a root, a tree without any designated
root is called a free tree.

In a rooted tree, the parent of a vertex is the vertex connected to it on the path to the root;
every vertex except the root has a unique parent. A child of a vertex v is a vertex of which v
is the parent. A leaf is a vertex without children.

A labeled tree is a tree in which each vertex is givena unique label. The vertices of a labeled
tree on n vertices are typically given the labels 1, 2, ..., n. A recursive tree is a labeled rooted
tree where the vertex labels respect the tree order (i.e., if u< v for two vertices uand v, then
the label of u is smaller than the label of v).

Anordered tree is a rooted tree for which an ordering is specified for the children of each
vertex.

An n-ary tree is a rooted tree for which each vertex which is not a leaf has at most n children.
2-ary trees are

sometimes called binary trees, while 3-ary trees are sometimes called ternary trees.

A terminal vertex of a tree is a vertex of degree 1. In a rooted tree, the leaves are all terminal
vertices; additionally, the root, if not a leaf itself, is a terminal vertex if it has precisely one
child.

Example
The example tree shown to the right has 6 vertices and 6 — 1 =5 edges. The unique simple
path connecting the vertices 2 and 6 is 2-4-5-6.

Facts

* Every tree is a bipartite graph and a median graph. Every tree with only countably many
vertices is a planar graph.

* Every connected graph G admits a spanning tree, which is a tree that contains every vertex
of G and whose edges are edges of G.

* Every connected graph with only countably many vertices admits a normal spanning tree
(Diestel 2005, Prop. 8.2.4).

* There exist connected graphs with uncountably many vertices which do not admit a normal
spanning tree (Diestel 2005, Prop. 8.5.2).

* Every finite tree with n vertices, with n> 1, has at least two terminal vertices. This minimal
number of terminal vertices is characteristic of path graphs; the maximal number, n— 1, is
attained by star graphs.

* For any three vertices in a tree, the three paths between them have exactly one vertex in
common.
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Enumeration

iy . - - "
Given n labeled vertices, there are n" - different ways to connect them to make a tree. This result is called Cayley’s
formula. It can be proven by first showing that the number of trees with n vertices of degree d,.d,....d is the

multinomial coefficient

An alternative proof uses Priifer sequences. This is the special case for complete graphs of a more general problem,
counting the number of spanning trees in an undirected graph, which can be achieved by computing a determinant
according to the matrix tree theorem. The similar problem of counting all the subtrees regardless of size has been

shown to be #P=complete in the general case (Jerrum (1994)).

Counting the number of unlabeled free trees is a harder problem. No closed formula for the number #{n) of trees with
n vertices up to graph isomorphism is known. The first few values of f{n)are 1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235,
551, 1301, 3159, ... (sequence AD00055 ! in OEIS). Otter (1948) proved that

t(n) ~ Ca™n~%? asn — oo,
i = E: =2 o Ans b lim = 1 i =

with C = 0.534949606... and a = 2.99557658565... (Here, f ~ gmeans that Jm fla . where f = t(n)
and g= Ca™n~5/2). Similarly, he showed that for the number r[n} of unlabeled rooted trees with n vertices
holds

r(n) ~ Da™n™%? asn — oo,
with [ = 0.43992401257... and « the same as above (cf. Knuth (1997), Chap. 2.3.4.4 and Flajolet & Sedgewick
(2009), Chap. VIL5).

Types of trees

A star is a tree in which there is only one internal node and n — 1 leaves; that is, a star is a tree
with as many leaves as possible. A tree with two leaves, the fewest possible, is a path graph.
Ifall nodes in a tree are within distance one ofa central path, then the tree is a caterpillar tree.
Ifall nodes are within distance two of a central path, then the tree is a lobster.

Path(Graph Theory)

In graph theory, a path in a graph is a sequence of vertices such that from each of its vertices
there is an edge to the next vertex in the sequence. A path may be infinite, but a finite path
always has a first vertex, called its start vertex, and a last vertex, called its end vertex. Both of
themare called end or terminal vertices of the path. The other vertices in the path are internal
vertices. A cycle is a path such that the start vertex and end vertex are the same. Note that the
choice of the start vertex in a cycle is arbitrary.

Paths and cycles are fundamental concepts of graph theory, described in the introductory
sections of most graph theory texts. See e.g. Bondy and Murty (1976), Gibbons (1985), or
Diestel (2005). Korte et al. (1990) cover more advanced algorithmic topics concerning paths
in graphs.
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Different types of path

The same concepts apply both to undirected graphs and

directed graphs, with the edges being directed from

each vertex to the following one. Often the terms

directed path and directed cycle are used in the directed

case.

A path with no repeated vertices is called a simple path,

and a cycle with no repeated vertices or edges aside

from the necessary repetition of the start and end vertex

is a simple cycle. In modern graph theory, most often

"simple"” is implied; i.e., "cycle" means "simple cycle"

and "path” means "simple path", but this convention is

not always observed, especially inapplied graph theory. A directed cycle. Without the arrows, it is just a
Some authors (eg Bo ndy and Murty 1976) use the cycle. This is not a simple cycle, since the blue
term "walk" for a path in which vertices or edges may vertices arc used twice.

be repeated, and reserve the term "path” for what is

here called a simple path. A path such that no graph edges connect two nonconsecutive path
vertices is called an induced path. A simple cycle that includes every vertex, without
repetition, of the graph is known as a Hamiltonian cycle.

A cycle with just one edge removed in the corresponding spanning tree of the original graph
is known as a Fundamental cycle.

Two paths are independent (alternatively, internally vertex-disjoint) if they do not have any
internal vertex incommon.

The length of a path is the number of edges that the path uses, counting multiple edges
multiple times. The length can be zero for the case ofa single vertex.

A weighted graph associates a value (weight) with every edge in the graph. The weight ofa
path ina weighted graph is the sum of the weights of the traversed edges. Sometimes the
words cost or length are used instead of weight.

Glossary of Graph Theory

Graph theory is a growing area in mathematical research, and has a large specialized
vocabulary. Some authors use the same word with different meanings. Some authors use
different words to mean the same thing. This page attempts to keep up with current usage.

Basics

A graph G consists of two types of elements, namely vertices and edges. Every edge has two
endpoints in the set of vertices, and is said to connect or join the two endpoints. Anedge can
thus be defined as a set of two vertices (or an ordered pair, in the case of a directed graph -
see Section Direction).

Alternative models of graphs exist; e.g., a graph may be thought of as a Boolean binary
function over the set of vertices or as a square (0,1)- matrix.

A vertex is simply drawn as a node or a dot. The vertex set of G is usually denoted by V(G),
or V when there is no danger of confusion. The order ofa graph is the number of its vertices,
Le. [V(G).

Anedge (a set of two elements) is drawn as a line connecting two vertices, called endpoint or
(less often) end vertices. Anedge with endvertices x and y is denoted by xy (without any



59|Page

symbol in between). The edge set of G is usually denoted by E(G), or E when there is no
danger of confusion.

The size ofa graph is the number of its edges, i.e. |[E(G)|.

A loop is an edge whose endpoints are the same vertex. A link has two distinct endvertices.
Anedge is multiple if there is another edge with the same endvertices; otherwise it is simple.
The multiplicity ofan edge is the number of multiple edges sharing the same endvertices; the
multiplicity of a graph, the maximum multiplicity of its edges. A graph is a simple graph if it
has no multiple edges or loops, a multigraph if it has multiple edges, but no loops, and

a multigraph or pseudograph if it contains both multiple edges and loops (the literature is
highly inconsistent).

When stated without any qualification, a graph is almost always assumed to be simple—one
has to judge from the context.

Graphs whose edges or vertices have names or labels are known as labeled, those without as
unlabeled. Graphs with labeled vertices only are vertex- labeled, those with labeled edges only
are edge- labeled. The difference between a labeled and an unlabeled graph is that the latter
has no specific set of vertices or edges; it is regarded as another way to look uponan
isomorphism type of graphs. (Thus, this usage distinguishes between graphs with identifiable
vertex or edge sets on the one hand, and isomorphism types or classes of graphs on the other.)
(Graph labeling usually refers to the assignment of labels (usually natural numbers, usually
distinct) to the edges and vertices of a graph, subject to certain rules depending on the
situation. This should not be confused with a graph's merely having distinct labels or names
on the vertices.)

A hyperedge is an edge that is allowed to take on any number of vertices, possibly more than
2. A graph that allows any hyperedge is called a

hypergraph. A simple graph can be considered a special

case of the hypergraph, namely the 2-uniform e

hypergraph. However, when stated without any o
qualification, an edge is always assumed to consist o o
of at most 2 vertices, and a graph is never confused with ‘

a hypergraph.

A non-edge (or anti-edge) is an edge that is not present in the graph. A labeled simple graph with veriex set V = {1, 2.
More formally, for two vertices 1 and ¥, {u: -u} is a non-edge in a 3,4.5,6) and cdge st E =

graph (3 whenever {u: -u} is not an edge in (. This means that

there is either no edge between the two vertices or (for directed graphs)

at most one of {u: -u]:md {'U._ u.;] from 9715 an arc in G.

Occasionally the term cotriangle or anti-triangle is used for a set of three vertices none of which are connected.

The complement (7 of a graph G is a graph with the same vertex set as  but with an edge set such that xy is an
edge in (7 if and only if xy is not an edge in G.

An edgeless graph or empty graph or null graph is a graph with zero or more vertices, but no edges. The empty
graph or null graph may also be the graph with no vertices and no edges. If it is a graph with no edges and any
number 73 of vertices, it may be called the null graph on 71 vertices. (There is no consistency at all in the

literature.)
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A graph is infinite if it has infinitely many vertices or edges or both; otherwise the graph is
finite. An infinite graph where every vertex has finite degree is called locally finite. When
stated without any qualification, a graph is usually assumed to be finite. See also continuous
graph.

Two graphs G and H are said to be isomorphic, denoted by G ~ H, if there is a one-to-one
correspondence, called an isomorphism, between the vertices of the graph such that two
vertices are adjacent in G if and only if their corresponding vertices are adjacent in H.
Likewise, a graph G is said to be homomorphic to a graph H if there is a mapping, called a
homomorphism, from V(G) to V(H) such that if two vertices are adjacent in G then their
corresponding vertices are adjacent in H.

Subgraphs

A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and whose
adjacency relation is a subset of that of G restricted to this subset. In the other direction, a
supergraph of a graph G is a graph of which G is a subgraph. We say a graph G contains
another graph H if some subgraph of G is H or is isomorphic to H.

A subgraph H is a spanning subgraph, or factor, ofa graph G if it has the same vertex set as
G. We say H spans G.

A subgraph H ofa graph G is said to be induced if, for any pair of vertices xand y of H, xy is
anedge of H if and only if xy is anedge of G. In other words, H is an induced subgraph of G
if it has exactly the edges that appear in G over the same vertex set. If the vertex set of H is
the subset S of V(G), then H can be written as G[S] and is said to be induced by S.

A graph that does not contain H as an induced subgraph is said to be H-free.

A universal graph ina class K of graphs is a simple graph in which every element in K can be
embedded as a subgraph.

Walks

Awalk is an alternating sequence of vertices and edges, beginning and ending with a vertex,
where each vertex is incident to both the edge that precedes it and the edge that follows it in
the sequence, and where the vertices that precede and follow an edge are the end vertices of
that edge. A walk is closed if its first and last vertices are the same, and open if they are
different.

The length 1 of a walk is the number of edges that it uses. For an open walk, | = n-1, where n
is the number of vertices visited (a vertex is counted each time it is visited). For a closed
walk, | = n (the start/end vertex is listed twice, but is not

counted twice). Inthe example graph, (1, 2,5, 1, 2, 3) is

anopen walk with length 5, and (4, 5, 2, 1,5, 4) isa

closed walk of length 5.

Atrail is a walk in which all the edges are distinct. A

closed trail has been called a tour or circuit, but these

are notuniversal, and the latter is often reserved for a

regular subgraph of degree two.

Traditionally, a path referred to what is now usually

known as an open walk. Nowadays, when stated

without any qualification, a path is usually understood

to be simple, meaning that no vertices (and thus no

edges) are repeated. (The termchain has also been used A directed cycle. Without the arrows, it is just a
to refer to a walk in which all vertices and edges are eycle. This is not a simple cycle, since the blue

vertices are used twice.
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distinct.) Inthe example graph, (5, 2, 1) is a path of length 2. The closed equivalent to this
type of walk, a walk that starts and ends at the same vertex but otherwise has no repeated
vertices or edges, is called a cycle. Like path, this term traditionally referred to any closed
walk, but now is usually understood to be simple by definition. In the example graph, (1, 5, 2,
1) isacycle of length 3. (A cycle, unlike a path, is not allowed to have length 0.)

Paths and cycles of n vertices are often denoted by Pnand Cn, respectively. (Some authors
use the length instead of the number of vertices, however.)

Clisa loop, C2 isadigon (a pair of parallel undirected edges ina multigraph, or a pair of
antiparallel edges in a directed graph), and C3 is called a triangle.

A cycle that has odd length is an odd cycle; otherwise it is an even cycle. One theorem is that
a graph is bipartite ifand only if it contains no odd cycles. (See complete bipartite graph.)

A graph is acyclic if it contains no cycles; unicyclic if it contains exactly one cycle; and
pancyclic if it contains cycles of every possible length (from 3 to the order of the graph).

The girth of a graph is the length of a shortest (simple) cycle in the graph; and the
circumference, the length of a longest (simple) cycle. The girth and circumference ofan
acyclic graph are defined to be infinity co.

A path or cycle is Hamiltonian (or spanning) if it uses all vertices exactly once. A graph that
contains a Hamiltonian path is traceable; and one that contains a Hamiltonian path for any
given pair of (distinct) end vertices is a Hamiltonian connected graph. A graph that contains a
Hamiltonian cycle is a Hamiltonian graph.

A trail or circuit (or cycle) is Eulerian if it uses all edges precisely once. A graph that
contains an Eulerian trail is traversable. A graph that contains an Eulerian circuit is an
Eulerian graph. Two paths are internally disjoint (some people call it independent) if they do
not have any vertex in common, except the firstand last ones.

A theta graph is the union of three internally disjoint (simple) paths that have the same two
distinct end vertices. A thetaO graph has seven vertices which can be arranged as the vertices
ofa regular hexagon plus an additional vertex in the center. The eight edges are the perimeter
of the hexagon plus one diameter.

Trees

A tree is a connected acyclic simple graph. A vertex of
degree 1 is called a leaf, or pendant vertex. Anedge
incident to a leaf is a leafedge, or pendant edge. (Some
people define a leaf edge as a leaf and then define a leaf
vertex on top of it. These two sets of definitions are often
used interchangeably.)

A non-leaf vertex is an internal vertex.

Sometimes, one vertex of the tree is distinguished, and
called the root; in this case, the tree is called rooted.
Rooted trees are often treated as directed acyclic graphs
with the edges pointing away from the root.

A subtree of the tree T is a connected subgraph of T.

A forest is an acyclic simple graph.

A subforest of the forest F is a subgraph of F.

A spanning tree is a spanning subgraph that is a tree.
Every graph has a spanning forest. But only a connected
graph has a spanning tree.

A special kind of tree called a star is K1,k .

A labeled tree with 6 vertices and 5 edges.
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An induced star with 3 edges is a claw.

A caterpillar is a tree in which all non-leaf nodes form a single path.

A k-ary tree is a rooted tree in which every internal vertex has k children. A 1-ary tree is just
a path. A 2-ary tree is also called a binary tree.

Cligues

The complete graph K

n oforder nis asimple graph with n vertices in
which every vertex is adjacent to every other. The
example graphto the right is complete. The
complete graph on n vertices is often

denoted by K n. It has n(n-1)/2 edges (corresponding
to all possible

choices of pairs of vertices).

Aclique ina graph is a set of pairwise adjacent
vertices. Since any subgraph induced by a clique is a
complete subgraph, the two terms

and their notations are usually used interchangeably.
A Kk-cligue is a clique of order k. In the example
graph above, vertices 1, 2 and 5 form a 3-clique, or a
triangle. A maximal clique is a clique that is not a
subset ofany other clique (some authors reserve the
term clique for maximal cliques).

The clique number w(G) ofa graph G is the order of a largest clique
in G.

K1_ a complete graph. If a subgraph looks like
this, the vertices in that subhgraph form a clique of
size 5.

Strongly connected component

A related but weaker concept is that of a strongly connected component. Informally, a
strongly connected component of a directed graph is a subgraph where all nodes in the
subgraph are reachable by all other nodes in the subgraph.

Reachability between nodes is established by the existence of a path between the nodes.

A directed graph can be decomposed into strongly connected components by running the
depth-first search (DFS) algorithm twice: first, on the graph itself and next on the transpose
of the graph in decreasing order of the finishing times of the first DFS. Given a directed
graph G, the transpose GT is the graph G with all the edge directions reversed.

Knots

A knot in a directed graph is a collection of vertices and edges with the property that every
vertex in the knot has outgoing edges, and all outgoing edges from vertices in the knot
terminate at other vertices in the knot. Thus it is impossible to leave the knot while following
the directions of the edges.

Minors

A minor Gy = (V:!, Ez:lﬂf G, = (Vh El] is an injection from Voto Visuch that every edge in Fy
corresponds to a path (disjoint from all other such paths) in (3 such that every vertex in V/is in one or more paths,
or is part of the injection from Vito V. This can alternatively be phrased in terms of contractions, which are

operations which collapse a path and all vertices on it into a single edge (see Minor (graph theory)).
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Embedding

An embedding Gy = “@ Ez:l"-'f G = (VH E]]is an injection from Viyto Visuch that every edge in Fy

corresponds to a path (disjoint from all other such paths) in (.

Adjacency and degree

In graph theory, degree, especially that of a vertex, is usually a measure of immediate
adjacency.

An edge connects two vertices; these two vertices are said to be incident to that edge, or,
equivalently, that edge incident to those two vertices. All degree-related concepts have to do
with adjacency or incidence.

The degree, or valency, d G(v) ofa vertex v in a graph G is the number of edges incident to v,
with loops being counted twice. A vertex of degree 0 is an isolated vertex. A vertex of degree
1is a leaf. In the labelled simple graph example, vertices 1 and 3 have a degree of 2, vertices
2,4 and 5 have a degree of 3, and vertex 6 has a degree of 1. If E is finite, then the total sum
of vertex degrees is equal to twice the number of edges.

The total degree ofa graph is equal to two times the number of edges, loops included. This
means that for a graph with 3 vertices with each vertex having a degree of two (i.e. a triangle)
the total degree would be six (e.g. 3 x2 = 6).

The general formula for this is total degree = 2n where n = number of edges.

A degree sequence is a list of degrees of a graph in non-increasing order (e.g. d

1 >d2> ... >dn). A sequence of non-increasing integers is realizable if it is a degree
sequence of some graph.

Two vertices uand v are called adjacent if an edge exists between them. We denote this by u
~voru | v. Inthe above graph, vertices 1 and 2 are adjacent, but vertices 2 and 4 are not.
The set of neighbors of v, that is, vertices adjacent to v not including v itself, forms an
induced subgraph called the (open) neighborhood of vand denoted N G(v). When v is also
included, it is called a closed neighborhood and denoted by N G[v]. When stated without any
qualification, a neighborhood is assumed to be open. The subscript G is usually dropped
when there is no danger of confusion; the same neighborhood notation may also be used to
refer to sets of adjacent vertices rather than the corresponding induced subgraphs. In the
example graph, vertex 1 has two neighbors: vertices 2 and 5. For a simple graph, the number
of neighbors that a vertex has coincides with its degree.

A dominating set of a graph is a vertex subset whose closed neighborhood includes all
vertices of the graph. A vertex v dominates another vertex u if there is anedge fromvto u. A
vertex subset V dominates another vertex subset U if every vertex in U is adjacent to some
vertex in V. The minimum size ofa dominating set is thedomination number y(G).

In computers, a finite, directed or undirected graph (with n vertices, say) is often represented
by its adjacency matrix: an n-by-n matrix whose entry in row i and column j gives the
number of edges from the i-th to the j-th vertex.

Spectral graph theory studies relationships between the properties of the graph and its
adjacency matrix.

The maximum degree A(G) ofa graph G is the largest degree over all vertices; the minimum
degree 8(G), thesmallest.

A graph in which every vertex has the same degree is regular. It is k-regular if every vertex
has degree k. A

0-regular graph is an independent set. A 1-regular graph is a matching. A 2-regular graph is a
vertex disjoint union of cycles. A 3-regular graph is said to be cubic, or trivalent.
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A Kk-factor is a k-regular spanning subgraph. A 1-factor is a perfect matching. A partition of
edges of a graph into k-factors is called a k-factorization. A k-factorable graph is a graph that
admits a k-factorization.

A graph is biregular if it has unequal maximum and minimum degrees and every vertex has
one of those two degrees.

A strongly regular graph is a regular graph such that any adjacent vertices have the same
number of common neighbors as other adjacent pairs and that any nonadjacent vertices have
the same number of common neighbors as other nonadjacent pairs.

Independence

In graph theory, the word independent usually carries the connotation of pairwise disjoint or
mutually nonadjacent.

In this sense, independence is a formof immediate nonadjacency. An isolated vertex is a
vertex not incident to any edges. An independent set, or coclique, or stable set or staset, is a
set of vertices of which no pair is adjacent. Since the graph induced by any independent set is
an empty graph, the two terms are usually used interchangeably. In the example above,
vertices 1, 3, and 6 forman independent set; and 3, 5, and 6 form another one.

Two subgraphs are edge disjoint if they have no edges in common. Similarly, two subgraphs
are vertex disjoint if they have no vertices (and thus, also no edges) in common. Unless
specified otherwise, a set of disjoint subgraphs are assumed to be pairwise vertex disjoint.
The independence number a(G) of a graph G is the size of the largest independent set of G.

A graph can be decomposed into independent sets in the sense that the entire vertex set of the
graph can be partitioned into pairwise disjoint independent subsets. Such independent subsets
are called partite sets, or simply parts.

A graph that can be decomposed into two partite sets but not fewer is bipartite; three sets but
not fewer, tripartite; k sets but not fewer, k-partite; and an unknown number of sets,
multipartite. An 1-partite graph is the same as an independent set, or an empty graph. A 2-
partite graph is the same as a bipartite graph. A graph that can be decomposed into k partite
sets is also said to be k-colourable.

A complete multipartite graph is a graph in which vertices are adjacent if and only if they
belong to different partite

sets. A complete bipartite graph is also referred to as a biclique; if its partite sets contain n
and m vertices, respectively, then the graph is denoted K n,m.

A k-partite graph is semiregular if each of its partite sets has a uniform degree; equipartite if
each partite set has the same size; and balanced k-partite if each partite set differs in size by at
most 1 with any other.

The matching number r:r'(G)m" a graph (7 is the size of a largest matching, or pairwise vertex disjoint edges, of
G.

A spanning matching, also called a perfect matching is a matching that covers all vertices of a graph.

Connectivity

Connectivity extends the concept of adjacency and is essentially a form (and measure) of
concatenated adjacency.

If it is possible to establish a path fromany vertex to any other vertex ofa graph, the graph is
said to be connected; otherwise, the graph is disconnected. A graph is totally disconnected if
there is no path connecting any pair of vertices. This is just another name to describe an
empty graph or independent set.
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A cut vertex, or articulation point, is a vertex whose removal disconnects the remaining
subgraph. A cut set, or vertex cut or separating set, is a set of vertices whose removal
disconnects the remaining subgraph. A bridge is ananalogous edge (see below).

If it is always possible to establish a path from any vertex to every other even after removing
any k - 1 vertices, thenthe graph is said to be k-vertex-connected or k-connected. Note that a
graph is k-connected if and only if it contains k internally disjoint paths between any two
vertices. The example graph above is connected (and therefore 1-connected), but not 2-
connected. The vertex connectivity or connectivity k(G) ofa graph G is the minimum
number of vertices that need to be removed to disconnect G. The complete graph K n

has connectivity n- 1 for n > 1; and a disconnected graph has connectivity 0.

In network theory, a giant component is a connected subgraph that contains a majority of the
entire graph's nodes.

A bridge, or cut edge or isthmus, is an edge whose removal disconnects a graph. (For
example, all the edges in a tree are bridges.) A disconnecting set is a set o fedges whose
removal increases the number of components. Anedge cut is the set of all edges which have
one vertex in some proper vertex subset S and the other vertex in V(G)\S. Edges of K 3 form
a disconnecting set but not an edge cut. Any two edges of K 3 form a minimal disconnecting
setas well as anedge cut. An edge cut is necessarily a disconnecting set; and a minimal
disconnecting set of a nonempty graph is necessarily an edge cut. A bond is a minimal (but
not necessarily minimum), nonempty set of edges whose removal disconnects a graph. A cut
vertex is an analogous vertex (see above).

A graph is k-edge-connected if any subgraph formed by removing any & - 1 edges is still connected. The edge

connectivity H’[:G'Jnfu graph & is the minimum number of edges needed to disconnect . One well-known result

is that ;-;;{G:l < ﬁc"[:G] < df;{;’}

A component is a maximally connected subgraph. A block is either a maximally 2-connected
subgraph, a bridge (together with its vertices), or an isolated vertex. A biconnected
component is a 2-connected component.

An articulation point (also known as a separating vertex) ofa graph is a vertex whose
removal from the graph increases its number of connected components. A biconnected
component can be defined as a subgraph induced by a maximal set of nodes that has no
separating vertex.

Distance

The distance d G(u, v) between two (not necessary distinct) vertices uand v in a graph G is
the length of a shortest path between them. The subscript G is usually dropped when there is
no danger of confusion. When uand v are identical, their distance is 0. When uand v are
unreachable from each other, their distance is defined to be infinity .

The eccentricity € G (v) ofa vertex v in a graph G is the maximum distance from v to any
other vertex. The diameter diam(G) ofa graph G is the maximum eccentricity over all
vertices ina graph; and the radius rad(G), the minimum.

When there are two components in G, diam(G) and rad(G) defined to be infinity oo. Trivially,
diam(G) < 2 rad(Q).

Vertices with maximum eccentricity are called peripheral vertices. Vertices of minimum
eccentricity form the center. A tree has at most two center vertices.
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The Wiener index ofa vertex v in a graph G, denoted by WG(v) is the sum of distances
between v and all others.

The Wiener index ofa graph G, denoted by W(G), is the sum of distances over all pairs of
vertices. An undirected graph's Wiener polynomial is defined to be X q d(u,v) over all
unordered pairs of vertices uand v. Wiener index and Wiener polynomial are of particular
interest to mathematical chemists.

The k-th power G k of a graph G is a supergraph formed by adding an edge between all pairs
of vertices of G with distance at most k. A second power ofa graph is also called a square.
A k-spanner is a spanning subgraph in which every two vertices are at most k times as far
apart on S thanon G. The number k is the dilation. k-spanner is used for studying geometric
network optimization.

Genus

A crossing is a pair of intersecting edges. A graph is embeddable on a surface if its vertices
and edges can be arranged on it without any crossing. The genus of a graph is the lowest
genus of any surface on which the graph can embed.

A planar graph is one which can be drawn on the (Euclidean) plane without any crossing; and
a plane graph, one which is drawn in such fashion. In other words, a planar graph is a graph
of genus 0. The example graph is planar; the complete graph on n vertices, for n> 4, is not
planar. Also, a tree is necessarily a planar graph.

When a graph is drawn without any crossing, any cycle that surrounds a region without any
edges reaching from the cycle into the region forms a face. Two faces ona plane graph are
adjacent if they share a common edge. A dual, or planar dual when the context needs to be
clarified, G* ofa plane graph G is a graph whose vertices represent the faces, including any
outerface, of G and are adjacent in G * if and only if their corresponding faces are adjacent in
G.

The dual of a planar graph is always a planar pseudograph (e.g. consider the dual of a
triangle). In the familiar case of a 3-connected simple planar graph G (isomorphic to a convex
polyhedron P), the dual G* is also a 3-connected simple planar graph (and isomorphic to the
dual polyhedron P*).

Furthermore, since we can establish a sense of “inside" and "outside" ona plane, we can
identify an "outermost” region that contains the entire graph if the graph does not cover the
entire plane. Such outermost region is called an outer face. An outerplanar graph is one which
can be drawn in the planar fashion such that its vertices are all adjacent to the outer face; and
an outerplane graph, one which is drawn in such fashion.

The minimum number of crossings that must appear when a graph is drawn ona plane is
called the crossing number.

The minimum number of planar graphs needed to cover a graph is the thickness of the graph.

Weighted graphs and networks

A weighted graph associates a label (weight) with every edge in the graph. Weights are
usually real numbers. They may be restricted to rational numbers or integers. Certain
algorithms require further restrictions on weights; for instance, Dijkstra's algorithm works
properly only for positive weights. The weight of a path or the weight of a tree

in a weighted graph is the sum of the weights of the selected edges. Sometimes a non-edge is
labeled by a special weight representing infinity. Sometimes the word cost is used instead of
weight. When stated without any qualification, a graph is always assumed to be unweighted.
In some writing on graph theory the term network is a synonym for a weighted graph. A
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network may be directed or undirected, it may contain special vertices (nodes), such as source
or sink. The classical network problems include:

* minimum cost spanning tree,

* shortest paths,

» maximal flow (and the max-flow min-cut theorem)

Direction

A directed arc, or directed edge, is an ordered pair of endvertices that can be represented
graphically as an arrow drawn between the endvertices. Insuch an ordered pair the first
vertex is called the initial vertex or tail; the second one is called the terminal vertex or head
(because it appears at the arrow head). An undirected edge disregards any sense of direction
and treats both endvertices interchangeably. A loop in a digraph, however, keeps a sense of
direction and treats both head and tail identically. A set ofarcs are multiple, or parallel, if
they share the same head and the same tail. A pair of arcs are anti-parallel if one's head/tail is
the other's tail/head. A digraph, or directed graph, or oriented graph, is analogous to an
undirected graph except that it contains only arcs. A mixed graph may contain both directed
and undirected edges; it generalizes both directed and undirected graphs. When stated
without any qualification, a graph is almost always assumed to be undirected.

A digraph is called simple if it has no loops and at most one arc between any pair of vertices.
When stated without ny qualification, a digraph is usually assumed to be simple.

In a digraph I', we distinguish the out degree d I + (v), the number ofedges leaving a vertex
v, and the in degree d I'-(v), the number of edges entering a vertex v. If the graph is oriented,
the degree d I' (v) of a vertex v is equal to the sum of'its out- and in- degrees. When the
context is clear, the subscript I can be dropped. Maximum and minimum out degrees are
denoted by A+ (T') and 0+ (I'); and maximum and minimum in degrees, A- (I') and 6-

(). An out-neighborhood, or successor set, N + I' (v) of a vertex v is the set of tails ofarcs
going from v. Likewise, an in-neighborhood, or predecessor set, N —I" (v) of a vertex v is the
set of heads ofarcs going into v.

A source is a vertex with 0 in-degree; and a sink, 0 out-degree.

A vertex v dominates another vertex u if there isanarc from vto u. A vertex subset S is out-
dominating if every vertex not in S is dominated by some vertex in S; and in-dominating if
every vertex in S is dominated by some vertex not in S.

A kernel is an independent out-dominating set. A digraph is kernel perfect if every induced
sub-digraph has a kernel.

An Eulerian digraph is a digraph with equal in- and out-degrees at every vertex.

The zweieck of an undirected edge is the pair of diedges and which form the simple
dicircuit.

An orientation is an assignment of directions to the edges ofan undirected or partially
directed graph. When stated without any qualification, it is usually assumed that all
undirected edges are replaced by a directed one in an orientation. Also, the underlying graph
is usually assumed to be undirected and simple.

A tournament is a digraph in which each pair of vertices is connected by exactly one arc. In
other words, it is an oriented complete graph.

A directed path, or just a path when the context is clear, is an oriented simple path such that
all arcs go the same direction, meaning all internal vertices have in- and out-degrees 1. A
vertex v is reachable fromanother vertex u if there is a directed path that starts from uand
ends at v. Note that in general the condition that u is reachable from v does not imply that v is
also reachable from u.
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If v is reachable from u, then u is a predecessor of vand v is a successor of u. If there is an
arc from uto v, then u is a direct predecessor of v, and v is a direct successor of u.

A digraph is strongly connected if every vertex is reachable from every other following the
directions of the arcs.

Onthe contrary, a digraph is weakly connected if its underlying undirected graph is
connected. A weakly connected graph can be thought of as a digraph in which every vertex is
"reachable” from every other but not necessarily following the directions of the arcs. A strong
orientation is an orientation that produces a strongly connected digraph.

A directed cycle, or just a cycle whenthe context is clear, is an oriented simple cycle such
that all arcs go the same direction, meaning all vertices have in- and out-degrees 1. A digraph
is acyclic if it does not contain any directed cycle. A finite, acyclic digraph with no iso lated
vertices necessarily contains at least one source and at least one sink.

An arborescence, or out-tree or branching, is an oriented tree in which all vertices are
reachable from a single vertex. Likewise, an in-tree is an oriented tree in which a single
vertex is reachable from every other one.

Directed acyclic graphs

The partial order structure of directed acyclic graphs (or DAGS) gives them their own
terminology. Ifthere is a directed edge from uto v, thenwe say u is a parent of vand v is a
child of u. Ifthere is a directed path from uto v, we say u is anancestor of vand v is a
descendant of u.

The moral graph ofa DAG is the undirected graph created by adding an (undirected) edge
between all parents of the same node (sometimes called marrying), and then replacing all
directed edges by undirected edges. A DAG is perfect if, for each node, the set of parents is
complete (i.e. no new edges need to be added when forming the moral graph).

Colouring

Vertices in graphs can be given colours to identify or label them. Although they may actually
be rendered in diagrams in different colours, working mathematicians generally pencil in
numbers or letters (usually numbers) to represent the colours.

Givena graph G (V,E) a k-colouringofGisamap ¢ : V— {I, ..., k} withthe property that
(u, v) € E= ¢(u) # d(v) - in other words, every vertex is assigned a colour with the condition
that adjacent vertices cannot be assigned the same colour.

The chromatic number %(G) is the smallest k for which G has a k-colouring.

Givena graph and a colouring, the colour classes of the graph are the sets of vertices given
the same colour.

Various
A graph invariant is a property of a graph G, usually a number or a polynomial, that depends

only on the isomorphism class of G. Examples are the order, genus, chromatic number, and
chromatic polynomial ofa graph.
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Improved BSP Clustering Algorithm for Social Network Analysis

Social network analysis is a new research field in data mining. The clustering in social
network analysis is different from traditional clustering. It requires grouping objects into
classes based on their links as well as their attributes. While traditional clustering algorithms
group objects only based on objects’ similarity, and it can't be applied to social network
analysis. So on the basis of BSP (business system planning) clustering algorithm, a social
network clustering analysis algorithm is proposed. The proposed algorithm, different from
traditional BSP clustering algorithms, can group objects in a social network into different
classes based on their links and identify relation among classes dynamically & require less
amount of memory .

1. Introduction

Social networks are graph structures whose nodes or vertices represent people or other
entities embedded in a social context, and whose edges represent interaction or collaboration
between these entities [10]. Social networks are highly dynamic, evolving relationships
among people or other entities. This dynamic property of social networks makes studying
these graphs a challenging task. A lot of research has been done recently to study different
properties of these networks. Such complex analysis of large, heterogeneous, multi-relational
social networks has led to an interesting field of study known as Social Network Analysis
(SNA).

Social network analysis, which can be applied to analysis of the structure and the property of
personal relationship, web page links, and the spread of messages, is a research field in
sociology. Recently social network analysis has attracted increasing atiention in the data
mining research community. From the viewpoint of data mining, a social network is a
heterogeneous and multi-relational dataset represented by graph [3].Research on social
network analysis in the data mining community includes following areas: clustering analysis
[2]. classification [8], link prediction [7]. Other achievements include PageRank [9] and Hub-
Authority [4] in web search engine.

Present paper, clustering analysis of social network is studied. In the second section, a social
network clustering algorithm is proposed based on BSP clustering algorithm. The algorithm
can group objects in a social network into different classes based on their links, and it can also
identify the relations among classes. In the third section, an example of social network
clustering algorithm is presented.
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2. Social Network Analysis Based on BSP Clustering

There has been extensive research work on clustering in data mining. Traditional clustering
algorithms [3] divide objects into classes based on their similarity. Objects in a class are
similar to each other and are very dissimilar from objects in different classes. Social network
clustering analysis, which is different from traditional clustering problem, divides objects into
classes based on their links as well as their attributes. The biggest challenge of social network
clustering analysis is how to divide objects into classes based on objects’ links, thus find
algorithms that can meet this challenge.

The BSP (business system planning) clustering algorithm [11] is proposed by IBM. It
designed to define information architecture for the firm in business system planning. This
algorithm analyses business process and their data classes, cluster business process into sub-
systems, and define the relationship of these sub-systems.

Basically BSP clustering algorithm uses objects (business processes) and links among objects
(data classes) to make clustering analysis. Similarly social network also includes objects and
links among these objects. In view of the same pre-condition, the BSP clustering algorithm
can be used in social network clustering analysis.According to graph theory, social network is
a directed graph composed by objects and their relationship. Figure 1 shows a sample of
social network, the circle in the figure represents an object; the line with arrow is an edge of
the graph, and it represents directed link between two objects, so a social network is a
directed graph.

In figure 1, Let (i be an object in social network ( i = 1...m ), let E; which means directed link
between two objects, be a directed edge of the graph ( j=1...n ).

After definition of objects and directed edges, also define reachable relation between two
objects. There are two kinds of reachable relation among objects, shown as following:

1) One-step reachable relation: if there has directed link from Oi to O; through one and only
one directed edge, then Of to (Jf is a one-step reachable relation. For instance in figure | there
has a directed link from (; to (J; through the directed edge £,, () to (Jy is one-step reachable
relation.

2) Multi-steps reachable relation: if there has directed link from O ; to O ; through two or
more directed edges, then O i to O, is a multi-steps reachable relation. For instance in figure 1
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has a directed link from O, to O; through directed edges E, and Es, then 01 to O4 is a 2-steps
reachable relation.

After these definitions, use BSP clustering algorithm to analyses a social network. The
analysis processes are as following steps:

Generate edge creation matrix and edge pointed matrix

First according to the objects and edges in the graph, define two matrixes Le and Lp.

Let Le be a mx n matrix which means the creation of edges. In the matrix, Le (i, /) =1 denotes
object (N connects with the tail of edge FEj , which means that object (N creates the directed
edge Ej. L (i, ) ¢ =0 denotes O doesn’t connect with the tail of edge Ef , which means Ej
isn't created by object O .

Calculate one-step reachable matrix between objects

After the definition of Le and Lp, calculate one-step reachable matrix between objects through
the following equation,

n
G=Le *Ly" =g =LK, (ki) )

._,i=1.._._m,E=] ______ m ] (1

* is Boolean product, V is Boolean sum.

(r(i, /) =1 means (¥ to (Jf is a one-siep reachable relation, (i, /) = 0 means there hasn't a
one-step reachable relation from (% to () . Through G, calculate all one-step reachable
relation between objects.

Calculate multi-steps reachable matrix between objects

Besides one-step reachable relation, there are multi-steps reachable relations between objects
ton. Also need calculate multi-steps reachable matrices (2-steps, 3-steps, ... m-1-steps).
According to graph theory and the BSP clustering algorithm, calculate multi-steps reachable
matrix G2, G3, G4....., Gm=1 . Following equations show the calculation of multi-steps
reachable matrix:

m
G'=G*G= ¢ = V(gik ek)

*,i=1._...m,E=1 ______ m ] (2)

G=G*G
G'=G*G
é;n-—-'l-= Gm—z *G

These matrices include 2-steps, 3-steps... m-1-steps reachable relations between objects.
Mow n-steps reachable relation between two objects through G2 .G3 G4 ,....Gm—1 .

Calculate reachable matrix
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Because only consider whether reachable relations exist between two objects, but do not care
these relations are one-step or multi-steps, so calculate reachable matrix R based on &,G2 ,G3
G4, Gm—1 | The calculation of R is shown as following equation:

R=INGVG2. . NVGm—1 (3)

V is Boolean sum., { is unit matrix.

Rii, /)= 1 means reachable relation exists from O to (Jj , but the reachable relations existing
in matrix R is not mutual, for instance R(i, /) = | means reachable relation exists from Of to
)i ,but it doesn’t means reachable relation exists from O to (% . Mutual reachable relations
between two objects are important in a social network, so

calculate mutual reachable matrix based on R .

Calculate mutual reachable matrix and generate clusters

The mutual reachable matrix can be calculated through following calculate equation.
O=R"RT (4)
*means Boolean product

In the matrix{i{i, j) = | means there are mutual reachable relation between (¥ and Jf . Ina
social network if two objects that have mutual reachable relation, they should belong to the
same class, thus cluster based on Q.

Thus according to mutual reachable matrix 0, divide a social network into classes based on
strong submatrices in () or adjusted (). While strong sub-matrix is defined as follows.

Strong sub-matrix: if all elements in a sub-matrix of ( are 1, this sub matrix is strong sub-
matrix.

Identify relationships among classes

After clustering of social network, also need identify relationship among clusters. This can be
done through generated clusters and one-step reachable matrix(s . If there is one-step
reachable relation between two objects in different classes, so directed links exist between
classes. Through(r |, identify all relations among classes.

After pervious 6 steps, divide a social network into classes. Social network clustering analysis
algorithm can be given:

Input:

L. : Edge creation Matrix
L, : Edge pointed matrix
Begin

G=L.*L,"

for k=3 to m do

Gk =1 =Gk =2 *G
R=IVGVG2...V Gm=1
Q=R“W'

O—=>C

(C  O)-=Relation (Cy )
End

(= = C; means generating clusters through mutual reachable matrix@ , and (C ; .0 })-
=Relation( ;) means identifying relationships among clusters base on clusters and one-step
reachable matrix( .
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3. Improvement over BSP Clustering Algorithm

In previous paper based on BSP clustering algorithm, an algorithm of social network
clustering analysis is proposed. It divides a social network into different classes according to
objects in the social network and links between objects, and it also can identify relations
among clusters.
Main disadvantage of this algorithm is that it uses matrices to store edges and reachable
relations, in a real social network these matrices will be very huge, can’t load into main
memory. But because these matrices are very sparse, so design an efficient data structure to
overcome this shortcoming,.
Present paper propose modification of existing BSP algorithm using Link list data structure.
Using this data structure can overcome shortcoming (which have been mention above)
Following procedure is require for converting this sparse metrix in to link list:
A matrix is a two-dimensional data object made of m rows and n columns, therefore having
m, i values. When m=n, call it a square matrix.
The most natural representation is to use two-dimensional array A[m][n] and access the
element of i row and i™ column as A[i][j]. If a large number of elements of the matrix are
zero elements, then it is called a sparse matrix.
Representing a sparse matrix by using a two-dimensional array leads to the wastage of a
substantial amount of space. Therefore, an alternative representation must be used for sparse
matrices. One such representation is to store only non- zero elements along with their row
positions and column positions. That means representing every non-zero element by using
triples (i, j, value), where i is a row position and j is a column position, and store these triples
in a linear list. It is possible to arrange these triples in the increasing order of row indices, and
for the same row index in the increasing order of column indices. Each triple (i,j,value) can be
represented by using a node having four fields as shown in the following:
Struct snode {
Int row.col,val;
Struct snode *next:

}s

Row col val *next —*

1. In order to add two sparse matrices represented using the sorted linked lists as shown
in the preceding program, the lists are traversed until the end of one of the lists is
reached.

2. In the process of traversal, the row indices stored in the nodes of these lists are
compared. If they don't match, a new node is created and inserted into the resultant
list by copying the contents of a node with a lower value of row index. The pointer in
the list containing a node with a lower value of row index is advanced to make it
point to the next node.

3. If the row indices match, column indices for the corresponding row positions are
compared. If they don't match, a new node is created and inserted into the resultant
list by copying the contents of a node with a lower value of column index. The
pointer in the list containing a node with a lower value of column index is advanced
to make it point to the next node.
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4. If the column indices match, a new node is created and inserted into the resultant list
by copying the row and column indices from any of the nodes and the value equal to
the sum of the values in the two nodes.

5. After this, the pointers in both the lists are advanced to make them point to the next
nodes in the respective lists. This process is repeated in each iteration. After reaching
the end of any one of the lists, the iterations come to an end and the remaining nodes
in the list whose end has not been reached are copied, as it is in the resultant list.

After pervious 5 steps, divide a social network into classes. Social network clustering analysis
algorithm can be given:

Input:
Lu : Edge creation Lists
Lp : Edge pointed Lists
Begin
=L, % Swap (L, ) //perform swapping row column of L,
for k=3 tomdo
Gk =1 =Gk -2 *G
Lp : Edge pointed Lists
Begin
=L *Swap (L, ) Hperform swapping row column of L,
Jor k=3 1o mdo
Gk =1 =Gk =2 *G
R=IVGV G2 Vim=1
O = R " Swap(R) Aperform swapping row column of R

Working Example
Mow an example is given to show process of the cluster analysis of social network.
Suppose a social network as figure 1 shows. According to the figure, can give the edge

creation matrix Le and edge po inted matrix Lp as following.

In the form of link list
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Le=

_— e 1

2|5 JEEIR » 3|6 |1 » 4l 7| 1 N
sl 4 9] 1 > 5|71 » 6|10 1| |—»NIL

Le=1 1|2 * 1|41 * 2] 1] 1 ‘-‘331j
[_'451 o4 6] 1 Malg |1 [ 4 10 1
I_'S?l » 6|9l 1| [— NL

According to the social network clustering algorithm, Le and Lp clustering the social network show as

following steps:

Calculate one-step reachable matrix between objects

'1 0 1 0 O O O 0 0 EI] (01 01 0 0O0O0O 0] ({01 1 000

g1 001 0O0O0O0 El::l o 0 00 O0O0OO0DO0OTO0 :l 0 01 0 0
G—ﬂ 0 01 0100 0 D-.-t} 01 0 0 0 O O0O0OTO0 _-l o 01 00

00 0 000101 EI::El o0 01 10101 :EI 0 0011

g0 0 0 0 0 01 0 EI;;D o 0 0 0 01 0 0 0 ;ﬂ 0 01 0 0
0 0 0 0 0 O O 0 0 lJ 0 O 0 OOOOTU D1 0 [ﬂ 0 01 0 0
G= 11]2 |1 * 13 |1 JIERE 214 1

|_’3 1|1 304 |1 ™ 4051 ™ 4016 |1
L.j 4 ] #6 4 ] —I'N]L

Calculate reachable matrix based on one-step and multi-steps reachable matrix

R= | 1]1]1] |—1 21 o1 3] 1 ila]1

o 1] 5] o 1] 6] 1 o 2 1] 1 o o 2] 1

— 23] » 2| 4] JEEr =2|&1—|
L341 > 3| 5| 1 > 3 6 1 Lalali]
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4l 511 = 4| 6] 1 = 514 1 = 5 5] 1
NIL
|"Sl’;’nl M6l 4] 1 6|51 —* 6] 6] 1 it

Calculate muiual reachable matrix and generate clusters

1 1 1 1 11 I 11 0o 0 0 ‘11 1 0 0 O
1 1 1 1 11 111 0 0 0 1 1 1 0 0 0
o 0 01 11 I 11 0o 0 0 I 1 1 o O 0
O=RAR" = ~ =
00 0 1 11 111 1 1 1 00 0 1 1 1
00 01 11 111 1 1 1 0 0 0 1 1 1
oo o011 1)1lr11 11 1) loo0o o0 1 1 1,
Q= 1[1] 1 21 IRIEIR! 2011

\—>331 > alal 1 »als5]1 >4l 6 1
o 514l » 5|51 » 5|61 » 6041
* 65 |1 * 6|6l | [—NL

According the mutual reachable list {, it includes two strong sub list. So divide figure 1 to
two classes, the first class C; includes object O .0, .05, and the second class s includes
'G-'I ﬁﬂﬁ \Db .

Identifying relationships among classes
According to one-step reachable matrix & , there have one-step reachable relations between

two classes ((J: = > Oy and O; = > (), so identify relations between two clusters C; and s
. as figure 2 shows.
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Figure 2: Identify relationships between two clusters.

C points to 5 in figure 2, but Cs not points to Oy, so identify relations between two classes.

4. Conclusion

In this paper based on BSP clustering algorithm, an algorithm of social network clustering
analysis is proposed. It divides a social network into different classes according to objects in
the social network and links between objects, and it also can identify relations among clusters.
Also in our algorithm the edges between objects have same weight; however in real world
such edges may have different weights. Meanwhile the property of each cluster has not been
analyzed. These will be solved in our future research.
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PROGRAM CODE:

#include<stdlib.h>
#include<malloc.h>
#include<stdio.h>
#include<conio.h>
#include<dos.h>
#include<time.h>
clock t start, end;
int count5[5];
float tim, tim2;
int b[4];
int x2,y;
int recieve (int[],int, char);
void 1in2 ()
{ int 1i;

for (1i=18;1<50;i++)

{ gotoxy (40,1) ;

printf ("%c\n",186);

}
}
void 1inl1l ()
{
int 1i;
for (i=4;i<17;1i++)
{
gotoxy (50,1);
printf ("%c\n",186);

}

void title (void)
{

int 1i;
gotoxy(2,1);

for (1=0;1<78;i++)
{

printf ("%c",205);
}

gotoxy );

(30,
printf ("%c",4);
printf('%c' 4) ;
printf ("STO 'N' WAIT PROTOCOL") ;
printf ("%c", 4)
printf ("%c",4);

gotoxy(2,3);
for (1=0;1<78;i++)
{
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printf ("%c",205);

}
void menul ()
{
int 1i,7;
title();
printf ("\n\n") ;
printf ("\n\n\tl. Normal Sending Data");
printf ("\n\t2. Loss of Acknowledgement)\
\n\t3. Loss of Sending Data\
\n\t4. Time Expired\
\n\t5. Exit");
printf ("\n\n\tEnter your choice : ");
gotoxy (55,4);
printf("\tMASTER TABLE") ;
for (i=6;1<17;1i++)
{
gotoxy (65,1);
printf ("%c\n",186);
}
gotoxy(51,5);
for (i=0,;1<29; i++)
{
printf ("%c",205);

J=1;
for (1=7;1<=15;i++)
{
gotoxy (55,1);
printf ("Frame %d",j);
Jt++;
i++;
}
gotoxy (2,17);
for (1=0;1<78;i++)
{
printf ("%c",205);
}
}
void menu (void)

{

int i,

gotoxy(2,17);

printf ("\n\n") ;

printf ("\t SENDER'S END ",127,127);
(

printf ("\t\t\t RECIEVER'S END \n\n");
1lin2();
1inll();

}

void send(char z)

{
int a[20],1,x1,x,count=1;
int f£[4];
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time t t;
float timl=0.0;
//char *al;
//int 1=0, *bl;
int j=0,k=21,cnt=7,ct=7,cntl=0,g;
for (i=0;1i<4;i++)
{
b[i]l=2;
count5[i]=100;
}
count5[i]=100;
gotoxy(4,21);
(
(

printf ("Message : ");
srand ( (unsigned) time (&t));
x2=14;

y=21;

for (1=0;1<20;i++)

{
gotoxy (x2,V);
alil=(rand () %2);
printf ("sd",alil])
xX2++;

1

ct=7;

for (g=0;9<=4;g++)

{
gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",countb[gl);

}

gotoxy (4,23);

printf ("Press Enter To Send Data");

getch();

switch(z)

{

case '1':

for (i=0; 1<20; i++)
{
if (1!=0)
{
clrscr();
menul () ;
menu () ;
gotoxy(4,21);
printf ("Message : ");
x2=14;
y=21;
for (3j=0;3<20; j++)
{
gotoxy(x2,v);
printf ("$d",al[j]);
xX2++;
}
ct=7;
for (g=0;g<=4;g++)
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gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",count5[g]);

}

x2=4;
y=23;
for (k=0; k<4;k++)
{
flkl=alil;
i++;
}
1-=;
y=y+1;
gotoxy (x2,Vy);
printf ("\tSending Frame %d : ",count);

for (k=0; k<4;k++)
printf ("&d",f[k]);
count5b[cntl]—--;
ct=7;
for (g=0;g<=cntl;g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" ")
}
ct=7;
for (g=0;g<=cntl;gt++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",count5[g]l);
}
cnt++;
cnt++;
cntl++;
start = clock();
x=recieve (f,count,z) ;
x2=x2-40;
y+=2;
count++;
if (i<1le6)
{
gotoxy (x2,V);
printf ("\tPress Enter to Continue");
getch ()

}
y+=1;
gotoxy (x2,vy);
printf ("\tMessage ") ;
printf (" Sent Successfully");
break;
case '2':
for (1i=0; 1i<20; i++)
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for (k=0; k<4 ;k++)
blk]l=2;

1f(1i!'=0)

{
clrscr();
menul ();
menu () ;
gotoxy (
printf (
x2=14;
y=21;
for (3=0;3<20; j++)
{

4,21);
"Message : ");

gotoxy(x2,V);
printf ("$d",alj]);
xX2++;
}
ct=7;
for (g=0;g<=4;g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",countb[g]);

}
xX2=4;
y=23;
for (k=0; k<4;k++)
{
flkl=alil;
1++;
}
i--;
gotoxy(x2,V);
printf ("\tSending Frame %d : ",count);
for (k=0; k<4;k++)
printf ("$d",f[k]);
countb[cntl]--;
ct=7;
for (g=0;g<=cntl;g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" ")
}

ct=7;
for (g=0;g<=cntl; g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",countb[g]l);
}
delay (100) ;
x=recieve (f,count, z);
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x2=x2-40;
y+=2;
timl=0.0;
while (x==1)
{
end=clock () ;
tim=(end-start) /CLK TCK;
timl=timl+tim; N
if (tim>1.3)
{
gotoxy(x2,v);
printf ("\tAcknowledgement Not
Recieved") ;
y=y+l;
gotoxy(x2,V);
printf ("\tTotal Taken : %.2f
sec", timl) ;
y=y+1;
gotoxy (x2,v);
printf ("\tResending Frame %d :
",count) ;
for (k=0; k<4;k++)
printf ("sd",f[k]);
ct=7;
countS[cntl]--;
for (g=0;g<=cntl;gt+)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" ")
}
ct=7;
for (g=0;g<=cntl;g++)
{
gotoxy (69, ct);
ct=ct+2;
printf (" %d",count5[g]);
}
delay (100) ;
x=recieve (f,count,z);

x2=x2-40;
y+=2;
}
else
{
gotoxy (x2,V);
printf ("Acknowledgement Recieved");
y=y+1;
gotoxy (x2,vVy);
printf ("\tTotal Time : %.2f
sec", timl) ;
break;
}
}
cnt++;

cnt++;



84|Page

case

cntl++;

count++;

if (i<16)

{
gotoxy (x2,y+2);
printf ("\tPress Enter to Continue");
getch();

}
y+=2;
gotoxy (x2,vy);
printf ("\tMessage Sent Successfully");
break;
'3
for (1i=0; 1i<20; i++)
{
tim2=0.0;
for (k=0; k<4;k++)
blk]1=2;
if (i!=0)
{
clrscr();
menul ();
menu () ;
gotoxy (
printf (
x2=14;
y=21;
for (3=0;3<20; j++)
{

4,21);
"Message : ");

gotoxy (x2,V);
printf ("$d",alj]);
xX2++;
}
ct=7;
for (g=0;g<=4;g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",countb[g]);

}
xX2=4;
y=23;
for (k=0; k<4;k++)
{
flkl=alil;
i++;
}
i--;
gotoxy (x2,y);
printf ("\tSending Frame %d : ",count);
for (k=0; k<4;k++)
printf ("%sd",f[k]):;
countb[cntl]--;
ct=7;
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for (g=0;g<=cntl;g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" ")
}
ct=7;
for (g=0;g<=cntl; g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",count5[gl);
}
start = clock();
delay (100);
x=recieve (f,count, z);
xX2=x2-40;
y+=2;
while (x==0)
{
gotoxy(x2,V);
printf ("\tFrame Lost");
y=y+l;
gotoxy (x2,v);

printf ("\tResending Frame %d :

for (k=0; k<4;k++)
printf ("$d",f[k]);
countS[cntl]--;
ct=7;
for (g=0;g<=cntl; g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" "y,
}
ct=7;
for (g=0;g<=cntl;g++)
{
gotoxy (69, ct) ;
ct=ct+2;

printf (" %d",count5[g]);

}
delay (100) ;
start=clock () ;
x=recieve (f,count,z);
x2=x2-40;
y+=2;

}

cnt++;

cnt++;

cntl++;

count++;

if (i<16)

{
gotoxy (x2,y+2) ;

",count) ;

printf ("\tPress Enter to Continue");
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case

getch();

}

y+=2;

gotoxy(x2,Vv);

printf ("\tMessage Sent Successfully"):;
break;

'4’:
for (i=0; 1i<20; i++)
{

tim2=0.0;

for (k=0; k<4;k++)
blkl=2;

1f(1!'=0)

{

clrscr();

menul () ;

menu () ;

gotoxy(4,21);

printf ("Message : ");

x2=14;

y=21;

for (3=0;3<20; j++)

{
gotoxy (x2,vVy);
printf ("$d",al[j]);
xX2++;

}

ct=7;

for (g=0;g<=4;g++)

{
gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",countb[qg]);

}
x2=4;
y=23;
for (k=0; k<4;k++)
{
flkl=alil;
i++;
}
i--;
gotoxy (x2,V);
printf ("\tSending Frame %d : ",count);
for (k=0; k<4 ;k++)
printf ("sd",f[k])
countb[cntl]--;
ct=7;
for (g=0;g<=cntl;g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" ")
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}
y+=2;

}
ct=7;
for (g=0;g<=cntl;g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" %d",count5[g]l);
}
start = clock();
delay (100) ;
X=recieve (f,count,z);
x2=x2-40;
y+=2;
while (x==0)
{
gotoxy (x2,v);
printf ("\tTime Expired");
y=y+t1l;
gotoxy (x2,V);

printf ("\tResending Frame %d :

for (k=0; k<4;k++)
printf ("%d",f[k]);
count5[cntl]--;
ct=7;
for (g=0;g<=cntl;g++)
{
gotoxy (69, ct) ;
ct=ct+2;
printf (" ")
}
ct=7;
for (g=0;g<=cntl; g++)
{
gotoxy (69, ct) ;
ct=ct+2;

printf (" %d",count5[g]);

1
delay (100);
start=clock () ;
x=recieve (f,count,z);
x2=x2-40;
y+=2;

}

cnt++;

cnt++;

cntl++;

count++;

1f (i<16)

{
gotoxy (x2,y+2) ;

",count) ;

printf ("\tPress Enter to Continue");

getch();

gotoxy(x2,v);
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}

}

printf ("\tMessage Sent Successfully");
break;

int recieve(int f[],int i,char z)

{

time t t;
int a,j;
int c¢=0;

//srand( (unsigned) time(&t));
//c=(rand () %2000) ;

//delay(c) ;

//end=clock () ;

//

switch(z)

{

case

case

'1':

srand ( (unsigned) time (&t));
c=(rand() %$1301);

delay(c) ;

end=clock () ;
tim=(end-start) /CLK_TCK;

x2=x2+40;
gotoxy (x2,V);
printf ("\tFrame %d Recieved : ",1i);

for (3=0;3<4;j++)
printf ("&d",f[3]);
gotoxy (x2,y+1l);
printf ("\t Time : %.2f sec",tim);
return 1;
'2':
x2=x2+40;
for (7=0;j<4;j++)
{

c=1y
else
{
c=0;
break;
}
}
1f (c==1)

{
gotoxy (x2,V);
printf ("\tFrame Recieved before");
y=y+1l;
gotoxy (x2,vy);
printf ("\tDscarding this Message");
y=y+1;
gotoxy (x2,V);
printf ("\tSending Acknowledgement Again");

else
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case

case

gotoxy (x2,vy);
printf ("\tFrame %d Recieved :
for (3=0;3<4;j++)

printf ("%d",£[031);
y=y+1l;
gotoxy(x2,v);
printf ("\tSending Acknowlegement") ;
for (3=0;3<4;j++)

b[jl=£[]];

, 1)

}

start=clock () ;
srand ( (unsigned) time (&t));
c=(rand() %$2000) ;
delay(c);
return 1;
'3
x2=x2+40;
srand ( (unsigned) time (&t));
c=(rand() %$2000) ;
delay(c) ;
end=clock () ;
tim=(end-start)/CLK TCK;
tim2=tim2+tim;
1f (tim<1.3)
{
for (3=0;3<4;j++)
b[jl=f[J];
gotoxy (x2,V);
printf ("\tFrame %d Recieved : ",1);
for (3=0;J<4;j++)
printf ("sd",£[J1]1):;
y=y+1l;
gotoxy (x2,v);
printf ("\tTotal Time : %.2f sec",tim2);
return 1;

else

{
gotoxy (x2,V);
printf ("\tFrame %d Lost",i);
y=y+1l;
gotoxy (x2,vy);
printf ("\tTotal Time : %.2f sec",tim2);
return 0;

}

|4|:

x2=x2+40;

srand ( (unsigned) time (&t));
c=(rand() %$2000) ;
delay(c);
end=clock () ;
tim=(end-start)/CLK TCK;
tim2=tim2+tim;
1f (tim<1l.3)
{

gotoxy (x2,v);
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printf ("\tFrame %d Recieved : ",1i);
for (3=0;3<4;j++)
printf ("sd",£[j1);
y=y+1;
gotoxy (x2,V);
printf ("\tTotal Time : %.2f sec",tim2);
return 1;

else

y=y+1;

gotoxy(x2,v);

printf ("\tTotal Time : %$.2f sec",tim2);
return O;

}

void main ()
{
char ch;
while (1)
{
clrscr();
menul () ;
menu () ;
gotoxy(28,13);
fflush (stdin) ;
ch=getche () ;
switch (ch)
{
case '1l':
send (ch) ;
getch();
break;
case '2':
send (ch) ;
getch();
break;
case '3':
send (ch) ;
getch();
break;
case '4':
send (ch) ;
getch();
break;
case '5H':
exit (0);
default:

getch();
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