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SUMMARY 
 

 
Social network analysis is a new research field in data mining. The clustering in social  

network analysis is different from traditional clustering. It requires grouping objects into  
classes based on their links as well as their attributes. While traditional clustering algorithms  
group objects only based on objects‘ similarity, and it can't be applied to social network  

analysis. So on the basis of BSP (business system planning) clustering algorithm, a social  
network clustering analysis algorithm is proposed. The proposed algorithm, different from  

traditional BSP clustering algorithms, can group objects in a social network into different  
classes based on their links and identify relation among classes dynamically & require less  
amount of memory . 
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INTRODUCTION 

 

 
 

 
 
A social network is a social structure made up of individuals (or organizations) called 

"nodes", which are tied (connected) by one or more specific types of interdependency, such 
as friendship, kinship, common interest, financial exchange, dislike, sexual relationships, or 

relationships of beliefs, knowledge or prestige.  
Social network analysis views social relationships in terms of network theory consisting of 
nodes and ties (also called edges, links, or connections). Nodes are the individual actors 

within the networks, and ties are the relationships between the actors. The resulting graph-
based structures are often very complex. There can be many kinds of ties between the nodes. 

Research in a number of academic fields has shown that social networks operate on many 
levels, from families up to the level of nations, and play a critical role in determining the way 
problems are solved, organizations are run, and the degree to which individuals succeed in 

achieving their goals. 
In its simplest form, a social network is a map of specified ties, such as friendship, between 

the nodes being studied. The nodes to which an individual is thus connected are the social 
contacts of that individual. The network can also be used to measure social capital – the value 
that an individual gets from the social network. These concepts are often displayed in a social 

network diagram, where nodes are the points and ties are the lines.  
 

Social network analysis 

 
Social network analysis (related to network theory) has emerged as a key technique in 

modern sociology. It has also gained a significant following in anthropology,  
biology, communication studies, economics, geography, information science, 

organizational studies, social psychology, and sociolinguistics, and has become a 
popular topic of speculation and study. People have used the idea of "social 
network" loosely for over a century to connote complex sets of relationships 

between members of social systems at all scales, from interpersonal to international.  
In 1954, J. A. Barnes started using the term systematically to denote patterns of ties,  

encompassing concepts traditionally used by the public and those used by social 
scientists: bounded groups (e.g., tribes, families) and social categories (e.g., gender,  
ethnicity). Scholars such as S.D. Berkowitz, Stephen Borgatti, Ronald Burt, Kathleen 

Carley, Martin Everett, Katherine Faust, Linton Freeman, Mark Granovetter, David 
Knoke, David Krackhardt, Peter Marsden, Nicholas Mullins, Anatol Rapoport, Stanley 

Wasserman, Barry Wellman, Douglas R. White, and Harrison White expanded the use of 
systematic social network analysis.  
Social network analysis has now moved from being a suggestive metaphor to an analytic 

approach to a paradigm, with its own theoretical statements, methods, social network analysis 
software, and researchers. Analysts reason from whole to part; from structure to relation to 

individual; from behavior to attitude. They typically either study whole networks (also known 
as complete networks), all of the ties containing specified relations in a defined population, or 
personal networks (also known as egocentric networks), the ties that specified people have, 

such as their "personal communities". The distinction between whole/complete networks and 
personal/egocentric networks has depended largely on how analysts were able to gather data. 
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That is, for groups such as companies, schools, or membership societies, the analyst was 
expected to have complete information about who was in the network, all  

participants being both potential egos and alters. Personal/egocentric studies were typically 
conducted when identities of egos were known, but not their alters. These studies rely on the 

egos to provide information about the identities of alters and there is no expectation that the 
various egos or sets of alters will be tied to each other. A snowball network refers to the idea 
that the alters identified in an egocentric survey then become egos themselves  

and are able in turn to nominate additional alters. While there are severe logistic limits to 
conducting snowball network studies, a method for examining hybrid networks has recently 

been developed in which egos in complete networks can nominate alters otherwise not listed 
who are then available for all subsequent egos to see. The hybrid network may be valuable 
for examining whole/complete networks that are expected to include important players  

beyond those who are formally identified. For example, employees of a company often work 
with non-company consultants who may be part of a network that cannot fully be defined 

prior to data collection Several analytic tendencies distinguish social network analysis: 
There is no assumption that groups are the building blocks of society: the approach is open to 
studying less-bounded social systems, from nonlocal communities to links among websites.  

Rather than treating individuals (persons, organizations, states) as discrete units of analysis, it 
focuses on how the structure of ties affects individuals and their relationships.  

In contrast to analyses that assume that socialization into norms determines behavior, 
network analysis looks to see the extent to which the structure and composition of ties affect 
norms. 

The shape of a social network helps determine a network's usefulness to its individuals. 
Smaller, tighter networks can be less useful to their members than networks with lots of loose 

connections (weak ties) to individuals outside the main network. More open networks, with 
many weak ties and social connections, are more likely to introduce new ideas and 
opportunities to their members than closed networks with many redundant ties. In other 

words, a group of friends who only do things with each other already share the same 
knowledge and opportunities. A group of individuals with connections to other social worlds 

is likely to have access to a wider range of information. It is better for individual success to 
have connections to a variety of networks rather than many connections within a  
single network. Similarly, individuals can exercise influence or act as brokers within their 

social networks by bridging two networks that are not directly linked (called filling structural 
holes). 

The power of social network analysis stems from its difference from traditional social 
scientific studies, which assume that it is the attributes of individual actors—whether they are 
friendly or unfriendly, smart or dumb, etc.—that matter. Social network analysis produces an 

alternate view, where the attributes of individuals are less important than their relationships 
and ties with other actors within the network. This approach has turned out to be  

useful for explaining many real-world phenomena, but leaves less room for individual 
agency, the ability for individuals to influence their success, because so much of it rests 
within the structure of their network.  

Social networks have also been used to examine how organizations interact with each other, 
characterizing the many informal connections that link executives together, as well as 

associations and connections between individual employees at different organizations. For 
example, power within organizations often comes more from the degree to which an 
individual within a network is at the center of many relationships than actual job title. Social 

networks also play a key role in hiring, in business success, and in job performance. 
Networks provide ways for companies to gather information, deter competition, and collude 

in setting prices or policies. 
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History of social network analysis 
 

A summary of the progress of social networks and social network analysis has been written 
by Linton Freeman. Precursors of social networks in the late 1800s include Émile Durkheim 

and Ferdinand Tönnies. Tönnies argued that social groups can exist as personal and direct 
social ties that either link individuals who share values and belief (gemeinschaft) or 
impersonal, formal, and instrumental social links (gesellschaft). Durkheim gave a  

non- individualistic explanation of social facts arguing that social phenomena arise when 
interacting individuals constitute a reality that can no longer be accounted for in terms of the 

properties of individual actors. He distinguished between a traditional society – "mechanical 
solidarity" – which prevails if individual differences are minimized, and the modern society – 
"organic solidarity" – that develops out of cooperation between differentiated individuals 

with independent roles. 
Georg Simmel, writing at the turn of the twentieth century, was the first scholar to think 

directly in social network terms. His essays pointed to the nature of network size on 
interaction and to the likelihood of interaction in ramified, loosely-knit networks rather than 
groups (Simmel, 1908/1971). 

After a hiatus in the first decades of the twentieth century, three main traditions in social 
networks appeared. In the 1930s, J.L. Moreno pioneered the systematic recording and 

analysis of social interaction in small groups, especially classrooms and work groups 
(sociometry), while a Harvard group led by W. Lloyd Warner and Elton Mayo explored 
interpersonal relations at work. In 1940, A.R. Radcliffe-Brown's presidential address to 

British anthropologists urged the systematic study of networks. However, it took about 15 
years before this call was followed-up systematically. 

Social network analysis developed with the kinship studies of Elizabeth Bott in England in 
the 1950s and the 1950s–1960s urbanization studies of the University of Manchester group of 
anthropologists (centered around Max Gluckman and later J. Clyde Mitchell) investigating 

community networks in southern Africa, India and the United Kingdom. Concomitantly, 
British anthropologist S.F. Nadel codified a theory of social structure that was influential  

in later network analysis.  
In the 1960s-1970s, a growing number of scholars worked to combine the different tracks and 
traditions. One group was centered around Harrison White and his students at the Harvard 

University Department of Social Relations: Ivan Chase, Bonnie Erickson, Harriet Friedmann, 
Mark Granovetter, Nancy Howell, Joel Levine, Nicholas Mullins, John Padgett, Michael 

Schwartz and Barry Wellman. Also independently active in the Harvard Social Relations  
department at the time were Charles Tilly, who focused on networks in political and 
community sociology and social movements, and Stanley Milgram, who developed the "six 

degrees of separation" thesis. 
 Mark Granovetter and Barry Wellman are among the former students of White who have 

elaborated and popularized social network analysis. Significant independent work was also 
done by scholars elsewhere: University of California Irvine social scientists  
interested in mathematical applications, centered around Linton Freeman, including John 

Boyd, Susan Freeman, Kathryn Faust, A. Kimball Romney and Douglas White; quantitative 
analysts at the University of Chicago, including Joseph Galaskiewicz, Wendy Griswold, 

Edward Laumann, Peter Marsden, Martina Morris, and John Padgett; and communication 
scholars at Michigan State University, including Nan Lin and Everett Rogers. A 
substantively-oriented University of Toronto sociology group developed in the 1970s, 

centered on former students of Harrison White: S.D. Berkowitz, Harriet Friedmann, Nancy 
Leslie Howard, Nancy Howell, Lorne Tepperman and Barry Wellman, and also including 

noted modeler and game theorist Anatol Rapoport.In terms of theory, it critiqued  
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methodological individualism and group-based analyses, arguing that seeing the world as 
social networks offered more analytic leverage. 

 
Research 

Social network analysis has been used in epidemiology to help understand how patterns of 
human contact aid or inhibit the spread of diseases such as HIV in a population. The 
evolution of social networks can sometimes be modeled by the use of agent based models, 

providing insight into the interplay between communication rules, rumor spreading and social 
structure. 

SNA may also be an effective tool for mass surveillance – for example the Total Information 
Awareness program was doing in-depth research on strategies to analyze social networks to 
determine whether or not U.S. citizens were political threats. Diffusion of innovations theory 

explores social networks and their role in influencing the spread of new ideas and practices. 
Change agents and opinion leaders often play major roles in spurring the adoption of 

innovations, although factors inherent to the innovations also play a role.  
Robin Dunbar has suggested that the typical size of an egocentric network is constrained to 
about 150 members due to possible limits in the capacity of the human communication 

channel. The rule arises from cross-cultural studies in sociology and especially anthropology 
of the maximum size of a village (in modern parlance most reasonably understood as an 

ecovillage). It is theorized in evolutionary psychology that the number may be some kind of 
limit of average human ability to recognize members and track emotional facts about all 
members of a group. However, it may be due to economics and the need to track "free 

riders", as it may be easier in larger groups to take advantage of the benefits of living in a 
community without contributing to those benefits.  

 
 
Mark Granovetter found in one study that more numerous weak ties can be important in 

seeking information and innovation. Cliques have a tendency to have more homogeneous 
opinions as well as share many common traits. This homophilic tendency was the reason for 

the members of the cliques to be attracted together in the first place. However, being similar, 
each member of the clique would also know more or less what the other members knew. To 
find new information or insights, members of the clique will have to look beyond the clique 

to its other friends and acquaintances. This is what Granovetter called "the strength of weak 
ties". Guanxi is a central concept in Chinese society (and other East Asian cultures) that can 

be summarized as the use of personal influence. Guanxi can be studied from a social network 
approach. The small world phenomenon is the hypothesis that the chain of social 
acquaintances required to connect one arbitrary person to another arbitrary person anywhere 

in the world is generally short. The concept gave rise to the famous phrase six degrees of 
separation after a 1967 small world experiment by psychologist Stanley Milgram. In 

Milgram's experiment, a sample of US individuals were asked to reach a particular target 
person by passing a message along a chain of acquaintances. The average length of 
successful chains turned out to be about five intermediaries or six separation steps (the 

majority of chains in that study actually failed to complete). The methods (and ethics as well) 
of Milgram's experiment was later questioned by an American scholar, and some further 

research to replicate Milgram's findings had found that the degrees of connection needed 
could be higher. Academic researchers continue to explore this phenomenon as Internet-
based communication technology has supplemented the phone and postal systems available 

during the times of Milgram. A recent electronic small world experiment at Columbia 
University found that about five to seven degrees of separation are sufficient for connecting 

any two people through e-mail. 
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Collaboration graphs can be used to illustrate good and bad relationships between humans. A 
positive edge between two nodes denotes a positive relationship (friendship, alliance, dating) 

and a negative edge between two nodes denotes a negative relationship (hatred, anger). 
Signed social network graphs can be used to predict the future evolution of the graph. In 

signed social networks, there is the concept of "balanced" and "unbalanced" cycles. A 
balanced cycle is defined as a cycle where the product of all the signs are positive. Balanced 
graphs represent a group of people who are unlikely to change their opinions of the other 

people in the group. Unbalanced graphs represent a group of people who are very likely to 
change their opinions of the people in their group. For example, a group of 3 people (A, B, 

and C) where A and B have a positive relationship, B and C have a positive relationship, 
but C and A have a negative relationship is an unbalanced cycle. This group is very likely to 
morph into a balanced cycle, such as one where B only has a good relationship with A, and 

both A and B have a negative relationship with C. By using the concept of balances and 
unbalanced cycles, the evolution of signed social network graphs can be predicted. 

One study has found that happiness tends to be correlated in social networks. When a person 
is happy, nearby friends have a 25 percent higher chance of being happy themselves. 
Furthermore, people at the center of a social network tend to become happier in the future 

than those at the periphery. Clusters of happy and unhappy people were discerned within the 
studied networks, with a reach of three degrees of separation: a person's happiness was 

associated with the level of happiness of their friends' friends' friends. (See also Emotional 
contagion.) 
Some researchers have suggested that human social networks may have a genetic basis. 

Using a sample of twins from the National Longitudinal Study of Adolescent Health, they 
found that in-degree (the number of times a person is named as a friend), transitivity (the 

probability that two friends are friends with one another), and betweenness centrality (the 
number of paths in the network that pass through a given person) are all significantly 
heritable. 

Existing models of network formation cannot account for this intrinsic node variation, so the 
researchers propose an alternative "Attract and Introduce" model that can explain heritability 

and many other features of human social networks. 
  
Metrics (measures) in social network analysis 

 
Betweenness  

The extent to which a node lies between other nodes in the network. This measure takes into 
account the connectivity of the node's neighbors, giving a higher value for nodes which 
bridge clusters. The measure reflects the number of people who a person is connecting 

indirectly through their direct links. 
 

Bridge 
An edge is said to be a bridge if deleting it would cause its endpoints to lie in different 
components of a graph. 

 
Centrality 

This measure gives a rough indication of the social power of a node based on how well they 
"connect" the 
network. "Betweenness", "Closeness", and "Degree" are all measures of centrality.  
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Centralization 
The difference between the number of links for each node divided by maximum possible sum 

of differences. A centralized network will have many of its links dispersed around one or a 
few nodes, while a decentralized network is one in which there is little variation between the 

number of links each node possesses.  
 
Closeness 

The degree an individual is near all other individuals in a network (directly or indirectly). It 
reflects the ability to access information through the "grapevine" of network members. Thus, 

closeness is the inverse of the sum of the shortest distances between each individual and 
every other person in the network. (See also: Proxemics) 
The shortest path may also be known as the "geodesic distance".  

 
Clustering coefficient 

A measure of the likelihood that two associates of a node are associates themselves. A higher 
clustering coefficient indicates a greater 'cliquishness'.  
 

Cohesion 
The degree to which actors are connected directly to each other by cohesive bonds. Groups 

are identified as ‗cliques‘ if every individual is directly tied to every other individual, ‗social 
circles‘ if there is less stringency of direct contact, which is imprecise, or as structurally 
cohesive blocks if precision is wanted.[20] 

 
Degree 

The count of the number of ties to other actors in the network. See also degree (graph theory).  
(Individual- level) 
 

 Density 
The degree a respondent's ties know one another/ proportion of ties among an individual's 

nominees. Network or global- level density is the proportion of ties in a network relative to 
the total number possible (sparse versus dense networks). 
 

Flow betweenness centrality 
The degree that a node contributes to sum of maximum flow between all pairs of nodes (not 

that node). 
 
Eigenvector centrality 

A measure of the importance of a node in a network. It assigns relative scores to all nodes in 
the network based on the principle that connections to nodes having a high score contribute 

more to the score of the node in question. 
 
Local bridge 

An edge is a local bridge if its endpoints share no common neighbors. Unlike a bridge, a local 
bridge is contained in a cycle. 

 
Path length 
The distances between pairs of nodes in the network. Average path- length is the average of 

these distances between all pairs of nodes. 
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Prestige 
In a directed graph prestige is the term used to describe a node's centrality. "Degree Prestige", 

"Proximity Prestige", and "Status Prestige" are all measures of Prestige. See also degree 
(graph theory). 

 
Radiality 
Degree an individual‘s network reaches out into the network and provides novel information 

and influence. 
 

Reach 
The degree any member of a network can reach other members of the network.  
 

Structural cohesion 
The minimum number of members who, if removed from a group, would disconnect the 

group.[21] 
 
Structural equivalence 

Refers to the extent to which nodes have a common set of linkages to other nodes in the 
system. The nodes don‘t need to have any ties to each other to be structurally equivalent.  

 
Structural hole 
Static holes that can be strategically filled by connecting one or more links to link together 

other points. Linked to ideas of social capital: if you link to two people who are not linked 
you can control their communication. 

 
Network analytic software 
Network analytic tools are used to represent the nodes (agents) and edges (relationships) in a 

network, and to analyze the network data. Like other software tools, the data can be saved in 
external files. Additional information comparing the various data input formats used by 

network analysis software packages is available at NetWiki. Network analysis  
tools allow researchers to investigate large networks like the Internet, disease transmission, 
etc. These tools provide mathematical functions that can be applied to the network model. 

 
Visualization of networks 

Visual representation of social networks is important to understand the network data and 
convey the result of the analysis. Many of the analytic software have modules for network 
visualization. Exploration of the data is done through displaying nodes and ties in various 

layouts, and attributing colors, size and other advanced properties to  
nodes. 

Typical representation of the network data are graphs in network layout (nodes and ties). 
These are not very easy-to-read and do not allow an intuitive interpretation. Various new 
methods have been developed in order to display network data in more intuitive format (e.g. 

Sociomapping). Especially when using social network analysis as a tool for facilitating 
change, different approaches of participatory network mapping have proven useful. Here 

participants / interviewers provide network data by actually mapping out the network (with 
pen and paper or digitally) during the data collection session. One benefit of this approach is 
that it allows researchers to collect qualitative data and ask clarifying questions while the 

network data is collected. Examples of network mapping techniques are Net-Map (pen-and-
paper based) and VennMaker (digital) 
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Patents 
 

There has been rapid growth in the number of US 
patent applications 
that cover new technologies related to social 

networking. The number 
of published applications has been growing at about 

250% per year 
over the past five years. There are now over 2000 
published 

applications. Only about 100 of these applications 
have issued as 

patents, however, largely due to the multi-year 
backlog in examination 
of business method patents and ethical issues connected with this  

patent category  
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Analysis Software 

 

 Social network analysis software 
 

 Social network analysis software is used to identify, represent, analyze, visualize, or simulate 
nodes (e.g. agents, organizations, or knowledge) and edges (relationships) from various types 
of input data (relational and non-relational), including mathematical models of social 

networks. The output data can be saved in external files.Various input and output file formats 
exist. Network analysis tools allow researchers to investigate representations of networks of 

different size - from small (e.g. families, project teams) to very large (e.g. the Internet, 
disease transmission). The various tools provide mathematical and statistical routines that can 
be applied to the network model.  

Visual representations of social networks are important to understand network data and 
convey the result of the analysis. Visualization is often used as an additional or standalone 

data analysis method. With respect to visualization, network analysis tools are used to change 
the layout, colors, size and other properties of the network representation. 
Social network tools are: 

• For scholarly research tools like UCINet , Pajek , ORA, the statnet suite of packages in R, 
and GUESS are popular. 

• Examples of business oriented social network tools include iPoint , NetMiner , InFlow, 
Keyhubs, Sentinel Visualizer, KXEN Social Network, NodeXL. For large networks with 
millions of nodes, try 

Sonamine or ORA. For mobile telecoms Idiro SNA Plus  
 is recommended 

• An open source package with GUI for Linux, Windows and Mac, is Social Networks 
Visualizer or SocNetV ,developed in Qt/C++. 
• Another generic open source package for Windows, Linux and OS X with interfaces to 

Python and R is "igraph" 
• Another generic open source package with [GUI] for Windows, Linux and OS X is "Tulip" 

• RapidNet is a generic freely available open source solution for network analysis and 
interactive visual network exploration and drill-down. 
• For Mac OS X a related package installer of SocNetV is available. 

• For integrated egocentric data collection and visualization A systematic overview and 
comparison of a selection of software packages for social network analysis was provided by 

Huisman and Van Duijn. The International Network for Social Network Analysis (INSNA) 
maintains a large list of software packages and libraries.  
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Some Definitions 

 

 Betweenness 
Within graph theory and network analysis, there are various measures of the centrality of a 

vertex within a graph that determine the relative importance of a vertex within the graph (for 
example, how important a person is within a social network, or, in the theory of space syntax, 
how important a room is within a building or how well-used a road is within an urban 

network). 
There are four measures of centrality that are widely used in network analysis: degree 

centrality, betweenness, closeness, and eigenvector centrality. For a review as well as 
generalizations to weighted networks, see Opsahl et al.(2010). 
 

Degree centrality 
The first, and simplest, is degree centrality. Degree centrality is defined as the number of 

links incident upon a node (i.e., the number of ties that a node has). Degree is often 
interpreted in terms of the immediate risk of node for catching whatever is flowing through 
the network (such as a virus, or some information). If the network is directed  

(meaning that ties have direction), then we usually define two separate measures of degree 
centrality, namely indegree and outdegree. Indegree is a count of the number of ties directed 

to the node, and outdegree is the number of ties that the node directs to others. For positive 
relations such as friendship or advice, we normally interpret indegree as a form of popularity, 
and outdegree as gregariousness.  
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Closeness centrality 

In topology and related areas in mathematics, closeness is one of the basic concepts in a 
topological space. Intuitively we say two sets are close if they are arbitrarily near to each 

other. The concept can be defined naturally in a metric space where a notion of distance 
between elements of the space is defined, but it can be generalized to topological spaces 
where we have no concrete way to measure distances.  

In graph theory closeness is a centrality measure of a vertex within a graph. Vertices that are 
'shallow' to other vertices (that is, those that tend to have short geodesic distances to other 

vertices within the graph) have higher closeness. Closeness is preferred in network analysis to 
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mean shortest-path length, as it gives higher values to more central vertices, and so is usually 
positively associated with other measures such as degree.  

In the network theory, closeness is a sophisticated measure of centrality. It is defined as the 
mean geodesic distance (i.e., the shortest path) between a vertex v and all other vertices 

reachable from it: 
 

 
 

Where  is the size of the network's 'connectivity component' V reachable from v. 
Closeness can be regarded as a measure of how long it will take information to spread from a 

given vertex to other reachable vertices in the network[4].  
Some define closeness to be the reciprocal of this quantity, but either way the information 
communicated is the same (this time estimating the speed instead of the timespan). The 

closeness for a vertex is the reciprocal of the sum of geodesic distances to all other vertices of 
V[5]: 

  

 
Different methods and algorithms can be introduced to measure closeness, like the random-
walk centrality introduced by Noh and Rieger (2003) that is a measure of the speed with 

which randomly walking messages reach a vertex from elsewhere in the network—a sort of 
random-walk version of closeness centrality. 

The information centrality of Stephenson and Zelen (1989) is another closeness measure, 
which bears some similarity to that of Noh and Rieger. In essence it measures the harmonic 
mean length of paths ending at a vertex i, which is smaller if i has many short paths 

connecting it to other vertices. Dangalchev (2006), in order to measure the network 
vulnerability, modifies the definition for closeness so it can be used for disconnected graphs 

and the total closeness is easier to calculate: 

 
 
 

 
Eigenvector Centrality 

 

Eigenvector centrality is a measure of the importance of a node in a network. It assigns 
relative scores to all nodes in the network based on the principle that connections to high-

scoring nodes contribute more to the score of the node in question than equal connections to 
low-scoring nodes. Google's PageRank is a variant of the Eigenvector centrality measure.  
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Using the adjacency matrix to find eigenvector centrality 

 

 

In general, there will be many different eigenvalues  for which an eigenvector solution 
exists. However, the additional requirement that all the entries in the eigenvector be positive 

implies (by the Perron–Frobenius theorem) that only the greatest eigenvalue results in the 
desired centrality measure. The ith component of the related eigenvector then gives the 

centrality score of the ith node in the network. Power iteration is one of many eigenvalue  
algorithms that may be used to find this dominant eigenvector. 
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Equivalence relation 

In mathematics, an equivalence relation is, loosely, a relation that specifies how to partition a 

set such that every element of the set is in exactly one of the blocks in the partition, and the 
union of all the blocks equals the original set. Two elements of the set are considered 

equivalent (with respect to the equivalence relation) if and only if they are elements of the 
same block. 
 

Notation 
Although various notations are used throughout the literature to 

denote that two elements a and b of a set are equivalent with 
respect to an equivalence relation R, the most common are "a ~ 
b" and "a ≡ b",which are used when R is the obvious relation 

being referenced, and variations of "a ~R b", "a ≡R b", or "aRb". 
 

Definition 
A given binary relation ~ on a set A is said to be an equivalence  
relation if and only if it is reflexive, symmetric and transitive.  

Equivalently, for all a, b and c in A: 
• a ~ a. (Reflexivity) 

• if a ~ b then b ~ a. (Symmetry) 
• if a ~ b and b ~ c then a ~ c. (Transitivity) 
 

 
 

 
 
 

A together with the relation ~ is called a setoid. The equivalence class of a under ~, denoted 
[a], is defined as: 

 
Reflexivity follows from symmetry and transitivity if for every element a∈A, there exists 
another element b∈A such that a~b holds. However, reflexivity does not follow from 

symmetry and transitivity alone. For example, let A be the set of integers, and let two 
elements of A be related if they are both even numbers. This relation is clearly symmetric 

and transitive, but in view of the existence of odd numbers, it is not reflexive.  
On the other hand, let A be the set of integers, and let two elements of A be related if their 

difference is even. This is an equivalence relation, which partitions the integers into two 
equivalence classes, the even and odd integers.  
 

Examples 

 

Equivalence relations 
 
The following are all equivalence relations: 

• "Has the same birthday as" on the set of all people.  
• "Is similar to" or "congruent to" on the set of all triangles.  

• "Is congruent to modulo n" on the integers.  
• "Has the same image under a function" on the elements of the domain of the function.  
• "Is parallel to" on the set of subspaces of an affine space.  
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Relations that are not equivalences 
• The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For 

example, 7 ≥ 5 does not imply that 5 ≥ 7. It is, however, a partial order.  
• The relation "has a common factor greater than 1 with" between natural numbers greater 

than 1, is reflexive and symmetric, but not transitive. (Example: The natural numbers 2 and 6 
have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 
and 3 do not have a common factor greater than 1). 

• The empty relation R on a non-empty set X (i.e. aRb is never true) is vacuously symmetric 
and transitive, but not reflexive. (If X is also empty then R is reflexive.)  

• The relation "is approximately equal to" between real numbers, even if more precisely 
defined, is not an equivalence relation, because although reflexive and symmetric, it is not 
transitive, since multiple small changes can accumulate to become a big change. However, if 

the approximation is defined asymptotically, for example by saying that two functions f and g 
are approximately equal near some point if the limit of f-g is 0 at that point, then 

this defines an equivalence relation.  
• The relation "is a sibling of" (used to connote pairs of distinct people who have the same 
parents) on the set of all human beings is not an equivalence relation. Although siblinghood is 

symmetric (if A is a sibling of B, then B is a sibling of A) and transitive on any 3 distinct 
people (if A is a sibling of B and C is a sibling of B, then A is a sibling of C, provided A is 

not C), it is not reflexive (A cannot be a sibling of A).  
 
Connections to other relations 

• A partial order is a relation that is reflexive, antisymmetric, and transitive.  
• A congruence relation is an equivalence relation whose domain X is also the underlying set 

for an algebraic structure, and which respects the additional structure. In general, congruence 
relations play the role of kernels of homomorphisms, and the quotient of a structure by a 
congruence relation can be formed. In many important cases congruence relations have an 

alternative representation as substructures of the structure on which they are  
defined. E.g. the congruence relations on groups correspond to the normal subgroups.  

• Equality is both an equivalence relation and a partial order. Equality is also the only relation 
on a set that is reflexive, symmetric and antisymmetric.  
• A strict partial order is irreflexive, transitive, and asymmetric.  

• A partial equivalence relation is transitive and symmetric. Transit ive and symmetric imply 
reflexive if and only if for all a∈X exists b∈X such that a~b. 

• A dependency relation is reflexive and symmetric.  
• A preorder is reflexive and transitive.  

• A compatibility relation is reflexive and symmetric.  
 

 
Well-definedness under an equivalence relation 
If ~ is an equivalence relation on X, and P(x) is a property of elements of X, such that 

whenever x ~ y, P(x) is true if P(y) is true, then the property P is said to be well-defined or a 
class invariant under the relation ~.  
A frequent particular case occurs when f is a function from X to another set Y; if x 1 ~ x2 

implies f(x1) = f(x2) then f is said to be a morphism for ~, a class invariant under ~, or simply 
invariant under ~. This occurs, e.g. in the character theory of finite groups. The latter case 

with the function f can be expressed by a commutative triangle. See also invariant. Some 
authors use "compatible with ~" or just "respects ~" instead of "invariant under ~".  
More generally, a function may map equivalent arguments (under an equivalence relation ~A 
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) to equivalent values(under an equivalence relation ~B). Such a function is known as a 
morphism from ~A to ~B 

 
Equivalence class, quotient set, partition 

 

 

 
 

 
 
 

 
 
where the above is one of the ways to write the nth Bell number. 
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Fundamental Theorem of Equivalence Relations 
 

A key result links equivalence relations and partitions: 
 • An equivalence relation ~ on a set X partitions X.  

• Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X. 
In both cases, the cells of the partition of X are the equivalence classes of X by ~. Since each 
element of X belongs to 

a unique cell of any partition of X, and since each cell of the partition is identical to an 
equivalence class of X by ~, 

each element of X belongs to a unique equivalence class of X by ~. Thus there is a natural 
bijection from the set of all 
possible equivalence relations on X and the set of all partitions of X 

 
Comparing equivalence relations 

If ~ and ≈ are two equivalence relations on the same set S, and a~b implies a≈b for all a,b ∈ 
S, then ≈ is said to be a coarser relation than ~, and ~ is a finer relation than ≈. Equivalently,  

• ~ is finer than ≈ if every equivalence class of ~ is a subset of an equivalence class of ≈, and 
thus every equivalence class of ≈ is a union of equivalence classes of ~. 

• ~ is finer than ≈ if the partition created by ~ is a refinement of the partition created by ≈.  
The equality equivalence relation is the finest equivalence relation on any set, while the 
trivial relation that makes all pairs of elements related is the coarsest.  

The relation "~ is finer than ≈" on the collection of all equivalence relations on a fixed set is 
itself a partial order relation. 

Generating equivalence relations 
• Given any set X, there is an equivalence relation over the set [X→X] of all possible 
functions X→X. Two such functions are deemed equivalent when their respective sets of 

fixpoints have the same cardinality, corresponding to cycles of length one in a permutation. 
Functions equivalent in this manner form an equivalence class on 

[X→X], and these equivalence classes partition [X→X].  
• An equivalence relation ~ on X is the equivalence kernel of its surjective projection π : X → 
X/~.[4] Conversely, any surjection between sets determines a partition on its domain, the set 

of preimages of singletons in the codomain. Thus an equivalence relation over X, a partition 
of X, and a projection whose domain is X, are three equivalent ways of specifying the same 

thing. 
• The intersection of any collection of equivalence relations over X (viewed as a subset of X 
× X) is also an equivalence relation. This yields a convenient way of generating an 

equivalence relation: given any binary relation R on X, the equivalence relation ge nerated by 
R is the smallest equivalence relation containing R. Concretely, R generates the equivalence 

relation a ~ b if and only if there exist elements x1, x2, ..., xn in X such that a = x1, b = xn 
, and (xi,xi+ 1)∈R or (xi+1,xi)∈R, i = 1, ..., n-1. Note that the equivalence relation generated 

in this manner can be trivial. For instance, the equivalence relation ~ generated by: 
• Any total order on X has exactly one equivalence class, X itself, because x ~ y for all x and 
y; 

• Any subset of the identity relation on X has equivalence classes that are the singletons of X.  
• Equivalence relations can construct new spaces by "gluing things together." Let X be the 

unit Cartesian square [0,1] × [0,1], and let ~ be the equivalence relation on X defined by ∀a, 
b ∈ [0,1] ((a, 0) ~ (a, 1) ∧ (0, b) ~ (1, b)). 

Then the quotient space X/~ can be naturally identified with a torus: take a square piece of 

paper, bend and glue together the upper and lower edge to form a cylinder, then bend the 
resulting cylinder so as to glue together its two open ends, resulting in a torus.  
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Algebraic structure 

Much of mathematics is grounded in the study of equivalences, and order relations. It is very 

well known that lattice theory captures the mathematical structure of order relations. Even 
though equivalence relations are as ubiquitous in mathematics as order relations, the 

algebraic structure of equivalences is not as well known as that of orders. The  
former structure draws primarily on group theory and, to a lesser extent, on the theory of 
lattices, categories, and groupoids.  

 
Group theory 

Just as order relations are grounded in ordered sets, sets closed under pairwise supremum and 
infimum, equivalence relations are grounded in partitioned sets, which are sets closed under 
bijections and preserve partition structure. Since all such bijections map an equivalence class 

onto itself, such bijections are also known as permutations. Hence permutation groups (also 
known as transformation groups) and the related notion of orbit shed light on the 

mathematical structure of equivalence relations.  

 
• ~ partitions A into equivalence classes. (This is the Fundamental Theorem of Equivalence 

Relations, mentioned above); 
• Given a partition of A, G is a transformation group under composition, whose orbits are the 

cells of the partition‡; 
• Given a transformation group G over A, there exists an equivalence relation ~ over A, 
whose equivalence classes are the orbits of G. 

In sum, given an equivalence relation ~ over A, there exists a transformation group G over A 
whose orbits are the equivalence classes of A under ~. This transformation group 

characterisation of equivalence relations differs fundamentally from the way lattices  
characterize order relations. The arguments of the lattice theory operations meet and join are 
elements of some universe A. Meanwhile, the arguments of the transformation group 

operations composition and inverse are elements of a set of bijections, A → A.  
Moving to groups in general, let H be a subgroup of some group G. Let ~ be an equivalence 

relation on G, such that a ~ b ↔ (ab−1 ∈ H). The equivalence classes of ~—also called the 
orbits of the action of H on G—are the right cosets of H in G. Interchanging a and b yields 

the left cosets.  
 

‡Proof.[8] Let function composition interpret group multiplication, and function inverse 
interpret group inverse. Then G is a group under composition, meaning that ∀x ∈ A ∀g ∈ G 

([g(x)] = [x]), because G satisfies the following four conditions: 
• G is closed under composition. The composition of any two elements of G exists, because 
the domain and codomain of any element of G is A. Moreover, the composition of bijections 

is bijective; 
• Existence of identity element. The identity function, I(x)=x, is an obvious element of G;  

• Existence of inverse function. Every bijective function g has an inverse g−1 
, such that gg−1 = I; 
• Composition associates. f(gh) = (fg)h. This holds for a ll functions over all domains.  

Let f and g be any two elements of G. By virtue of the definition of G, [g(f(x))] = [f(x)] and 
[f(x)] = [x], so that [g(f(x))] = [x]. Hence G is also a transformation group (and an 

automorphism group) because function composition preserves the partitioning of A.  
Related thinking can be found in Rosen (2008: chpt. 10).  
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Categories and groupoids 

 

The composition of morphisms central to category theory, denoted here by concatenation, 
generalizes the composition of functions central to transformation groups. The axioms of 
category theory assert that the composition of morphisms associates, and that the left and 

right identity morphisms exist for any morphism. If a morphism f has an inverse, f is an 
isomorphism, i.e., there exists a morphism g such that the compositions fg and gf equal the 

appropriate identity morphisms. Hence the category-theoretic concept nearest to an 
equivalence relation is a (small) category whose morphisms are all isomorphisms. Groupoid 
is another name for a small category of this nature.  

Let G be a set and let "~" denote an equivalence relation over G. Then we can form a 
groupoid representing this equivalence relation as follows. The objects are the elements of G, 

and for any two elements x and y of G, there exists a unique morphism from x to y if and 
only if x~y. The elements x and y are "equivalent" if there is an element g of the groupoid 
from x to y. There may be many such g, each of which can be regarded as a distinct "proof" 

that x and y are equivalent.  
The advantages of regarding an equivalence relation as a special case of a groupoid include: 

• Whereas the notion of "free equivalence relation" does not exist, that of a free groupoid on a 
directed graph does. Thus it is meaningful to speak of a "presentation of an equivalence 
relation," i.e., a presentation of the corresponding groupoid; 

• Bundles of groups, group actions, sets, and equivalence relations can be regarded as special 
cases of the notion of groupoid, a point of view that suggests a number of analogies;  

• In many contexts "quotienting," and hence the appropriate equivalence relations often called 
congruences, are important. This leads to the notion of an internal groupoid in a category. 
 

Lattices 

The possible equivalence relations on any set X, when ordered by set inclusion, form a 

complete lattice, called Con X by convention. The canonical map ker: X^X → Con X, relates 
the monoid X^X of all functions on X and Con X. ker is surjective but not injective. Less 
formally, the equivalence relation ker on X, takes each function f: X→X to its kernel ker f. 

Likewise, ker(ker) is an equivalence relation on X^X. Equivalence re lations and 
mathematical logic Equivalence relations are a ready source of examples or counterexamples. 

For example, an equivalence relation with exactly two infinite equivalence classes is an easy 
example of a theory which is ω-categorical, but not categorical for any larger cardinal 
number. An implication of model theory is that the properties defining a relation can be 

proved independent of each other (and hence necessary parts of the definition) if and only if, 
for each property, examples can be found of relations not satisfying the given property while 

satisfying all the other properties. Hence the three defining properties of equivalence relations 
can be proved mutually independent by the following three examples:  
• Reflexive and transitive: The relation ≤ on N. Or any preorder; 

• Symmetric and transitive: The relation R on N, defined as aRb ↔ ab ≠ 0. Or any partial 
equivalence relation; 

• Reflexive and symmetric: The relation R on Z, defined as aRb ↔ "a − b is divisible by at 
least one of 2 or 3." Or any dependency relation. 
Properties definable in first-order logic that an equivalence relation may or may not possess 

include: 
• The number of equivalence classes is finite or infinite; 

• The number of equivalence classes equals the (finite) natural number n; 
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• All equivalence classes have infinite cardinality; 
• The number of elements in each equivalence class is the natural number n 

 
 

Euclidean relations 

 

Euclid's The Elements includes the following "Common Notion 1": 

Things which equal the same thing also equal one another. Nowadays, the property described 
by Common Notion 1 is called Euclidean (replacing "equal" by "are in relation with"). The 

following theorem connects Euclidean relations and equivalence relations: 
 
Theorem.  

If a relation is Euclidean and reflexive, it is also symmetric and transitive.  
 

Proof: 
• (aRc ∧ bRc) → aRb [a/c] = (aRa ∧ bRa) → aRb [reflexive; erase T∧] = bRa → aRb. Hence 

R is symmetric. 
• (aRc ∧ bRc) → aRb [symmetry] = (aRc ∧ cRb) → aRb. Hence R is transitive.  

Hence an equivalence relation is a relation that is Euclidean and reflexive. The Elements 
mentions neither symmetry nor reflexivity, and Euclid probably would have deemed the 

reflexivity of equality too obvious to warrant explicit mention. 
 
Centralization 

 

Centralisation, or centralization (see spelling differences), is the process by which the 

activities of an organisation, particularly those regarding planning decision-making, become 
concentrated within a particular location and/or group. In political science, this refers to the 
concentration of a government's power - both geographically and politically, into a 

centralised government. In neuroscience, centralization refers to the evolutionary trend of the 
nervous system to be partitioned into a central nervous system and peripheral nervous system. 

In business studies centralisation and decentralisation is about where decisions are taken in 
the chain of command. 
 

Clustering coefficient 

 

In graph theory, a clustering coefficient is a measure of degree to which nodes in a grap h tend 
to cluster together. Evidence suggests that in most real-world networks, and in particular 
social networks, nodes tend to create tightly knit groups characterised by a relatively high 

density of ties (Holland and Leinhardt, 1971P. W. Holland and S. Leinhardt (1998). 
"Transitivity in structural models of small groups". Comparative Group Studies 2: 107–124.; 

Watts and Strogatz, 1998D. J. Watts and Steven Strogatz (June 1998). "Collective dynamics 
of 'small-world' networks". Nature (journal)Nature 393 (6684): 440–442. doi:10.1038/30918. 
PMID 9623998. .). In real-world networks, this likelihood tends to be greater than the 

average probability of a tie randomly established between two nodes (Holland and Leinhardt, 
1971; Watts and Strogatz, 1998).Two versions of this measure exist: the global and 

the local. The global version was designed to give an overall indication of the clustering in 
the network, whereas the local gives an indication of the embeddedness of single nodes. 
Global clustering coefficient The global clustering coefficient is based on triplets of nodes. A 

triplet is three nodes that are connected by either two (open triplet) or  three (closed triplet) 
undirected ties. A triangle consists of three closed triplets, one centred on each of the nodes. 
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The global clustering coefficient is the number of closed triplets (or 3 x triangles) over the 
total number of triplets (both open and closed). The first attempt to measure it was made by 

Luce and Perry (1949)R. D. Luce and A. D. Perry (1949). "A method of matrix analysis of 
group structure". Psychometrika 14 (1): 95–116. doi:10.1007/BF02289146. 

PMID 18152948.. This measure gives an indication of the clustering in the whole network  
(global), and can be applied to both undirected and directed networks (often called 
transitivity, see Wasserman and Faust, 1994, page 243Stanley Wasserman, Kathrine Faust, 

1994. Social Network Analysis: Methods and Applications. Cambridge: Cambridge 
University Press.). Formally, it has been defined as: C = \frac{3 \times \mbox{number of 

triangles}}{\mbox{number of connected triples of vertices}} = \frac{\mbox{number of 
closed triplets}}{\mbox{number of connected triples of vertices}}.A generalisation to 
weighted networks was proposed by Opsahl and Panzarasa (2009)Tore Opsahl and Pietro 

Panzarasa (2009). "Clustering in Weighted Networks". Social Networks 31 (2): 155–163. 
doi:10.1016/j.socnet.2009.02.002. ., and a redefinition to two-mode networks (both 

binary and weighted) by Opsahl (2009)Tore Opsahl (2009). "Clustering in Two-mode 
Networks". Conference and Workshop on Two-Mode Social Analysis (Sept 30-Oct 2, 2009). 
.. Local clustering coefficient Example local clustering coefficient on an undirected graph. 

The local clustering coefficient of the light blue node is computed as the proportion of 
connections among its neighbors which are actually realized compared with the number of all  

possible connections. In the figure, the light blue node has three neighbours, which can have 
a maximum of 3 connections among them. In the top part of the figure all three possible 
connections are realised (thick black segments), giving a local clustering coefficient of 1. In 

the middle part of the figure only one connection is realized (thick black line) and 2 
connections are missing (dotted red lines), giving a local cluster coefficient of 1/3. Finally,  

none of the possible connections among the neighbours of the light blue node are realised, 
producing a local clustering coefficient value of 0. The local clustering coefficient of a vertex 
(graph theory)vertex in a Graph (mathematics)graph quantifies how close its Neighbourhood 

(graph theory)neighbors are to being a Clique (graph theory)clique (complete graph). Duncan 
J. Watts and Steven Strogatz introduced the measure in 1998 to determine whether a graph is 

a small-world network.A graph G=(V,E) formally consists of a set of vertices V and a set of 
edges E between them. An edge e_{ij} connects vertex i with vertex j. The Neighbourhood 
(graph theory)neighbourhood N for a vertex v_i is defined as its immediately connected 

neighbours as follows:N_i = \{v_j : e_{ij} \in E \and e_{ji} \in E\}.The degree 
(mathematics)degree k_i of a vertex is defined as the number of vertices, |N_i|, in its  

neighbourhood N_i. The local clustering coefficient C_i for a vertex v_i is then given by the 
proportion of links between the vertices within its neighbourhood divided by the number of 
links that could possibly exist between them. For a directed graph, e_{ij} is distinct from 

e_{ji}, and therefore for each neighbourhood N_i there are k_i(k_i-1) links that could exist 
among the vertices within the neighbourhood (k_i is the total (in + out) degree of the  

vertex). Thus, the local clustering coefficient for directed graphs is given asC_i = 
\frac{|\{e_{jk}\}|}{k_i(k_i-1)} : v_j,v_k \in N_i, e_{jk} \in E.An undirected graph has the 
property that e_{ij} and e_{ji} are considered identical. Therefore, if a vertex v_i has k_i 

neighbours, \frac{k_i(k_i-1)}{2} edges could exist among the vertices within the  
neighbourhood. Thus, the local clustering coefficient for undirected graphs can be defined 

asC_i = \frac{2|\{e_{jk}\}|}{k_i(k_i-1)} : v_j,v_k \in N_i, e_{jk} \in E.Let \lambda_G(v) be 
the number of triangles on v \in V(G) for undirected graph G. That is, \lambda_G(v) is the 
number of subgraphs of G with 3 edges and 3 vertices, one of which is v. Let \tau_G(v) be 

the number of triples on v \in G. That is, \tau_G(v) is the number of subgraphs (not 
necessarily induced) with 2 edges and 3 vertices, one of which is v and such that v is incident 

to both edges. Then we can also define the clustering coefficient as C_i = 
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\frac{\lambda_G(v)}{\tau_G(v)}.It is simple to show that the two preceding definitions are 
the same, since \tau_G(v) = C({k_i},2) = \frac{1}{2}k_i(k_i-1).These measures are 1 if 

every neighbour connected to v_i is also connected to every other vertex within the 
neighbourhood, and 0 if no vertex that is connected to v_i connects to any other vertex that is 

connected to v_i. Network average clustering coefficient The clustering coefficient for the 
whole network is given by Watts and Strogatz as the average of the local clustering 
coefficients of all the vertices n : \bar{C} = \frac{1}{n}\sum_{i=1}^{n} C_i.A graph is 

considered Small-world networksmall-world, if its average clustering coefficient \bar{C} is 
significantly higher than a random graph constructed on the same vertex set, and if the graph 

has approximately the same distance (graph theory)mean-shortest path length as its 
corresponding random graph. A generalisation to weighted networks was proposed by Barrat 
et al. (2004)A. Barrat and M. Barthelemy and R. Pastor-Satorras and A. Vespignani (2004). 

"The architecture of complex weighted networks". Proceedings of the National Academy of 
Sciences 101 (11): 3747–3752. doi:10.1073/pnas.0400087101. PMID 15007165. 

PMC 374315., and a redefinition to bipartite graphs (also called two-mode networks) by 
Latapy et al. (2008)M. Latapy and C. Magnien and N. Del Vecchio (2008). "Basic Notions 
for the Analysis of Large Two-mode Networks". Social Networks 30 (1): 31–48. 

doi:10.1016/j.socnet.2007.04.006. and Opsahl (2009)Tore Opsahl (2009). "Clustering in 
Two-mode Networks" 

Conference and Workshop on Two-Mode Social Analysis (Sept 30-Oct 2, 2009). .. This 
formula is not, by default, defined for graphs with isolated vertices; see Kaiser, (2008)Marcus 
kaiser (2008). "Mean clustering coefficients: the role of isolated nodes and leafs on clustering 

measures for small-world networks". New Journal of Physics 10 (8): 083042. 
doi:10.1088/1367-2630/10/8/083042. . and Barmpoutis et al. D.Barmpoutis and R.M. Murray 

(2010). "Networks with the Smallest Average Distance and the Largest Average Clustering". 
ArXiv Digital Library. . The networks with the largest possible average clustering coefficient 
are found to have a modular structure, and at the same time, they have the smallest possible 

average distance among the different nodes.  
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Structural cohesion 

 

Structural cohesion is the sociological and graph theory conception and measurement of 
cohesion for maximal social group or graphical boundaries where related elements cannot be 

disconnected except by removal of a certain minimal number of other nodes. The solution to 
the boundary problem for structural cohesion is found by the vertex-cut version of Menger's 
theorem. The boundaries of structural endogamy are a special case of structural 

cohesion. It is also useful to know that k-cohesive graphs (or k-components) are always a 
subgraph of a k-core, although a k-core is not always k-cohesive. A k-core is simply a 

subgraph in which all nodes have at least k neighbors but it need not even be connected.  
 
Software 

Cohesive.blocking is the R program for computing structural cohesion according to the 
Moody-White (2003) algorithm. This wiki site provides numerous examples and a tutorial for 

use with R. 
 
Examples 

Some illustrative examples are presented in the gallery below: 
 

 
 
Perceived cohesion 

Perceived Cohesion Scale (PCS) is a six item scale that is used to measure structural cohesion 

in groups. In 1990, Bollen and Hoyle used the PCS and applied it to a study of large groups 
which were used to assess the psychometric qualities of their scale.  
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Mathematics of Graphs 

 

Graph (mathematics) 

 

In mathematics, a graph is an abstract 
representation of a set of objects where some 
pairs of the objects are connected by links. The 

interconnected objects are represented by 
mathematical abstractions called vertices, and the 

links that connect some pairs of vertices are 
called edges. Typically, a graph is depicted 
in diagrammatic form as a set of dots for the 

vertices, joined by lines or curves for the edges. 
Graphs are one of the objects of study in discrete 

mathematics. The edges may be directed 
(asymmetric) or undirected (symmetric). For 
example, if the vertices represent people at a 

party, and there is an edge between two people if 
they shake hands, then this is an undirected graph, because if person A shook hands with 

person B, then person B also shook hands with person A. On the other hand, if the vertices 
represent people at a party, and there is an edge from person A to person B when person A 
knows of person B, then this graph is directed, because knowing of someone is not 

necessarily a symmetric relation (that is, one person knowing of another person does not 
necessarily imply the reverse; for example, many fans may know of a celebrity, but the 

celebrity is unlikely to know of all their fans). This latter type of graph is called a directed 
graph and the edges are called directed edges or arcs; in contrast, a graph where the edges are 
not directed is called undirected. Vertices are also called nodes or points, and edges are also 

called lines. Graphs are the basic subject studied by graph theory. The word "graph" was first 
used in this sense by James Joseph Sylvester in 1878. 

 
Definitions  

Definitions in graph theory vary. The following are some of the more basic ways of defining 

graphs and related mathematical structures.  
 

 
Graph 

In the most common sense of the term,a graph is an ordered pair 

G = (V, E) comprising a set V of vertices or nodes together with a set E of 
edges or lines, which are 2-element subsets of V (i.e., an edge is related 

with two vertices, and the relation is represented as unordered pair of the 
vertices with respect to the particular edge). To avoid ambiguity, this type 
of graph may be described precisely as undirected and simple.  

Other senses of graph stem from different conceptions of the edge set. In 
one more generalized notion,  E is a set together with a relation o f 

incidence that associates with each edge two vertices. In another 
generalized notion, E is a multiset of unordered pairs of (not necessarily 
distinct) vertices. Many authors call this type of object a multigraph or 

pseudograph. 
All of these variants and others are described more fully below. 

The vertices belonging to an edge are called the ends, endpoints, or end 
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vertices of the edge. A vertex may exist in a graph and not belong to an edge.  
V and E are usually taken to be finite, and many of the well-known results are not true (or are 

rather different) for infinite graphs because many of the arguments fail in the infinite case. 
The order of a graph is (the number of vertices). A graph's size is , the number of edges. The 

degree of a vertex is the number of edges that connect to it, where an edge that connects to 
the vertex at both ends (a loop) is counted twice. For an edge {u, v}, graph theorists usually 
use the somewhat shorter notation uv.  

 
Adjacency relation 

The edges E of an undirected graph G induce a symmetric binary relation ~ on V that is 
called the adjacency relation of G. Specifically, for each edge {u, v} the vertices u and v are 
said to be adjacent to one another, which is denoted u ~ v. 

 
Types of graphs 

Distinction in terms of the main definition 
As stated above, in different contexts it may be useful to define the term graph with different 
degrees of generality. Whenever it is necessary to draw a strict distinction, the following 

terms are used. Most commonly, in modern texts in graph theory, unless stated otherwise, 
graph means "undirected simple finite graph" (see the definitions below).  

 
Undirected graph 

A graph in which edges have no orientation, i.e., they are not ordered pairs, but sets {u, v} (or 

2-multisets) of vertices. 
 

Directed graph 

A directed graph or digraph is an ordered pair D = (V, A) with 
• V a set whose elements are called vertices or nodes, and  

• A a set of ordered pairs of vertices, called arcs, directed 
edges, or arrows. An arc a = (x, y) is considered to be directed 

from x to y; y is called the head and x is called the tail of the 
arc; y is said to be a direct successor of x, and x is said to be 
a direct predecessor of y. If a path leads from x to y, then y is 

said to be a successor of x and reachable from x, and x is said 
to be a predecessor of y. The arc (y, x) is called the arc (x, y) 

inverted. A directed graph D is called symmetric if, for every 
arc in D, the corresponding inverted arc also belongs to D. A 
symmetric loopless directed graph D = (V, A) is equivalent to a simple undirected graph 

G = (V, E), where the pairs of inverse arcs in A correspond 1-to-1 with the edges in E; thus 
the edges in G number |E| = |A|/2, or half the number of arcs in D. 

A variation on this definition is the oriented graph, in which not more than one of (x, y) and 
(y, x) may be arcs. 
 

Mixed graph 

A mixed graph G is a graph in which some edges may be directed and some may be 

undirected. It is written as an ordered triple G = (V, E, A) with V, E, and A defined as above. 
Directed and undirected graphs are special cases. 
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Multigraph 

A loop is an edge (directed or undirected) which starts and ends on the same vertex; these 

may be permitted or not permitted according to the application. In this context, an edge with 
two different ends is called a link. 

The term "multigraph" is generally understood to mean that multiple edges (and sometimes 
loops) are allowed. Where graphs are defined so as to allow loops and multiple edges, a 
multigraph is often defined to mean a graph without loops, however, where graphs are 

defined so as to disallow loops and multiple edges, the term is often defined to mean a 
"graph" which can have both multiple edges and loops, although many use the term 

"pseudograph" for this meaning. 
 
Simple graph 

A simple graph with three vertices and three edges. Each vertex 
has degree two, so this is also a regular graph. 

As opposed to a multigraph, a simple graph is an undirected 
graph that has no loops and no more than one edge between any 
two different vertices. In a simple graph the edges of the graph 

form a set (rather than a multiset) and each edge is a pair of 
distinct vertices. In a simple graph with n vertices every vertex 

has a degree that is less than n (the converse, however, is not 
true - there exist non-simple graphs with n vertices in which 
every vertex has a degree smaller than n).  

 
Weighted graph 

A graph is a weighted graph if a number (weight) is assigned to 
each edge. Such weights might represent, for example, costs, lengths or capacities, etc. 
depending on the problem. 

The weight of the graph is the sum of the weights given to all edges.  
 

 

Half-edges, loose edges 

In exceptional situations it is even necessary to have edges with only one end, called half-

edges, or no ends (loose edges); see for example signed graphs and b iased graphs. 
 

Important graph classes 

 
Regular graph  

A regular graph is a graph where each vertex has the same number of neighbors, i.e., every 
vertex has the same degree or valency. A regular graph with vertices of degree k is called a 

k‑regular graph or regular graph of degree k.  
 

Complete graph 

Complete graphs have the feature that each pair of vertices has an edge connecting 
them. 

 
Finite and infinite graphs 

A finite graph is a graph G = (V, E) such that V and E are finite sets. An infinite  
graph is one with an infinite set of vertices or edges or both. Most commonly in graph theory 
it is implied that the graphs discussed are finite. If the graphs are infinite, that is usually 

specifically stated. 
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Graph classes in terms of connectivity 

In an undirected graph G, two vertices u and v are called connected if G contains a  

path from u to v. Otherwise, they are called disconnected. A graph is called connected if 
every pair of distinct vertices in the graph is connected; otherwise, it is called disconnected.  

A graph is called k-vertex-connected or k-edge-connected if no set of k-1 vertices 
(respectively, edges) exists that disconnects the graph. A k-vertex-connected graph is often 
called simply k-connected. A directed graph is called weakly connected if replac ing all of its 

directed edges with undirected edges produces a connected (undirected) graph. It is strongly 
connected or strong if it contains a directed path from u to v and a directed path from v to u 

for every pair of vertices u, v. 
 
Properties of graphs  

Two edges of a graph are called adjacent (sometimes coincident) if they share a common 
vertex. Two arrows of a directed graph are called consecutive if the head of the first one is at 

the nock (notch end) of the second one. Similarly, two vertices are ca lled adjacent if they 
share a common edge (consecutive if they are at the notch and at the head of an arrow), in 
which case the common edge is said to join the two vertices. An edge and a vertex on that  

edge are called incident. 
The graph with only one vertex and no edges is called the trivial graph. A graph with only 

vertices and no edges is known as an edgeless graph. The graph with no vertices and no edges 
is sometimes called the null graph or empty graph, but the terminology is not consistent and 
not all mathematicians allow this object. In a weighted graph or digraph, each edge is 

associated with some value, variously called its cost, weight, length or  
other term depending on the application; such graphs arise in many contexts, for example in 

optimal routing problems such as the traveling salesman problem.  
Normally, the vertices of a graph, by their nature as elements of a set, are distinguishable. 
This kind of graph may be called vertex-labeled. However, for many questions it is better to 

treat vertices as indistinguishable; then the graph may be called unlabeled. (Of course, the 
vertices may be still distinguishable by the properties of the graph itself, Graph (mathematics) 

66 e.g., by the numbers of incident edges). The same remarks apply to edges, so that graphs 
which have labeled edges are called edge- labeled graphs. Graphs with labels attached to 
edges or vertices are more generally designated as labeled. Consequently, graphs in which 

vertices are indistinguishable and edges are indistinguishable are called unlabeled. (Note that 
in the literature the term labeled may apply to other kinds of labeling, besides that which 

serves only to distinguish different vertices or edges.) 
 
The diagram at right is a graphic representation of the following  

graph:  
V = {1, 2, 3, 4, 5, 6} 

 E = . 
 
• In category theory a small category can be represented 

by a directed multigraph in which the objects of the 
category represented as vertices and the morphisms as 

directed edges. Then, the functors between categories 
induce some, but not necessarily all, of the digraph 
morphisms of the graph. 

• In computer science, directed graphs are used to 
represent knowledge (e.g., Conceptual graph), finite 

statemachines, and many other discrete structures.  
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• A binary relation R on a set X defines a directed graph. An element x of X is a direct 
predecessor of an element y of X iff xRy 

Important graphs 
Basic examples are: 

• In a complete graph, each pair of vertices is joined by an edge; that is, the graph contains all 
possible edges. 
• In a bipartite graph, the vertex set can be partitioned into two sets, W and X, so that no two 

vertices in W are adjacent and no two vertices in X are adjacent. Alternatively, it is a graph 
with a chromatic number of 2. 

• In a complete bipartite graph, the vertex set is the union of two disjoint sets, W and X, so 
that every vertex in W is adjacent to every vertex in X but there are no edges within W or X.  
• In a linear graph or path graph of length n, the vertices can be listed in order, v0, v1  

, ..., vn, so that the edges are v i−1 vi for each i = 1, 2, ..., n. If a linear graph occurs as a 
subgraph of another graph, it is a path in that graph.  

• In a cycle graph of length n ≥ 3, vertices can be named v1, ..., vn so that the edges are vi−1 
vi for each i = 2,...,n in addition to vnv1. Cycle graphs can be characterized as connected 2-
regular graphs. If a cycle graph occurs as a subgraph of another graph, it is a cycle or circuit 

in that graph. 
• A planar graph is a graph whose vertices and edges can be drawn in a plane such that no 

two of the edges 
intersect (i.e., embedded in a plane).  
• A tree is a connected graph with no cycles.  

• A forest is a graph with no cycles (i.e. the disjoint union of one or more trees).  
More advanced kinds of graphs are: 

• The Petersen graph and its generalizations 
• Perfect graphs 
• Cographs 

• Other graphs with large automorphism groups: vertex-transitive, arc-transitive, and 
distance-transitive graphs. 

• Strongly regular graphs and their generalization distance-regular graphs. 
 
 

 
 

 
 
 

Operations on graphs  

There are several operations that produce new graphs from old ones, which might be 

classified into the following categories: 
• Elementary operations, sometimes called "editing operations" on graphs, which create a 
new graph from the original one by a simple, local change, such as addition or deletion of a 

vertex or an edge, merging and splitting of vertices, etc.  
• Graph rewrite operations replacing the occurrence of some pattern graph within the host 

graph by an instance of the corresponding replacement graph. 
• Unary operations, which create a significantly new graph from the old one. Examples:  
• Line graph 

• Dual graph 
• Complement graph 

• Binary operations, which create new graph from two initial graphs. Examples: 
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• Disjoint union of graphs 
• Cartesian product of graphs 

• Tensor product of graphs 
• Strong product of graphs 

• Lexicographic product of graphs 
 
Generalizations 

In a hypergraph, an edge can join more than two vertices.  
An undirected graph can be seen as a simplicial complex consisting of 1-simplices (the 

edges) and 0-simplices (the vertices). As such, complexes are generalizations of graphs since 
they allow for higher-dimensional simplices. Every graph gives rise to a matroid. In model 
theory, a graph is just a structure. But in that case, there is no limitation on the number of 

edges: it can be any cardinal number, see continuous graph. In computational biology, power 
graph analysis introduces power graphs as an alternative representation of 

undirected graphs. 
 
 

Bridge (graph theory) 

 

 
In graph theory, a bridge (also known as a cut-edge or cut arc 
or an isthmus) is an edge whose deletion increases the  

number of connected components. Equivalently, an edge is a 
bridge if and only if it is not contained in any cycle.  

A graph is said to be bridgeless if it contains no bridges. It is 
easy to see that this is equivalent to 2-edge-connectivity of 
each nontrivial component. 

 

Cycle double cover conjecture 

An important open problem involving bridges is the cycle 
double cover conjecture, due to Seymour and Szekeres (1978 
and 1979, independently), which states that every bridgeless 

graph admits a set of cycles which contains each edge exactly 
twice. 

 
Bridge-Finding Algorithm 

An  algorithm for finding bridges in a 

connected graph was found by Tarjan in 1974. 

Definitions: A non-tree edge between  and  is denoted 

by  An in-tree edge with as the parent  is 

denoted by  
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Cut arc in trees 

An edge or arc e = uv of a tree G is a cut arc of G if and only if the degree of the vertices u 
and v are greater than 1. Cut arcs are also defined for directed graphs. 

 
Graph theory 

 

In mathematics and computer science, 
graph theory is the study of graphs: 

mathematical structures used to model 
pairwise relations between objects from a 
certain collection. A "graph" in this context 

refers to a collection of vertices or 'nodes' 
and a collection of edges that connect pairs 

of vertices. A graph may be undirected, 
meaning that there is no distinction 
between the two vertices associated with 

each edge, or its edges may be directed 
from one vertex to another; see graph 

(mathematics) for more detailed definitions 
and for other variations in the types of graphs that are  
commonly considered. The graphs studied in graph 

theory should not be confused with "graphs of functions" and other kinds of graphs. Graphs 
are one of the prime objects of study in Discrete Mathematics. Refer to Glossary of graph 

theory for basic definitions in graph theory. 
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History 

The paper written by Leonhard Euler on the Seven 

Bridges of Königsberg and published in 1736 is regarded 
as the first paper in the history of graph theory. This 

paper, as well as the one written by Vandermonde on the 
knight problem, carried on with the analysis situs initiated 
by Leibniz. Euler's formula relating the number of edges, 

vertices, and faces of a convex polyhedron was 
studied and generalized by Cauchy and L'Huillier,  

and is at the origin of topology. 
More than one century after Euler's paper on the bridges 
of Königsberg and while Listing introduced topology, 

Cayley was led by the study of particular analytical forms 
arising from differential calculus to study a particular 

class of graphs, the trees. This study had many implications in theoretical chemistry. The 
involved techniques mainly concerned the enumeration of graphs having particular 
properties. Enumerative graph theory then rose from the results of Cayley and the  

fundamental results published by Pólya between 1935 and 1937 and the generalization of 
these by De Bruijn in 1959. Cayley linked his results on trees with the contemporary studies 

of chemical composition. The fusion of the ideas coming from mathematics with those 
coming from chemistry is at the origin of a part of the standard terminology of graph theory.  
In particular, the term "graph" was introduced by Sylvester in a paper published in 1878 in 

Nature, where he draws an analogy between "quantic invariants" and "co-variants" of algebra 
and molecular diagrams: 

"[...] Every invariant and co-variant thus becomes expressible by a graph precisely identical 
with a Kekuléan diagram or chemicograph. [...] I give a rule for the geometrical 
multiplication of graphs, i.e. for constructing a graph to the product of in- or co-variants 

whose separate graphs are given. [...]" (italics as in the original). One of the most famous and 
productive problems of graph theory is the four color problem: "Is it true that any map  

drawn in the plane may have its regions colored with four colors, in such a way that any two 
regions having a common border have different colors?" This problem was first posed by 
Francis Guthrie in 1852 and its first written record is in a letter of De Morgan addressed to 

Hamilton the same year. Many incorrect proofs have been proposed,  
including those by Cayley, Kempe, and others. The study and the generalization of this 

problem by Tait, Heawood, Ramsey and Hadwiger led to the study of the colorings of the 
graphs embedded on surfaces with arbitrary genus. Tait's reformulation generated a new class 
of problems, the factorization problems, particularly studied by Petersen 

and Kőnig. The works of Ramsey on colorations and more specially the results obtained by 
Turán in 1941 was at the origin of another branch of graph theory, extremal graph theory.  

The four color problem remained unsolved for more than a century. In 1969 Heinrich Heesch 
published a method for solving the problem using computers. A computer-aided proof 
produced in 1976 by Kenneth Appel and Wolfgang Haken makes fundamental use of the 

notion of "discharging" developed by Heesch. 
  

The proof involved checking the properties of 1,936 configurations by computer, and was not 
fully accepted at the time due to its complexity. A simpler proof considering only 633 
configurations was given twenty years later by Robertson, Seymour, Sanders and Thomas. 

The autonomous development of topology from 1860 and 1930 fertilized graph theory back 
through the works of Jordan, Kuratowski and Whitney. Another important factor of common 

development of graph theory and topology came from the use of the techniques of modern 
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algebra. The first example of such a use comes from the work of the physicist Gustav 
Kirchhoff, who published in 1845 his Kirchhoff's circuit laws for calculating the voltage and  

current in electric circuits. The introduction of probabilistic methods in graph theory, 
especially in the study of Erdős and Rényi of the asymptotic probability of graph 

connectivity, gave rise to yet another branch, known as random graph theory, which 
has been a fruitful source of graph-theoretic results. 
 

Drawing graphs 

Graphs are represented graphically by drawing a dot for every vertex, and drawing an arc 

between two vertices if they are connected by an edge. If the graph is directed, the direction 
is indicated by drawing an arrow. A graph drawing should not be confused with the graph 
itself (the abstract, non-visual structure) as there are several ways to structure the graph 

drawing. All that matters is which vertices are connected to which others by how many 
edges and not the exact layout. In practice it is often difficult to decide if two drawings 

represent the same graph. Depending on the problem domain some layouts may be better 
suited and easier to understand than others.  
 

Graph-theoretic data structures 

There are different ways to store graphs in a computer system. The data structure used 

depends on both the graph structure and the algorithm used for manipulating the graph. 
Theoretically one can distinguish between list and matrix structures but in concrete 
applications the best structure is often a combination of both. List structures are 

 
often preferred for sparse graphs as they have smaller memory requirements. Matrix 

structures on the other hand provide faster access for some applications but can consume 
huge amounts of memory. 
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Problems in graph theory 

 

Enumeration 

There is a large literature on graphical enumeration: the problem of counting graphs meeting 
specified conditions. Some of this work is found in Harary and Palmer (1973).  

 

Subgraphs, induced subgraphs, and minors 

A common problem, called the subgraph isomorphism problem, is finding a fixed graph as a 
subgraph in a given graph. One reason to be interested in such a question is that many graph 
properties are hereditary for subgraphs, which means that a graph has the property if and only 

if all subgraphs have it too. Unfortunately, finding maximal subgraphs of a certain kind is 
often an NP-complete problem. 

• Finding the largest complete graph is called the clique problem (NP-complete). 
A similar problem is finding induced subgraphs in a given graph. Again, some important 
graph properties are hereditary with respect to induced subgraphs, which means that a graph 

has a property if and only if all induced subgraphs also have it. Finding maximal induced 
subgraphs of a certain kind is also often NP-complete. For example, 

• Finding the largest edgeless induced subgraph, or independent set, called the independent 
set problem (NP-complete). 
Still another such problem, the minor containment problem, is to find a fixed graph as a 

minor of a given graph. A minor or subcontraction of a graph is any graph obtained by taking 
a subgraph and contracting some (or no) edges.  

Many graph properties are hereditary for minors, which means that a graph has a property if 
and only if all minors have it too. A famous example: 
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Graph coloring 

 

Many problems have to do with various ways of coloring graphs, for example:  
• The four-color theorem 

• The strong perfect graph theorem 
• The Erdős–Faber–Lovász conjecture (unsolved) 
• The total coloring conjecture (unsolved) 

• The list coloring conjecture (unsolved) 
• The Hadwiger conjecture (graph theory) (unsolved) 

 
Route problems 

• Hamiltonian path and cycle problems 

• Minimum spanning tree 
• Route inspection problem (also called the "Chinese Postman Problem") 

• Seven Bridges of Königsberg 
• Shortest path problem 
• Steiner tree 

• Three-cottage problem 
• Traveling salesman problem (NP-complete) 

 

Network flow 

There are numerous problems arising especially from applications that have to do with 

various notions of flows in networks, for example: 
• Max flow min cut theorem 

 

Visibility graph problems 

• Museum guard problem 

 

Covering problems 

Covering problems are specific instances of subgraph-finding problems, and they tend to be 
closely related to the clique problem or the independent set problem. 
• Set cover problem 

• Vertex cover problem 
 

Graph classes 

Many problems involve characterizing the members of various classes of graphs. 
Overlapping significantly with other types in this list, this type of problem includes, for 

instance: 
• Enumerating the members of a class 

• Characterizing a class in terms of forbidden substructures 
• Ascertaining relationships among classes (e.g., does one property of graphs imply another)  
• Finding efficient algorithms to decide membership in a class 

• Finding representations for members of a class 
 

Applications 

Graphs are among the most ubiquitous models of both natural and human-made structures. 
They can be used to model many types of relations and process dynamics in physica l, 

biological and social systems. Many problems of practical interest can be represented by 
graphs. 
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In computer science, graphs are used to represent networks of communication, data 
organization, computational  devices, the flow of computation, etc. One practical example: 

The link structure of a website could be represented by  a directed graph. The vertices are the 
web pages available at the website and a directed edge from page A to page B  

exists if and only if A contains a link to B. A similar approach can be taken to problems in 
travel, biology, computer  chip design, and many other fields. The development of algorithms 
to handle graphs is therefore of major interest in computer science. There, the transformation 

of graphs is often formalized and represented by graph rewrite systems.  
They are either directly used or properties of the rewrite systems (e.g. confluence) are 

studied. Complementary to graph transformation systems focussing on rule-based in-memory 
manipulation of graphs are graph databases geared towards transaction-safe, persistent 
storing and querying of graph-structured data. 

Graph-theoretic methods, in various forms, have proven particularly useful in linguistics, 
since natural language often lends itself well to discrete structure. Traditionally, syntax and 

compositional semantics follow tree-based structures, whose expressive power lies in the 
Principle of Compositionality, modeled in a hierarchical graph. Within lexical semantics, 
especially as applied to computers, modeling word meaning is easier when a given word is  

understood in terms of related words; semantic networks are therefore important in 
computational linguistics. Still other methods in phonology (e.g. Optimality Theory, which 

uses lattice graphs) and morphology (e.g. finite-state morphology, using finite-state 
transducers) are common in the analysis of language as a graph. Indeed, the usefulness of this 
area of mathematics to linguistics has borne organizations such as TextGraphs [10], as well 

as various 'Net' projects, such as WordNet, VerbNet, and others.  
Graph theory is also used to study molecules in chemistry and physics. In condensed matter 

physics, the three dimensional structure of complicated simulated atomic structures can be 
studied quantitatively by gathering statistics on graph-theoretic properties related to the 
topology of the atoms. For example, Franzblau's shortest-path (SP) rings. In chemistry a 

graph makes a natural model for a molecule, where vertices represent atoms and edges bonds. 
This approach is especially used in computer processing of molecular structures, ranging 

from chemical editors to database searching. In statistical physics, graphs can represent local 
connections between interacting parts of a system, as well as the dynamics of a physical 
process on such systems. 

Graph theory is also widely used in sociology as a way, for example, to measure actors' 
prestige or to explore diffusion mechanisms, notably through the use of social network 

analysis software. Likewise, graph theory is useful in biology and conservation efforts where 
a vertex can represent regions where certain species exist (or habitats) and the edges represent 
migration paths, or movement between the regions. This information is important when 

looking at breeding patterns or tracking the spread of disease, parasites or how 
changes to the movement can affect other species. In mathematics, graphs are useful in 

geometry and certain parts of topology, e.g. Knot Theory. Algebraic graph 
theory has close links with group theory. A graph structure can be extended by assigning a 
weight to each edge of the graph. Graphs with weights, or weighted graphs, are used to 

represent structures in which pairwise connections have some numerical values. For 
example if a graph represents a road network, the weights could represent the length of each 

road. A digraph with weighted edges in the context of graph theory is called a network. 
Network analysis have many practical applications, for example, to model and analyze traffic 
networks. Applications of network analysis split broadly into three categories: 

1. First, analysis to determine structural properties of a network, such as the distribution of 
vertex degrees and the diameter of the graph. A vast number of graph measures exist, and the 

production of useful ones for various domains remains an active area of research.  
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2. Second, analysis to find a measurable quantity within the network, for example, for a 
transportation network, the level of vehicular flow within any portion of it.  

3. Third, analysis of dynamical properties of networks.  
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Network theory 

 

For the sociological theory, see Social network 
 

Network theory is an area of computer science and network science and part of graph theory. 
It has application in many disciplines including particle physics, computer science, biology, 
economics, operations research, and sociology. Network theory concerns itself with the study 

of graphs as a representation of either symmetric relations or, more generally, of asymmetric 
relations between discrete objects. Applications of network theory include logistical 

networks, the World Wide Web, gene regulatory networks, metabolic networks, social 
networks, epistemological networks, etc. See list of network theory topics for more examples.  
 

Network optimization 

Network problems that involve finding an optimal way of doing something are studied under 

the name of combinatorial optimization. Examples include network flow, shortest path 
problem, transport problem, transshipment problem, location problem, matching problem, 
assignment problem, packing problem, routing problem, Critical Path Analysis and PERT 

(Program Evaluation & Review Technique).  
 

Network analysis 

Social network analysis 
Social network analysis maps relationships between individuals in social networks.  

Such individuals are often persons, but may be groups (including cliques and cohesive 
blocks), organizations, nation states, web sites, or citations between scholarly publications 

(scientometrics). Network analysis, and its close cousin traffic analysis, has significant use in 
intelligence. By monitoring the communication patterns between the network nodes, its 
structure can be established. This can be used for uncovering insurgent networks of both 

hierarchical and leaderless nature.  
 

Biological network analysis 
With the recent explosion of publicly available high throughput biological data, the analysis 
of molecular networks has gained significant interest. The type of analysis in this content are 

closely related to social network analysis, but often focusing on local patterns in the network. 
For example network motifs are small subgraphs that are over-represented in the network. 

Activity motifs are similar over-represented patterns in the attributes of nodes and 
edges in the network that are over represented given the network structure.  
 

Link analysis 
Link analysis is a subset of network analysis, exploring associations between objects. An 

example may be examining the addresses of suspects and victims, the telephone numbers 
they have dialed and financial transactions that they have partaken in during a given 
timeframe, and the familial relationships between these subjects as a part of police  

investigation. Link analysis here provides the crucial relationships and associations between 
very many objects of different types that are not apparent from isolated pieces of information.  

 
Computer-assisted or fully automatic 
computer-based link analysis is increasingly employed by banks and insurance agencies in 

fraud detection, by telecommunication operators in telecommunication network analysis, by 
medical sector in epidemiology and pharmacology, in law enforcement investiga tions, by 
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search engines for relevance rating (and conversely by the spammers for spamdexing and by 
business owners for search engine optimization), and everywhere else where  

relationships between many objects have to be analyzed.  
 

Web link analysis 
Several Web search ranking algorithms use link-based centrality metrics, including (in order 
of appearance) Marchiori's Hyper Search, Google's PageRank, Kleinberg's HITS algorithm, 

and the TrustRank algorithm. Link analysis is also conducted in information science and 
communication science in order to understand and extract information from the structure of 

collections of web pages. For example the analysis might be of the interlinking 
between politicians' web sites or blogs.  
 

Centrality measures 
Information about the relative importance of nodes and edges in a graph can be obtained 

through centrality measures, widely used in disciplines like sociology. For example, 
eigenvector centrality uses the eigenvectors of the adjacency matrix to determine nodes that 
tend to be frequently visited. 

 
Spread of content in networks 

Content in a complex network can spread via two major methods: conserved spread and non-
conserved spread. In conserved spread, the total amount of content that enters a complex 
network remains constant as it passes through.The model of conserved spread can best be 

represented by a pitcher containing a fixed amount of water being poured into a series of 
funnels connected by tubes . Here, the pitcher represents the original source and the water is 

the content being spread. The funnels and connecting tubing represent the nodes and the 
connections between nodes, respectively. As the water passes from one funnel into another, 
the water disappears instantly from the funnel that was previously exposed to the water. In 

non-conserved spread, the amount of content changes as it enters and passes through a 
complex network. The model of non-conserved spread can best be represented by a 

continuously running faucet running through a series of funnels connected by tubes. Here, the 
amount of water from the original source is infinite. Also, any funnels that have been exposed 
to the water continue to experience the water even as it passes into successive funnels. The 

non-conserved model is the most suitable for explaining the transmission of most infectious 
diseases. 

 
Implementations  

• Orange, a free data mining software suite, module orngNetwork  

• Pajek ,program for (large) network analysis and visualization 
• Tulip, a free data mining and visualization software dedicated to the analysis and 

visualization of relational data.  
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Closeness (graph theory) 

 

Within graph theory and network analysis, there are various measures of the centrality of a 

vertex within a graph that determine the relative importance of a vertex within the graph (for 
example, how important a person is within a social network, or, in the theory of space syntax, 
how important a room is within a building or how well-used a road is within an urban 

network).  
There are four measures of centrality that are widely used in network analysis: degree 

centrality, betweenness, closeness, and eigenvector centrality. For a review as well as 
generalizations to weighted networks, see Opsahl et al. (2010) 
 

Degree centrality 

The first, and simplest, is degree centrality. Degree centrality is defined as the number of 

links incident upon a node (i.e., the number of ties that a node has). Degree is often 
interpreted in terms of the immediate risk of node for catching whatever is flowing through 
the network (such as a virus, or some information). If the network is directed  

(meaning that ties have direction), then we usually define two separate measures of degree 
centrality, namely indegree and outdegree. Indegree is a count of the number of ties directed 

to the node, and outdegree is the number of ties that the node directs to others. For positive 
relations such as friendship or advice, we normally interpret indegree as a form of popularity, 
and outdegree as gregariousness.  
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Closeness centrality 

 

In topology and related areas in mathematics, closeness is one of the basic concepts in a 
topological space. Intuitively we say two sets are close if they are arbitrarily near to each 

other. The concept can be defined naturally in a metric space where a notion of distance 
between elements of the space is defined, but it can be generalized to topological spaces 
where we have no concrete way to measure distances. In graph theory closeness is a 

centrality measure of a vertex within a graph. Vertices that are 'shallow' to other 
vertices (that is, those that tend to have short geodesic distances to other vertices with in the 

graph) have higher closeness. Closeness is preferred in network analysis to mean shortest-
path length, as it gives higher values to more central vertices, and so is usually positively 
associated with other measures such as degree. In the network theory, closeness is a 

sophisticated measure of centrality. It is defined as the mean geodesic distance  
(i.e., the shortest path) between a vertex v and all other vertices reachable from it: 

 

 
Different methods and algorithms can be introduced to measure closeness, like the random-
walk centrality introduced by Noh and Rieger (2003) that is a measure of the speed with 

which randomly walking messages reach a vertex from elsewhere in the network—a sort of 
random-walk version of closeness centrality.  

The information centrality of Stephenson and Zelen (1989) is another closeness measure, 
which bears some similarity to that of Noh and Rieger. In essence it measures the harmonic 
mean length of paths ending at a vertex i, which is smaller if i has many short paths 

connecting it to other vertices. Dangalchev (2006), in order to measure the network 
vulnerability, modifies the definition for closeness so it can be used for disconnected graphs 

and the total closeness is easier to calculate: 
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Eigenvector centrality 

 

Eigenvector centrality is a measure of the importance of a node in a network. It assigns 

relative scores to all nodes in the network based on the principle that connections to high-
scoring nodes contribute more to the score of the node in question than equal connections to 
low-scoring nodes. Google's PageRank is a variant of the Eigenvector centrality measure. 

 

 
 

 
Dense Graph 
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Upper density 

Upper density is an extension of the concept of graph density defined above from finite 
graphs to infinite graphs. Intuitively, an infinite graph has arbitrarily large finite subgraphs 

with any density less than its upper density, and does not have arbitrarily large finite 
subgraphs with density greater than its upper density. Formally, the upper density of a graph 
G is the infimum of the values α such that the finite subgraphs of G with density α have a  

bounded number of vertices. It can be shown using the Erdős-Stone theorem that the upper 
density can only be 1 or one of the superparticular ratios 0, 1/2, 2/3, 3/4, 4/5, ... n/(n + 1), ... 

(see, e.g., Diestel, p. 189).  
 
Sparse and tight graphs 

Streinu & Theran (2008) define a graph as being (k,l)-sparse if every nonempty subgraph 
with n vertices has at most kn − l edges, and (k,l)-tight if it is (k,l)-sparse and has exactly 

kn − l edges. Thus trees are exactly the (1,1)-tight graphs, forests are exactly the (1,1)-sparse 
graphs, and graphs with arboricity k are exactly the (k,k)-sparse graphs. 
Pseudoforests are exactly the (1,0)-sparse graphs, and the Laman graphs arising in rigidity 

theory are exactly the (2,3)-tight graphs. Other graph families not characterized by their 
sparsity can also be described in this way. For instance the facts that any planar graph with n 

vertices has at most 3n - 6 edges, and that any subgraph of a planar graph is planar, together  
imply that the planar graphs are (3,6)-sparse. However, not every (3,6)-sparse graph is planar. 
Similarly, outerplanar graphs are (2,3)-sparse and planar bipartite graphs are (2,4)-sparse. 

Streinu and Theran show that testing (k,l)-sparsity may be performed in polynomial time 
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Directed Graphs 

 

 

 
 

 
 

 

 

 



48 | P a g e  

 

 
 

 

 
 

 

 

 
 

 

 

 



49 | P a g e  

 

A tournament is an oriented graph obtained by choosing a direction 
for each edge in an undirected complete graph.nIn the theory of Lie 

groups, a quiver Q is a directed graph serving as the domain of, and 
thus characterizing the shape of, a representation V defined as a 

functor, specifically an object of the functor category FinVctK F(Q) 
where F(Q) is the free category on Q consisting of paths in Q and 
FinVctK is the category of finite dimensional vector spaces over a 

field K. Representations of a quiver label its vertices with vector 
spaces and its edges (and hence paths) compatibly with linear 

transformations between them, and transform via natural 
transformation. 
 

 
 

Vertex(Graph Theory) 

 
In graph theory, a vertex (plural vertices) or node is 

the fundamental unit out of which graphs are formed: 
an undirected graph consists of a set of vertices and a 

set of edges (unordered pairs of vertices), while a  
directed graph consists of a set of vertices and a set of 
arcs (ordered pairs of vertices). From the point of 

view of graph theory, vertices are treated as 
featureless and indivisible objects, although they may 

have additional structure depending on the application 
from which the graph arises; for instance, a semantic 
network is a graph in which the vertices represent 

concepts or classes of objects. The two vertices 
forming an edge are said to be its endpoints, and the 

edge is said to be incident to the vertices. A vertex w is said to be 
adjacent to another vertex v if the graph contains an edge (v,w). The neighborhood of a 
vertex v is an induced subgraph of the graph, formed by all vertices adjacent to v.  

The degree of a vertex in a graph is the number of edges incident to it. An isolated vertex is a 
vertex with degree zero; that is, a vertex that is not an endpoint of any edge. A leaf vertex 

(also pendant vertex) is a vertex with degree one. In a directed graph, one can distinguish the 
outdegree (number of outgoing edges) from the indegree (number of incoming edges); a 
source vertex is a vertex with indegree zero, while a sink vertex is a vertex with outdegree 

zero. 
A cut vertex is a vertex the removal of which would disconnect the remaining graph; a vertex 

separator is a collection of vertices the removal of which would disconnect the remaining 
graph into small pieces. A k-vertex-connected graph is a graph in which removing fewer than 
k vertices always leaves the remaining graph connected. An independent set is a set of 

vertices no two of which are adjacent, and a vertex cover is a set of vertices  
that includes the endpoint of each edge in the graph. The vertex space of a graph is a vector 

space having a set of basis vectors corresponding with the graph's vertices.  
A graph is vertex-transitive if it has symmetries that map any vertex to any other vertex. In 
the context of graph enumeration and graph isomorphism it is important to distinguish 

between labeled vertices and unlabeled vertices. A labeled vertex is a vertex that is associated 
with extra information that enables it to be distinguished from other labeled vertices; two 

graphs can be considered isomorphic only if the correspondence between their vertices pairs 
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up vertices with equal labels. An unlabeled vertex is one tha t can be substituted for any other 
vertex based only on its adjacencies in the graph and not based on any additional information.  

Vertices in graphs are analogous to, but not the same as, vertices of polyhedra: the skeleton of 
a polyhedron forms a graph, the vertices of which are the vertices of the polyhedron, but 

polyhedron vertices have additional structure (their geometric location) that is not assumed to 
be present in graph theory. The vertex figure of a vertex in a polyhedron is analogous to the 
neighborhood of a vertex in a graph. 

 
 

Flow Network 

 

In graph theory, a flow network is a directed graph where each edge has a capacity and each 
edge receives a flow. The amount of flow on an edge cannot exceed the capacity of the edge. 
Often in Operations Research, a directed graph is called a network, the vertices are called 

nodes and the edges are called arcs. A flow must satisfy the restriction that the amount of 
flow into a node equals the amount of flow out of it, except when it is a source, which 

has more outgoing flow, or sink, which has more incoming flow. A network can be used to 
model traffic in a road system, fluids in pipes, currents in an electrical circuit, or anything 
similar in which something travels through a network of nodes. 

 
Definition 
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Example: 

 

 
Applications: 

 

Picture a series of water pipes, fitting into a network. Each pipe is of a certain diameter, so it 
can only maintain a flow of a certain amount of water. Anywhere that pipes meet, the total 

amount of water coming into that junction must be equal to the amount going out, otherwise 
we would quickly run out of water, or we would have a build up of water. We have a water 

inlet, which is the source, and an outlet, the sink. A flow would then be one possible way for  
water to get from source to sink so that the total amount of water coming out of the outlet is 
consistent. Intuitively, the total flow of a network is the rate at which water comes out of the 

outlet. Flows can pertain to people or material over transportation networks, or to electricity 
over electrical distribution systems. For any such physical network, the flow coming into any 

intermediate node needs to equal the flow going out of that node. Bollobás characterizes this 
constraint in terms of Kirchhoff's current law, while later authors (i.e.: Chartrand) mention its 
generalization to some conservation equation.  

Flow networks also find applications in ecology: flow networks arise naturally when 
considering the flow of nutrients and energy between different organizations in a food web. 

The mathematical problems associated with such networks are quite different from those that 
arise in networks of fluid or traffic flow. The field of ecosystem network analysis, developed 
by Robert Ulanowicz and others, involves using concepts from information theory and 

thermodynamics to study the evolution of these networks over time. The simplest and most 
common problem using flow networks is to find what is called the maximum flow, which 
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provides the largest possible total flow from the source to the sink in a given graph. There are 
many other problems which can be solved using max flow algorithms, if they are 

appropriately modeled as flow networks, such as bipartite matching, the assignment problem 
and the transportation problem. In a multi-commodity flow problem, you have multiple 

sources and sinks, and various "commodities" which are to flow from a given source to a 
given sink. This could be for example various goods that are produced at various  
factories, and are to be delivered to various given customers through the same transportation 

network. 

 

 
Cycle(Graph Theory) 

 

In graph theory, the term cycle may refer to several closely related objects.  
• A closed walk, with repeated vertices allowed. See path (graph theory). (This usage is 

common in computer science. In graph theory it is more often called a closed walk.)  
• A closed (simple) path, with no other repeated vertices or edges other than the starting and 
ending vertices. (This usage is common in graph theory, see "Cycle graph") This may also be 

called a simple cycle, circuit, circle, or polygon.  
• A closed directed walk, with repeated vertices allowed. (This usage is common in computer 

science. In graph theory it is more often called a closed directed walk.)  
• A closed directed (simple) path, with no repeated vertices other than the starting and ending 
vertices. (This usage is common in graph theory.) This may also be called a simple (directed) 

cycle. 
• The edge set of an undirected closed path without repeated vertices or edges. This may also 

be called a circuit, circle, or polygon. 
• An element of the binary or integral (or real, complex, etc.) cycle space of a graph. (This is 
the usage closest to that in the rest of mathematics, in particular algebraic topology.) Such a 

cycle may be called a binary cycle, integral cycle, etc.  
• An edge set which has even degree at every vertex; also called an even edge set or, when 

taken together with its vertices, an even subgraph. This is equivalent to a binary cycle, since a 
binary cycle is the indicator function of an edge set of this type.  
Chordless cycles in a graph are sometimes called graph holes. A graph antihole is the 

complement of a graph hole. 
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Adjacency Matrix 

 

In mathematics and computer science, an adjacency matrix is a means of representing which 
vertices of a graph are adjacent to which other vertices. Another matrix representation for a 

graph is the incidence matrix.  
Specifically, the adjacency matrix of a finite graph G on n vertices is the n × n matrix where 
the non-diagonal entry aij is the number of edges from vertex i to vertex j, and the diagonal 

entry aii, depending on the convention, is either once or twice the number of edges (loops) 
from vertex i to itself. Undirected graphs often use the former convention 

of counting loops twice, whereas directed graphs typically use the latter convention. There 
exists a unique adjacency matrix for each isomorphism class of graphs (up to permuting rows 
and columns), and it is not the adjacency matrix of any other isomorphism class of graphs. In 

the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on 
its diagonal. If the graph is undirected, the adjacency matrix is symmetric.  

The relationship between a graph and the eigenvalues and eigenvectors of its adjacency 
matrix is studied in spectral graph theory. 
 

 
Examples: 

 
• Here is an example of a labeled graph and its adjacency matrix. The convention followed 
here is that an adjacent edge counts 1 in the matrix for an undirected graph. (X,Y coordinates 

are 1-6)  
 

 
 
 

 
 

 
 
 

 
• The adjacency matrix of a complete graph is all 1's except for 0's on the diagonal.  

• The adjacency matrix of an empty graph is a zero matrix.  
 
Adjacency Matrix of a Bi-Partite Graph 
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Properties 

 

 
 

Variations 

 

 
 

Data Structures 

 
 



55 | P a g e  

 

Tree (Graph Theory) 

 

 
 

In mathematics, more specifically graph theory, a tree is an undirected graph in which any 
two vertices are connected by exactly one simple path. In other words, any connected graph 
without cycles is a tree. A forest is a disjoint union of trees. 

The various kinds of data structures referred to as trees in computer science are similar to 
trees in graph theory, except that computer science trees have directed edges. Although they 

do not meet the definition given here, these graphs are referred to in graph theory as ordered 
directed trees (see below). 
 

Definitions  

 

A tree is an undirected simple graph G that satisfies any of the following equivalent 
conditions: 
• G is connected and has no cycles.  

• G has no cycles, and a simple cycle is formed if any edge is added to G.  
• G is connected, and it is not connected anymore if any edge is removed from G.  

• G is connected and the 3-vertex complete graph is not a minor of G.  
• Any two vertices in G can be connected by a unique simple path. 
If G has finitely many vertices, say n of them, then the above statements are also equivalent 

to any of the following conditions: 
• G is connected and has n − 1 edges.  

• G has no simple cycles and has n − 1 edges.  
An irreducible (or series-reduced) tree is a tree in which there is no vertex of degree 2.  
A forest is an undirected graph, all of whose connected components are trees; in other words, 

the graph consists of a disjoint union of trees. Equivalently, a forest is an undirected cycle-
free graph. As special cases, an empty graph, a single tree, and the discrete graph on a set of 

vertices (that is, the graph with these vertices that has no edges), all are  
examples of forests. 
The term hedge sometimes refers to an ordered sequence of trees.  

A polytree or oriented tree is a directed graph with at most one undirected path between any 
two vertices. In other words, a polytree is a directed acyclic graph for which there are no 

undirected cycles either. 
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A directed tree is a directed graph which would be a tree if the directions on the edges were 

ignored. Some authors restrict the phrase to the case where the edges are all directed towards 
a particular vertex, or all directed away from a particular vertex (see arborescence).  

A tree is called a rooted tree if one vertex has been designated the root, in which case the 
edges have a natural orientation, towards or away from the root. The tree-order is the partial 
ordering on the vertices of a tree with u ≤ v if and only if the unique path from the root to v 

passes through u. A rooted tree which is a subgraph of some graph G is a normal tree if the 
ends of every edge in G are comparable in this tree-order whenever those ends are vertices of 

the tree (Diestel 2005, p. 15). Rooted trees, often with additional structure such as ordering of 
the neighbors at each vertex, are a key data structure in computer science; see tree data 
structure. In a context where trees are supposed to have a root, a tree without any designated 

root is called a free tree. 
In a rooted tree, the parent of a vertex is the vertex connected to it on the path to the root; 

every vertex except the root has a unique parent. A child of a vertex v is a vertex of which v 
is the parent. A leaf is a vertex without children.  
A labeled tree is a tree in which each vertex is given a unique label. The vertices of a labeled 

tree on n vertices are typically given the labels 1, 2, …, n. A recursive tree is a labeled rooted 
tree where the vertex labels respect the tree order (i.e., if u < v for two vertices u and v, then 

the label of u is smaller than the label of v).  
An ordered tree is a rooted tree for which an ordering is specified for the children of each 
vertex. 

An n-ary tree is a rooted tree for which each vertex which is not a leaf has at most n children. 
2-ary trees are 

sometimes called binary trees, while 3-ary trees are sometimes called ternary trees.  
A terminal vertex of a tree is a vertex of degree 1. In a rooted tree, the leaves are all terminal 
vertices; additionally, the root, if not a leaf itself, is a terminal vertex if it has precisely one 

child. 
 

Example 

The example tree shown to the right has 6 vertices and 6 − 1 = 5 edges. The unique simple 
path connecting the vertices 2 and 6 is 2-4-5-6. 

 

Facts 

• Every tree is a bipartite graph and a median graph. Every tree with only countably many 
vertices is a planar graph. 
• Every connected graph G admits a spanning tree, which is a tree that contains every vertex 

of G and whose edges are edges of G. 
• Every connected graph with only countably many vertices admits a normal spanning tree 

(Diestel 2005, Prop. 8.2.4). 
• There exist connected graphs with uncountably many vertices which do not admit a normal 
spanning tree (Diestel 2005, Prop. 8.5.2).  

• Every finite tree with n vertices, with n > 1, has at least two terminal vertices. This minimal 
number of terminal vertices is characteristic of path graphs; the maximal number, n − 1, is 

attained by star graphs. 
• For any three vertices in a tree, the three paths between them have exactly one vertex in 
common. 
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Enumeration 

 
 

Types of trees 

 

A star is a tree in which there is only one internal node and n − 1 leaves; that is, a star is a tree 

with as many leaves as possible. A tree with two leaves, the fewest possible, is a path graph. 
If all nodes in a tree are within distance one of a central path, then the tree is a caterpillar tree. 
If all nodes are within distance two of a central path, then the tree is a lobster.  

 
 

Path(Graph Theory) 

 
In graph theory, a path in a graph is a sequence of vertices such that from each of its vertices 

there is an edge to the next vertex in the sequence. A path may be infinite, but a finite path 
always has a first vertex, called its start vertex, and a last vertex, called its end vertex. Both of 

them are called end or terminal vertices of the path. The other vertices in the path are internal 
vertices. A cycle is a path such that the start vertex and end vertex are the same. Note that the  
choice of the start vertex in a cycle is arbitrary.  

Paths and cycles are fundamental concepts of graph theory, described in the introductory 
sections of most graph theory texts. See e.g. Bondy and Murty (1976), Gibbons (1985), or 

Diestel (2005). Korte et al. (1990) cover more advanced algorithmic topics concerning paths 
in graphs. 
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Different types of path 

 

The same concepts apply both to undirected graphs and 
directed graphs, with the edges being directed from 

each vertex to the following one. Often the terms 
directed path and directed cycle are used in the directed 
case. 

A path with no repeated vertices is called a simple path, 
and a cycle with no repeated vertices or edges aside 

from the necessary repetition of the start and end vertex 
is a simple cycle. In modern graph theory, most often 
"simple" is implied; i.e., "cycle" means "simple cycle" 

and "path" means "simple path", but this convention is 
not always observed, especially in applied graph theory. 

Some authors (e.g. Bondy and Murty 1976) use the 
term "walk" for a path in which vertices or edges may 
be repeated, and reserve the term "path" for what is 

here called a simple path. A path such that no graph edges connect two nonconsecutive path 
vertices is called an induced path. A simple cycle that includes every vertex, without 

repetition, of the graph is known as a Hamiltonian cycle.  
A cycle with just one edge removed in the corresponding spanning tree of the original graph 
is known as a Fundamental cycle.  

Two paths are independent (alternatively, internally vertex-disjoint) if they do not have any 
internal vertex in common. 

The length of a path is the number of edges that the path uses, counting multiple edges 
multiple times. The length can be zero for the case of a single vertex.  
A weighted graph associates a value (weight) with every edge in the graph. The weight of a 

path in a weighted graph is the sum of the weights of the traversed edges. Sometimes the 
words cost or length are used instead of weight.  

 
 
Glossary of Graph Theory 

 

Graph theory is a growing area in mathematical research, and has a large specialized 

vocabulary. Some authors use the same word with different meanings. Some authors use 
different words to mean the same thing. This page attempts to keep up with current usage.  
 

Basics  

 

A graph G consists of two types of elements, namely vertices and edges. Every edge has two 
endpoints in the set of vertices, and is said to connect or join the two endpoints. An edge can 
thus be defined as a set of two vertices (or an ordered pair, in the case of a directed graph - 

see Section Direction). 
Alternative models of graphs exist; e.g., a graph may be thought of as a Boolean binary 

function over the set of vertices or as a square (0,1)-matrix. 
A vertex is simply drawn as a node or a dot. The vertex set of G is usually denoted by V(G), 
or V when there is no danger of confusion. The order of a graph is the number of its vertices, 

i.e. |V(G)|. 
An edge (a set of two elements) is drawn as a line connecting two vertices, called endpoint or 

(less often) end vertices. An edge with endvertices x and y is denoted by xy (without any 
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symbol in between). The edge set of G is usually denoted by E(G), or E when there is no 
danger of confusion. 

The size of a graph is the number of its edges, i.e. |E(G)|.  
A loop is an edge whose endpoints are the same vertex. A link has two distinct endvertices. 

An edge is multiple if there is another edge with the same endvertices; otherwise it is simple. 
The multiplicity of an edge is the number of multiple edges sharing the same endvertices; the 
multiplicity of a graph, the maximum multiplicity of its edges. A graph is a simple graph if it 

has no multiple edges or loops, a multigraph if it has multiple edges, but no loops, and  
a multigraph or pseudograph if it contains both multiple edges and loops (the literature is 

highly inconsistent). 
When stated without any qualification, a graph is almost always assumed to be simple—one 
has to judge from the context.  

Graphs whose edges or vertices have names or labels are known as labeled, those without as  
unlabeled. Graphs with labeled vertices only are vertex- labeled, those with labeled edges only 

are edge- labeled. The difference between a  labeled and an unlabeled graph is that the latter 
has no specific set of vertices or edges; it is regarded as another way  to look upon an 
isomorphism type of graphs. (Thus, this usage distinguishes between graphs with identifiable 

vertex or edge sets on the one hand, and isomorphism types or classes of graphs on the other.)  
(Graph labeling usually refers to the assignment of labels (usually natural numbers, usually 

distinct) to the edges and vertices of a graph, subject to certain rules depending on the 
situation. This should not be confused with a graph's merely having distinct labels or names 
on the vertices.) 

A hyperedge is an edge that is allowed to take on any number of vertices, possibly more than 
2. A graph that allows any hyperedge is called a 

hypergraph. A simple graph can be considered a special 
case of the hypergraph, namely the 2-uniform 
hypergraph. However, when stated without any 

qualification, an edge is always assumed to consist 
of at most 2 vertices, and a graph is never confused with 

a hypergraph. 
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A graph is infinite if it has infinitely many vertices or edges or both; otherwise the graph is 

finite. An infinite graph where every vertex has finite degree is called locally finite. When 
stated without any qualification, a graph is usually assumed to be finite. See also continuous 

graph. 
Two graphs G and H are said to be isomorphic, denoted by G ~ H, if there is a one-to-one 
correspondence, called an isomorphism, between the vertices of the graph such that two 

vertices are adjacent in G if and only if their corresponding vertices are adjacent in H. 
Likewise, a graph G is said to be homomorphic to a graph H if there is a mapping, called a 

homomorphism, from V(G) to V(H) such that if two vertices are adjacent in G then their 
corresponding vertices are adjacent in H.  
 

Subgraphs 

 

A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and whose 
adjacency relation is a subset of that of G restricted to this subset. In the other direction, a 
supergraph of a graph G is a graph of which G is a subgraph. We say a graph G contains 

another graph H if some subgraph of G is H or is isomorphic to H.  
A subgraph H is a spanning subgraph, or factor, of a graph G if it has the same vertex set as 

G. We say H spans G. 
A subgraph H of a graph G is said to be induced if, for any pair of vertices x and y of H, xy is 
an edge of H if and only if xy is an edge of G. In other words, H is an induced subgraph of G 

if it has exactly the edges that appear in G over the same vertex set. If the vertex set of H is 
the subset S of V(G), then H can be written as G[S] and is said to be induced by S. 

A graph that does not contain H as an induced subgraph is said to be H-free. 
A universal graph in a class K of graphs is a simple graph in which every element in K can be 
embedded as a subgraph. 

 
Walks  

A walk is an alternating sequence of vertices and edges, beginning and ending with a vertex, 
where each vertex is incident to both the edge that precedes it and the edge that follows it in 
the sequence, and where the vertices that precede and follow an edge are the end vertices of 

that edge. A walk is closed if its first and last vertices are the same, and open if they are 
different. 

The length l of a walk is the number of edges that it uses. For an open walk, l = n–1, where n 
is the number of vertices visited (a vertex is counted each time it is visited). For a closed 
walk, l = n (the start/end vertex is listed twice, but is not 

counted twice). In the example graph, (1, 2, 5, 1, 2, 3) is 
an open walk with length 5, and (4, 5, 2, 1,5, 4) is a 

closed walk of length 5. 
A trail is a walk in which all the edges are distinct. A 
closed trail has been called a tour or circuit, but these 

are notuniversal, and the latter is often reserved for a 
regular subgraph of degree two. 

Traditionally, a path referred to what is now usually 
known as an open walk. Nowadays, when stated 
without any qualification, a path is usually understood 

to be simple, meaning that no vertices (and thus no 
edges) are repeated. (The term chain has also been used 

to refer to a walk in which all vertices and edges are 
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distinct.) In the example graph, (5, 2, 1) is a path of length 2. The closed equivalent to this 
type of walk, a walk that starts and ends at the same vertex but otherwise has no repeated 

vertices or edges, is called a cycle. Like path, this term traditionally referred to any closed 
walk, but now is usually understood to be simple by definition. In the example graph, (1, 5, 2, 

1) is a cycle of length 3. (A cycle, unlike a path, is not allowed to have length 0.)  
Paths and cycles of n vertices are often denoted by Pn and Cn, respectively. (Some authors 
use the length instead of the number of vertices, however.)  

 
C1 is a loop, C2 is a digon (a pair of parallel undirected edges in a multigraph, or a pair of 

antiparallel edges in a directed graph), and C3 is called a triangle.  
A cycle that has odd length is an odd cycle; otherwise it is an even cycle. One theorem is that 
a graph is bipartite if and only if it contains no odd cycles. (See complete bipartite graph.)  

A graph is acyclic if it contains no cycles; unicyclic if it contains exactly one cycle; and 
pancyclic if it contains cycles of every possible length (from 3 to the order of the graph). 

The girth of a graph is the length of a shortest (simple) cycle in the graph; and the 
circumference, the length of a longest (simple) cycle. The girth and circumference of an 
acyclic graph are defined to be infinity ∞.  

A path or cycle is Hamiltonian (or spanning) if it uses all vertices exactly once. A graph that 
contains a Hamiltonian path is traceable; and one that contains a Hamiltonian path for any 

given pair of (distinct) end vertices is a Hamiltonian connected graph. A graph that contains a 
Hamiltonian cycle is a Hamiltonian graph.  
A trail or circuit (or cycle) is Eulerian if it uses all edges precisely once. A graph that 

contains an Eulerian trail is traversable. A graph that contains an Eulerian circuit is an 
Eulerian graph. Two paths are internally disjoint (some people call it independent) if they do 

not have any vertex in common, except the first and last ones.  
A theta graph is the union of three internally disjoint (simple) paths that have the same two 
distinct end vertices. A theta0 graph has seven vertices which can be arranged as the vertices 

of a regular hexagon plus an additional vertex in the center. The eight edges are the perimeter 
of the hexagon plus one diameter.  

 
Trees 

 

A tree is a connected acyclic simple graph. A vertex of 
degree 1 is called a leaf, or pendant vertex. An edge 

incident to a leaf is a leaf edge, or pendant edge. (Some 
people define a leaf edge as a leaf and then define a leaf 
vertex on top of it. These two sets of definitions are often 

used interchangeably.) 
 A non-leaf vertex is an internal vertex.  

Sometimes, one vertex of the tree is distinguished, and 
called the root; in this case, the tree is called rooted. 
Rooted trees are often treated as directed acyclic graphs 

with the edges pointing away from the root. 
A subtree of the tree T is a connected subgraph of T.  

A forest is an acyclic simple graph. 
A subforest of the forest F is a subgraph of F.  
A spanning tree is a spanning subgraph that is a tree. 

Every graph has a spanning forest. But only a connected 
graph has a spanning tree. 

A special kind of tree called a star is K1,k .  
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An induced star with 3 edges is a claw.  
A caterpillar is a tree in which all non- leaf nodes form a single path. 

A k-ary tree is a rooted tree in which every internal vertex has k child ren. A 1-ary tree is just 
a path. A 2-ary tree is also called a binary tree. 

 
Cliques 

 

The complete graph K 
n  of order n is a simple graph with n vertices in  

which every vertex is adjacent to every other. The 
example graph to the right is complete. The 
complete graph on n vertices is often 

denoted by K n. It has n(n-1)/2 edges (corresponding 
to all possible 

choices of pairs of vertices).  
A clique in a graph is a set of pairwise adjacent 
vertices. Since any subgraph induced by a clique is a 

complete subgraph, the two terms 
and their notations are usually used interchangeably. 

A k-clique is a clique of order k. In the example 
graph above, vertices 1, 2 and 5 form a 3-clique, or a 
triangle. A maximal clique is a clique that is not a  

subset of any other clique (some authors reserve the 
term clique for maximal cliques). 

The clique number ω(G) of a graph G is the order of a largest clique  
in G. 
 

Strongly connected component 

A related but weaker concept is that of a strongly connected component. Informally, a 

strongly connected component of a directed graph is a subgraph where all nodes in the 
subgraph are reachable by all other nodes in the subgraph.  
Reachability between nodes is established by the existence of a path between the nodes.  

A directed graph can be decomposed into strongly connected components by running the 
depth-first search (DFS) algorithm twice: first, on the graph itself and next on the transpose 

of the graph in decreasing order of the finishing times of the first DFS. Given a directed 
graph G, the transpose GT is the graph G with all the edge directions reversed.  
 

Knots 

A knot in a directed graph is a collection of vertices and edges with the property that every 

vertex in the knot has outgoing edges, and all outgoing edges from vertices in the knot 
terminate at other vertices in the knot. Thus it is impossible to leave the knot while following 
the directions of the edges. 

 
Minors 
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Embedding 

 

 
 
Adjacency and degree 

 

In graph theory, degree, especially that of a vertex, is usually a measure of immediate 
adjacency. 

An edge connects two vertices; these two vertices are said to be incident to that edge, or, 
equivalently, that edge incident to those two vertices. All degree-related concepts have to do 
with adjacency or incidence. 

The degree, or valency, d G(v) of a vertex v in a graph G is the number of edges incident to v, 
with loops being counted twice. A vertex of degree 0 is an isolated vertex. A vertex of degree 

1 is a leaf. In the labelled simple graph example, vertices 1 and 3 have a degree of 2, vertices 
2, 4 and 5 have a degree of 3, and vertex 6 has a degree of 1. If E is finite, then the total sum 
of vertex degrees is equal to twice the number of edges.  

The total degree of a graph is equal to two times the number of edges, loops included. This 
means that for a graph with 3 vertices with each vertex having a degree of two (i.e. a triangle) 

the total degree would be six (e.g. 3 x 2 = 6).  
The general formula for this is total degree = 2n where n = number of edges.  
A degree sequence is a list of degrees of a graph in non- increasing order (e.g. d 

1  ≥ d2 ≥ … ≥ dn). A sequence of non- increasing integers is realizable if it is a degree 
sequence of some graph. 
Two vertices u and v are called adjacent if an edge exists between them. We denote this by u 

~ v or u ↓ v. In the  above graph, vertices 1 and 2 are adjacent, but vertices 2 and 4 are not. 
The set of neighbors of v, that is, vertices adjacent to v not including v itself, forms an 

induced subgraph called the (open) neighborhood of v and denoted N G(v). When v is also 
included, it is called a closed neighborhood and denoted by N G[v]. When stated without any  
qualification, a neighborhood is assumed to be open. The subscript G is usually dropped 

when there is no danger of confusion; the same neighborhood notation may also be used to 
refer to sets of adjacent vertices rather than the corresponding induced subgraphs. In the 

example graph, vertex 1 has two neighbors: vertices 2 and 5. For a simple graph, the number 
of neighbors that a vertex has coincides with its degree. 
A dominating set of a graph is a vertex subset whose closed neighborhood includes all 

vertices of the graph. A vertex v dominates another vertex u if there is an edge from v to u. A 
vertex subset V dominates another vertex subset U if every vertex in U is adjacent to some 

vertex in V. The minimum size of a dominating set is thedomination number γ(G).  
In computers, a finite, directed or undirected graph (with n vertices, say) is often represented 
by its adjacency matrix: an n-by-n matrix whose entry in row i and column j gives the 

number of edges from the i- th to the j-th vertex. 
Spectral graph theory studies relationships between the properties of the graph and its 

adjacency matrix. 
The maximum degree Δ(G) of a graph G is the largest degree over all vertices; the minimum 
degree δ(G), thesmallest.  

A graph in which every vertex has the same degree is regular. It is k-regular if every vertex 
has degree k. A 

0-regular graph is an independent set. A 1-regular graph is a matching. A 2-regular graph is a 
vertex disjoint union of cycles. A 3-regular graph is said to be cubic, or trivalent.  
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A k-factor is a k-regular spanning subgraph. A 1-factor is a perfect matching. A partition of 
edges of a graph into k-factors is called a k-factorization. A k-factorable graph is a graph that 

admits a k-factorization. 
A graph is biregular if it has unequal maximum and minimum degrees and every vertex has 

one of those two degrees. 
A strongly regular graph is a regular graph such that any adjacent vertices have the same 
number of common neighbors as other adjacent pairs and that any nonadjacent vertices have 

the same number of common neighbors as other nonadjacent pairs.  
 

Independence 

In graph theory, the word independent usually carries the connotation of pairwise disjoint or 
mutually nonadjacent. 

In this sense, independence is a form of immediate nonadjacency. An isolated vertex is a 
vertex not incident to any edges. An independent set, or coclique, or stable set or staset, is a 

set of vertices of which no pair is adjacent. Since the graph induced by any independent set is 
an empty graph, the two terms are usually used interchangeably. In the example above, 
vertices 1, 3, and 6 form an independent set; and 3, 5, and 6 form another one.  

Two subgraphs are edge disjoint if they have no edges in common. Similarly, two subgraphs 
are vertex disjoint if they have no vertices (and thus, also no edges) in common. Unless 

specified otherwise, a set of disjoint subgraphs are assumed to be pairwise vertex disjoint.  
The independence number α(G) of a graph G is the size of the largest independent set of G.  
A graph can be decomposed into independent sets in the sense that the entire vertex set of the 

graph can be partitioned into pairwise disjoint independent subsets. Such independent subsets 
are called partite sets, or simply parts.  

A graph that can be decomposed into two partite sets but not fewer is bipartite; three sets but 
not fewer, tripartite; k sets but not fewer, k-partite; and an unknown number of sets, 
multipartite. An 1-partite graph is the same as an independent set, or an empty graph. A 2-

partite graph is the same as a bipartite graph. A graph that can be decomposed into k partite 
sets is also said to be k-colourable. 

A complete multipartite graph is a graph in which vertices are adjacent if and only if they 
belong to different partite 
sets. A complete bipartite graph is also referred to as a biclique; if its partite sets contain n 

and m vertices, respectively, then the graph is denoted K n,m.  
A k-partite graph is semiregular if each of its partite sets has a uniform degree; equipartite if 

each partite set has the same size; and balanced k-partite if each partite set differs in size by at 
most 1 with any other. 

 
 

Connectivity 

 

Connectivity extends the concept of adjacency and is essentially a form (and measure) of 
concatenated adjacency. 

If it is possible to establish a path from any vertex to any other vertex of a graph, the graph is 
said to be connected; otherwise, the graph is disconnected. A graph is totally disconnected if 
there is no path connecting any pair of vertices. This is just another name to describe an 

empty graph or independent set.  
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A cut vertex, or articulation point, is a vertex whose removal disconnects the remaining 
subgraph. A cut set, or vertex cut or separating set, is a set of vertices whose removal 

disconnects the remaining subgraph. A bridge is an analogous edge (see below).  
If it is always possible to establish a path from any vertex to every other even after removing 

any k - 1 vertices, then the graph is said to be k-vertex-connected or k-connected. Note that a 
graph is k-connected if and only if it contains k internally disjoint paths between any two 
vertices. The example graph above is connected (and therefore 1-connected), but not 2-

connected. The vertex connectivity or connectivity κ(G) of a graph G is the minimum 
number of vertices that need to be removed to disconnect G. The complete graph K n  

has connectivity n - 1 for n > 1; and a disconnected graph has connectivity 0.  
In network theory, a giant component is a connected subgraph that contains a majority of the 
entire graph's nodes. 

A bridge, or cut edge or isthmus, is an edge whose removal disconnects a graph. (For 
example, all the edges in a tree are bridges.) A disconnecting set is a set o f edges whose 

removal increases the number of components. An edge cut is the set of all edges which have 
one vertex in some proper vertex subset S and the other vertex in V(G)\S. Edges of K 3 form 
a disconnecting set but not an edge cut. Any two edges of K 3 form a minimal disconnecting 

set as well as an edge cut. An edge cut is necessarily a disconnecting set; and a minimal 
disconnecting set of a nonempty graph is necessarily an edge cut. A bond is a minimal (but 

not necessarily minimum), nonempty set of edges whose removal disconnects a graph. A cut 
vertex is an analogous vertex (see above).  

 

 
A component is a maximally connected subgraph. A block is either a maximally 2-connected 

subgraph, a bridge (together with its vertices), or an isolated vertex. A biconnected 
component is a 2-connected component. 
An articulation point (also known as a separating vertex) of a graph is a vertex whose 

removal from the graph increases its number of connected components. A biconnected 
component can be defined as a subgraph induced by a maximal set of nodes that has no 

separating vertex. 
 

Distance 

The distance d G(u, v) between two (not necessary distinct) vertices u and v in a graph G is 
the length of a shortest path between them. The subscript G is usually dropped when there is 

no danger of confusion. When u and v are identical, their distance is 0. When u and v are 
unreachable from each other, their distance is defined to be infinity ∞.  
The eccentricity ε G (v) of a vertex v in a graph G is the maximum distance from v to a ny 

other vertex. The diameter diam(G) of a graph G is the maximum eccentricity over all 
vertices in a graph; and the radius rad(G), the minimum.  

When there are two components in G, diam(G) and rad(G) defined to be infinity ∞. Trivially, 
diam(G) ≤ 2 rad(G). 
Vertices with maximum eccentricity are called peripheral vertices. Vertices of minimum 

eccentricity form the center. A tree has at most two center vertices.  
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The Wiener index of a vertex v in a graph G, denoted by WG(v) is the sum of distances 

between v and all others. 
The Wiener index of a graph G, denoted by W(G), is the sum of distances over all pairs of 

vertices. An undirected graph's Wiener polynomial is defined to be Σ q d(u,v) over all 
unordered pairs of vertices u and v. Wiener index and Wiener polynomial are of particular 
interest to mathematical chemists.  

The k-th power G k of a graph G is a supergraph formed by adding an edge between all pairs 
of vertices of G with distance at most k. A second power of a graph is also called a square.  

A k-spanner is a spanning subgraph in which every two vertices are at most k times as far 
apart on S than on G. The number k is the dilation. k-spanner is used for studying geometric 
network optimization. 

 

Genus  

A crossing is a pair of intersecting edges. A graph is embeddable on a surface if its vertices 
and edges can be arranged on it without any crossing. The genus of a graph is the lowest 
genus of any surface on which the graph can embed. 

A planar graph is one which can be drawn on the (Euclidean) plane without any crossing; and 
a plane graph, one which is drawn in such fashion. In other words, a planar graph is a graph 

of genus 0. The example graph is planar; the complete graph on n vertices, for n> 4, is not 
planar. Also, a tree is necessarily a planar graph. 
When a graph is drawn without any crossing, any cycle that surrounds a region without any 

edges reaching from the cycle into the region forms a face. Two faces on a plane graph are 
adjacent if they share a common edge. A dual, or planar dual when the context needs to be 

clarified, G* of a plane graph G is a graph whose vertices represent the faces, including any 
outerface, of G and are adjacent in G * if and only if their corresponding faces are adjacent in 
G. 

The dual of a planar graph is always a planar pseudograph (e.g. consider the dual of a 
triangle). In the familiar case of a 3-connected simple planar graph G (isomorphic to a convex 

polyhedron P), the dual G* is also a 3-connected simple planar graph (and isomorphic to the 
dual polyhedron P*). 
Furthermore, since we can establish a sense of "inside" and "outside" on a plane, we can 

identify an "outermost" region that contains the entire graph if the graph does not cover the 
entire plane. Such outermost region is called an outer face. An outerplanar graph is one which 

can be drawn in the planar fashion such that its vertices are all adjacent to the outer face; and 
an outerplane graph, one which is drawn in such fashion.  
The minimum number of crossings that must appear when a graph is drawn on a plane is 

called the crossing number. 
The minimum number of planar graphs needed to cover a graph is the thickness of the graph.  

 

Weighted graphs and networks 

A weighted graph associates a label (weight) with every edge in the graph. Weights are 

usually real numbers. They may be restricted to rational numbers or integers. Certain 
algorithms require further restrictions on weights; for instance, Dijkstra's algorithm works 

properly only for positive weights. The weight of a path or the weight of a tree  
in a weighted graph is the sum of the weights of the selected edges. Sometimes a non-edge is 
labeled by a special weight representing infinity. Sometimes the word cost is used instead of 

weight. When stated without any qualification, a graph is always assumed to be unweighted. 
In some writing on graph theory the term network is a synonym for a weighted graph. A 
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network may be directed or undirected, it may contain special vertices (nodes), such as source 
or sink. The classical network problems include: 

• minimum cost spanning tree, 
• shortest paths, 

• maximal flow (and the max-flow min-cut theorem) 
 
Direction 

 

A directed arc, or directed edge, is an ordered pair of endvertices that can be represented 

graphically as an arrow drawn between the endvertices. In such an ordered pair the first 
vertex is called the initial vertex or tail; the second one is called the terminal vertex or head 
(because it appears at the arrow head). An undirected edge disregards any sense of direction 

and treats both endvertices interchangeably. A loop in a digraph, however, keeps a sense of 
direction and treats both head and tail identically. A set of arcs are multiple, or parallel, if 

they share the same head and the same tail. A pair of arcs are anti-parallel if one's head/tail is 
the other's tail/head. A digraph, or directed graph, or oriented graph, is analogous to an 
undirected graph except that it contains only arcs. A mixed graph may contain both directed 

and undirected edges; it generalizes both directed and undirected graphs. When stated 
without any qualification, a graph is almost always assumed to be undirected.  

A digraph is called simple if it has no loops and at most one arc between any pair of vertices. 
When stated without ny qualification, a digraph is usually assumed to be simple. 
In a digraph Γ, we distinguish the out degree d Γ + (v), the number of edges leaving a vertex  

v, and the in degree d Γ-(v), the number of edges entering a vertex v. If the graph is oriented, 
the degree d Γ (v) of a vertex v is equal to the sum of its out- and in- degrees. When the 

context is clear, the subscript Γ can be dropped. Maximum and minimum out degrees are 
denoted by Δ+ (Γ) and δ+ (Γ); and maximum and minimum in degrees, Δ- (Γ) and δ- 
(Γ). An out-neighborhood, or successor set, N + Γ (v) of a vertex v is the set of tails of arcs 

going from v. Likewise, an in-neighborhood, or predecessor set, N – Γ (v) of a vertex v is the 
set of heads of arcs going into v.  

A source is a vertex with 0 in-degree; and a sink, 0 out-degree. 
A vertex v dominates another vertex u if there is an arc from v to u. A vertex subset S is out-
dominating if every vertex not in S is dominated by some vertex in S; and in-dominating if 

every vertex in S is dominated by some vertex not in S.  
A kernel is an independent out-dominating set. A digraph is kernel perfect if every induced 

sub-digraph has a kernel. 
An Eulerian digraph is a digraph with equal in- and out-degrees at every vertex. 
The zweieck of an undirected edge is the pair of diedges and which form the simple  

dicircuit. 
An orientation is an assignment of directions to the edges of an undirected or partially 

directed graph. When stated without any qualification, it is usually assumed that all 
undirected edges are replaced by a directed one in an orientation. Also, the underlying graph 
is usually assumed to be undirected and simple.  

A tournament is a digraph in which each pair of vertices is connected by exactly one arc. In 
other words, it is an oriented complete graph.  

A directed path, or just a path when the context is clear, is an oriented simple path such that 
all arcs go the same direction, meaning all internal vertices have in- and out-degrees 1. A 
vertex v is reachable from another vertex u if there is a directed path that starts from u and 

ends at v. Note that in general the condition that u is reachable from v does not imply that v is 
also reachable from u. 
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If v is reachable from u, then u is a predecessor of v and v is a successor of u. If there is an 
arc from u to v, then u is a direct predecessor of v, and v is a direct successor of u. 

A digraph is strongly connected if every vertex is reachable from every other following the 
directions of the arcs. 

On the contrary, a digraph is weakly connected if its underlying undirected graph is 
connected. A weakly connected graph can be thought of as a digraph in which every vertex is 
"reachable" from every other but not necessarily following the directions of the arcs. A strong 

orientation is an orientation that produces a strongly connected digraph.  
A directed cycle, or just a cycle when the context is clear, is an oriented simple cycle such 

that all arcs go the same direction, meaning all vertices have in- and out-degrees 1. A digraph 
is acyclic if it does not contain any directed cycle. A finite, acyclic digraph with no iso lated 
vertices necessarily contains at least one source and at least one sink.  

An arborescence, or out-tree or branching, is an oriented tree in which all vertices are 
reachable from a single vertex. Likewise, an in-tree is an oriented tree in which a single 

vertex is reachable from every other one.  
 
Directed acyclic graphs 

 

The partial order structure of directed acyclic graphs (or DAGs) gives them their own 

terminology. If there is a directed edge from u to v, then we say u is a parent of v and v is a 
child of u. If there is a directed path from u to v, we say u is an ancestor of v and v is a 
descendant of u. 

The moral graph of a DAG is the undirected graph created by adding an (undirected) edge 
between all parents of the same node (sometimes called marrying), and then replacing all 

directed edges by undirected edges. A DAG is perfect if, for each node, the set of parents is 
complete (i.e. no new edges need to be added when forming the moral graph).  
 

Colouring 

 

Vertices in graphs can be given colours to identify or label them. Although they may actually 
be rendered in diagrams in different colours, working mathematicians generally pencil in 
numbers or letters (usually numbers) to represent the colours.  

Given a graph G (V,E) a k-colouring of G is a map ϕ : V → {1, ... , k} with the property that 
(u, v) ∈ E ⇒ ϕ(u) ≠ ϕ(v) - in other words, every vertex is assigned a colour with the condition 

that adjacent vertices cannot be assigned the same colour.  
The chromatic number χ(G) is the smallest k for which G has a k-colouring. 

Given a graph and a colouring, the colour classes of the graph are the sets of vertices given 
the same colour. 

 

Various 

 

A graph invariant is a property of a graph G, usually a number or a polynomial, that depends 
only on the isomorphism class of G. Examples are the order, genus, chromatic number, and 
chromatic polynomial of a graph. 
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Improved BSP Clustering Algorithm for Social Network Analysis  

 

Social network analysis is a new research field in data mining. The clustering in social  
network analysis is different from traditional clustering. It requires grouping objects into  

classes based on their links as well as their attributes. While traditional clustering algorithms  
group objects only based on objects‘ similarity, and it can't be applied to social network  
analysis. So on the basis of BSP (business system planning) clustering algorithm, a social  

network clustering analysis algorithm is proposed. The proposed algorithm, different from  
traditional BSP clustering algorithms, can group objects in a social network into different  

classes based on their links and identify relation among classes dynamically & require less  
amount of memory .  
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PROGRAM CODE: 

 

 
#include<stdlib.h> 

#include<malloc.h> 

#include<stdio.h> 

#include<conio.h> 

#include<dos.h> 

#include<time.h> 

clock_t start, end; 

int count5[5]; 

float tim,tim2; 

int b[4]; 

int x2,y; 

int recieve(int[],int,char); 

void lin2() 

{       int i; 

 for(i=18;i<50;i++) 

 {       gotoxy(40,i); 

  printf("%c\n",186); 

 

 } 

} 

void lin11() 

{ 

 int i; 

 for(i=4;i<17;i++) 

 { 

  gotoxy(50,i); 

  printf("%c\n",186); 

 } 

} 

 

void title(void) 

{ 

 int i; 

 

 gotoxy(2,1); 

 

 for(i=0;i<78;i++) 

 { 

  printf("%c",205); 

 } 

 gotoxy(30,2); 

 printf("%c",4); 

 printf("%c",4); 

 printf("STOP 'N' WAIT PROTOCOL"); 

 printf("%c",4); 

 printf("%c",4); 

 

 gotoxy(2,3); 

 for(i=0;i<78;i++) 

 { 
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  printf("%c",205); 

 } 

 

} 

void menu1() 

{ 

 int i,j; 

 title(); 

 printf("\n\n"); 

 printf("\n\n\t1. Normal Sending Data"); 

 printf("\n\t2. Loss of Acknowledgement\ 

  \n\t3. Loss of Sending Data\ 

  \n\t4. Time Expired\ 

  \n\t5. Exit"); 

 printf("\n\n\tEnter your choice : "); 

 gotoxy(55,4); 

 printf("\tMASTER TABLE"); 

 for(i=6;i<17;i++) 

 { 

  gotoxy(65,i); 

  printf("%c\n",186); 

 } 

 gotoxy(51,5); 

 for(i=0;i<29;i++) 

 { 

  printf("%c",205); 

 } 

 j=1; 

 for(i=7;i<=15;i++) 

 { 

  gotoxy(55,i); 

  printf("Frame %d",j); 

  j++; 

  i++; 

 } 

 gotoxy(2,17); 

 for(i=0;i<78;i++) 

 { 

  printf("%c",205); 

 } 

} 

void menu(void) 

{ 

 

 int i; 

 gotoxy(2,17); 

 printf("\n\n"); 

 printf("\t      SENDER'S END ",127,127); 

 printf("\t\t\t  RECIEVER'S END \n\n"); 

 lin2(); 

 lin11(); 

} 

void send(char z) 

{ 

 int a[20],i,x1,x,count=1; 

 int f[4]; 
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 time_t t; 

 float tim1=0.0; 

 //char *a1; 

 //int l=0,*b1; 

 int j=0,k=21,cnt=7,ct=7,cnt1=0,g; 

 for(i=0;i<4;i++) 

 { 

  b[i]=2; 

  count5[i]=100; 

 } 

 count5[i]=100; 

 gotoxy(4,21); 

 printf("Message : "); 

 srand((unsigned) time(&t)); 

 x2=14; 

 y=21; 

 for(i=0;i<20;i++) 

 { 

  gotoxy(x2,y); 

  a[i]=(rand() %2); 

  printf("%d",a[i]); 

  x2++; 

 } 

 ct=7; 

 for(g=0;g<=4;g++) 

 { 

  gotoxy(69,ct); 

  ct=ct+2; 

  printf(" %d",count5[g]); 

 } 

 gotoxy(4,23); 

 printf("Press Enter To Send Data"); 

 getch(); 

 switch(z) 

 { 

  case '1': 

 

   for(i=0; i<20; i++) 

   { 

    if(i!=0) 

    { 

     clrscr(); 

     menu1(); 

     menu(); 

     gotoxy(4,21); 

     printf("Message : "); 

     x2=14; 

     y=21; 

     for(j=0;j<20;j++) 

     { 

      gotoxy(x2,y); 

      printf("%d",a[j]); 

      x2++; 

     } 

     ct=7; 

     for(g=0;g<=4;g++) 
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     { 

      gotoxy(69,ct); 

      ct=ct+2; 

      printf(" %d",count5[g]); 

     } 

    } 

    x2=4; 

    y=23; 

    for(k=0;k<4;k++) 

    { 

     f[k]=a[i]; 

     i++; 

    } 

    i--; 

    y=y+1; 

    gotoxy(x2,y); 

    printf("\tSending Frame %d : ",count); 

    for(k=0;k<4;k++) 

     printf("%d",f[k]); 

    count5[cnt1]--; 

    ct=7; 

    for(g=0;g<=cnt1;g++) 

    { 

     gotoxy(69,ct); 

     ct=ct+2; 

     printf("          "); 

    } 

    ct=7; 

    for(g=0;g<=cnt1;g++) 

    { 

     gotoxy(69,ct); 

     ct=ct+2; 

     printf(" %d",count5[g]); 

    } 

    cnt++; 

    cnt++; 

    cnt1++; 

    start = clock(); 

    x=recieve(f,count,z); 

    x2=x2-40; 

    y+=2; 

    count++; 

    if(i<16) 

    { 

     gotoxy(x2,y); 

     printf("\tPress Enter to Continue"); 

     getch(); 

    } 

   } 

   y+=1; 

   gotoxy(x2,y); 

   printf("\tMessage "); 

   printf(" Sent Successfully"); 

   break; 

  case '2': 

   for(i=0; i<20; i++) 
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   { 

    for(k=0;k<4;k++) 

     b[k]=2; 

    if(i!=0) 

    { 

     clrscr(); 

     menu1(); 

     menu(); 

     gotoxy(4,21); 

     printf("Message : "); 

     x2=14; 

     y=21; 

     for(j=0;j<20;j++) 

     { 

      gotoxy(x2,y); 

      printf("%d",a[j]); 

      x2++; 

     } 

     ct=7; 

     for(g=0;g<=4;g++) 

     { 

      gotoxy(69,ct); 

      ct=ct+2; 

      printf(" %d",count5[g]); 

     } 

    } 

    x2=4; 

    y=23; 

    for(k=0;k<4;k++) 

    { 

     f[k]=a[i]; 

     i++; 

    } 

    i--; 

    gotoxy(x2,y); 

    printf("\tSending Frame %d : ",count); 

    for(k=0;k<4;k++) 

     printf("%d",f[k]); 

    count5[cnt1]--; 

    ct=7; 

    for(g=0;g<=cnt1;g++) 

    { 

     gotoxy(69,ct); 

     ct=ct+2; 

     printf("          "); 

    } 

 

    ct=7; 

    for(g=0;g<=cnt1;g++) 

    { 

     gotoxy(69,ct); 

     ct=ct+2; 

     printf(" %d",count5[g]); 

    } 

    delay(100); 

    x=recieve(f,count,z); 
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    x2=x2-40; 

    y+=2; 

    tim1=0.0; 

    while(x==1) 

    { 

     end=clock(); 

     tim=(end-start)/CLK_TCK; 

     tim1=tim1+tim; 

     if(tim>1.3) 

     { 

      gotoxy(x2,y); 

      printf("\tAcknowledgement Not 

Recieved"); 

      y=y+1; 

      gotoxy(x2,y); 

      printf("\tTotal Taken : %.2f 

sec",tim1); 

      y=y+1; 

      gotoxy(x2,y); 

      printf("\tResending Frame %d : 

",count); 

      for(k=0;k<4;k++) 

       printf("%d",f[k]); 

      ct=7; 

      count5[cnt1]--; 

      for(g=0;g<=cnt1;g++) 

      { 

       gotoxy(69,ct); 

       ct=ct+2; 

       printf("          "); 

      } 

      ct=7; 

      for(g=0;g<=cnt1;g++) 

      { 

       gotoxy(69,ct); 

       ct=ct+2; 

       printf(" %d",count5[g]); 

      } 

      delay(100); 

      x=recieve(f,count,z); 

      x2=x2-40; 

      y+=2; 

     } 

     else 

     { 

      gotoxy(x2,y); 

      printf("Acknowledgement Recieved"); 

      y=y+1; 

      gotoxy(x2,y); 

      printf("\tTotal Time  : %.2f 

sec",tim1); 

      break; 

     } 

    } 

    cnt++; 

    cnt++; 
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    cnt1++; 

    count++; 

    if(i<16) 

    { 

     gotoxy(x2,y+2); 

     printf("\tPress Enter to Continue"); 

     getch(); 

    } 

   } 

   y+=2; 

   gotoxy(x2,y); 

   printf("\tMessage Sent Successfully"); 

   break; 

  case '3': 

   for(i=0; i<20; i++) 

   { 

    tim2=0.0; 

    for(k=0;k<4;k++) 

     b[k]=2; 

    if(i!=0) 

    { 

     clrscr(); 

     menu1(); 

     menu(); 

     gotoxy(4,21); 

     printf("Message : "); 

     x2=14; 

     y=21; 

     for(j=0;j<20;j++) 

     { 

      gotoxy(x2,y); 

      printf("%d",a[j]); 

      x2++; 

     } 

     ct=7; 

     for(g=0;g<=4;g++) 

     { 

      gotoxy(69,ct); 

      ct=ct+2; 

      printf(" %d",count5[g]); 

     } 

    } 

    x2=4; 

    y=23; 

    for(k=0;k<4;k++) 

    { 

     f[k]=a[i]; 

     i++; 

    } 

    i--; 

    gotoxy(x2,y); 

    printf("\tSending Frame %d : ",count); 

    for(k=0;k<4;k++) 

     printf("%d",f[k]); 

    count5[cnt1]--; 

    ct=7; 
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    for(g=0;g<=cnt1;g++) 

    { 

     gotoxy(69,ct); 

     ct=ct+2; 

     printf("          "); 

    } 

    ct=7; 

    for(g=0;g<=cnt1;g++) 

    { 

     gotoxy(69,ct); 

     ct=ct+2; 

     printf(" %d",count5[g]); 

    } 

    start = clock(); 

    delay(100); 

    x=recieve(f,count,z); 

    x2=x2-40; 

    y+=2; 

    while(x==0) 

    { 

     gotoxy(x2,y); 

     printf("\tFrame Lost"); 

     y=y+1; 

     gotoxy(x2,y); 

     printf("\tResending Frame %d : ",count); 

     for(k=0;k<4;k++) 

      printf("%d",f[k]); 

     count5[cnt1]--; 

     ct=7; 

     for(g=0;g<=cnt1;g++) 

     { 

      gotoxy(69,ct); 

      ct=ct+2; 

      printf("          "); 

     } 

     ct=7; 

     for(g=0;g<=cnt1;g++) 

     { 

      gotoxy(69,ct); 

      ct=ct+2; 

      printf(" %d",count5[g]); 

     } 

     delay(100); 

     start=clock(); 

     x=recieve(f,count,z); 

     x2=x2-40; 

     y+=2; 

    } 

    cnt++; 

    cnt++; 

    cnt1++; 

    count++; 

    if(i<16) 

    { 

     gotoxy(x2,y+2); 

     printf("\tPress Enter to Continue"); 
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     getch(); 

    } 

   } 

   y+=2; 

   gotoxy(x2,y); 

   printf("\tMessage Sent Successfully"); 

   break; 

 

  case '4': 

   for(i=0; i<20; i++) 

   { 

    tim2=0.0; 

    for(k=0;k<4;k++) 

     b[k]=2; 

    if(i!=0) 

    { 

     clrscr(); 

     menu1(); 

     menu(); 

     gotoxy(4,21); 

     printf("Message : "); 

     x2=14; 

     y=21; 

     for(j=0;j<20;j++) 

     { 

      gotoxy(x2,y); 

      printf("%d",a[j]); 

      x2++; 

     } 

     ct=7; 

     for(g=0;g<=4;g++) 

     { 

      gotoxy(69,ct); 

      ct=ct+2; 

      printf(" %d",count5[g]); 

     } 

    } 

    x2=4; 

    y=23; 

    for(k=0;k<4;k++) 

    { 

     f[k]=a[i]; 

     i++; 

    } 

    i--; 

    gotoxy(x2,y); 

    printf("\tSending Frame %d : ",count); 

    for(k=0;k<4;k++) 

     printf("%d",f[k]); 

    count5[cnt1]--; 

    ct=7; 

    for(g=0;g<=cnt1;g++) 

    { 

     gotoxy(69,ct); 

     ct=ct+2; 

     printf("          "); 
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    } 

    ct=7; 

    for(g=0;g<=cnt1;g++) 

    { 

     gotoxy(69,ct); 

     ct=ct+2; 

     printf(" %d",count5[g]); 

    } 

    start = clock(); 

    delay(100); 

    x=recieve(f,count,z); 

    x2=x2-40; 

    y+=2; 

    while(x==0) 

    { 

     gotoxy(x2,y); 

     printf("\tTime Expired"); 

     y=y+1; 

     gotoxy(x2,y); 

     printf("\tResending Frame %d : ",count); 

     for(k=0;k<4;k++) 

      printf("%d",f[k]); 

     count5[cnt1]--; 

     ct=7; 

     for(g=0;g<=cnt1;g++) 

     { 

      gotoxy(69,ct); 

      ct=ct+2; 

      printf("          "); 

     } 

     ct=7; 

     for(g=0;g<=cnt1;g++) 

     { 

      gotoxy(69,ct); 

      ct=ct+2; 

      printf(" %d",count5[g]); 

     } 

     delay(100); 

     start=clock(); 

     x=recieve(f,count,z); 

     x2=x2-40; 

     y+=2; 

    } 

    cnt++; 

    cnt++; 

    cnt1++; 

    count++; 

    if(i<16) 

    { 

     gotoxy(x2,y+2); 

     printf("\tPress Enter to Continue"); 

     getch(); 

    } 

   } 

   y+=2; 

   gotoxy(x2,y); 
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   printf("\tMessage Sent Successfully"); 

   break; 

 

 } 

} 

int recieve(int f[],int i,char z) 

{ 

 time_t t; 

 int a,j; 

 int c=0; 

 //srand((unsigned) time(&t)); 

 //c=(rand()%2000); 

 //delay(c); 

 //end=clock(); 

 // 

 switch(z) 

 { 

  case '1': 

   srand((unsigned) time(&t)); 

   c=(rand()%1301); 

   delay(c); 

   end=clock(); 

   tim=(end-start)/CLK_TCK; 

   x2=x2+40; 

   gotoxy(x2,y); 

   printf("\tFrame %d Recieved : ",i); 

   for(j=0;j<4;j++) 

    printf("%d",f[j]); 

   gotoxy(x2,y+1); 

    printf("\t Time : %.2f sec",tim); 

   return 1; 

  case '2': 

   x2=x2+40; 

   for(j=0;j<4;j++) 

   { 

    if(b[j]==f[j]) 

     c=1; 

    else 

    { 

     c=0; 

     break; 

    } 

   } 

   if(c==1) 

   { 

    gotoxy(x2,y); 

    printf("\tFrame Recieved before"); 

    y=y+1; 

    gotoxy(x2,y); 

    printf("\tDscarding this Message"); 

    y=y+1; 

    gotoxy(x2,y); 

    printf("\tSending Acknowledgement Again"); 

   } 

   else 

   { 
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    gotoxy(x2,y); 

    printf("\tFrame %d Recieved : ",i); 

    for(j=0;j<4;j++) 

     printf("%d",f[j]); 

    y=y+1; 

    gotoxy(x2,y); 

    printf("\tSending Acknowlegement"); 

    for(j=0;j<4;j++) 

     b[j]=f[j]; 

   } 

   start=clock(); 

   srand((unsigned) time(&t)); 

   c=(rand()%2000); 

   delay(c); 

   return 1; 

  case '3': 

   x2=x2+40; 

   srand((unsigned) time(&t)); 

   c=(rand()%2000); 

   delay(c); 

   end=clock(); 

   tim=(end-start)/CLK_TCK; 

   tim2=tim2+tim; 

   if(tim<1.3) 

   { 

    for(j=0;j<4;j++) 

     b[j]=f[j]; 

    gotoxy(x2,y); 

    printf("\tFrame %d Recieved : ",i); 

    for(j=0;j<4;j++) 

     printf("%d",f[j]); 

    y=y+1; 

    gotoxy(x2,y); 

    printf("\tTotal Time : %.2f sec",tim2); 

    return 1; 

   } 

   else 

   { 

    gotoxy(x2,y); 

    printf("\tFrame %d Lost",i); 

    y=y+1; 

    gotoxy(x2,y); 

    printf("\tTotal Time : %.2f sec",tim2); 

    return 0; 

   } 

  case '4': 

   x2=x2+40; 

   srand((unsigned) time(&t)); 

   c=(rand()%2000); 

   delay(c); 

   end=clock(); 

   tim=(end-start)/CLK_TCK; 

   tim2=tim2+tim; 

   if(tim<1.3) 

   { 

    gotoxy(x2,y); 
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    printf("\tFrame %d Recieved : ",i); 

    for(j=0;j<4;j++) 

     printf("%d",f[j]); 

    y=y+1; 

    gotoxy(x2,y); 

    printf("\tTotal Time : %.2f sec",tim2); 

    return 1; 

   } 

   else 

   { 

    y=y+1; 

    gotoxy(x2,y); 

    printf("\tTotal Time : %.2f sec",tim2); 

    return 0; 

   } 

 } 

} 

 

void main() 

{ 

 char ch; 

 while(1) 

 { 

  clrscr(); 

  menu1(); 

  menu(); 

  gotoxy(28,13); 

  fflush(stdin); 

  ch=getche(); 

  switch(ch) 

  { 

   case '1': 

    send(ch); 

    getch(); 

    break; 

   case '2': 

    send(ch); 

    getch(); 

    break; 

   case '3': 

    send(ch); 

    getch(); 

    break; 

   case '4': 

    send(ch); 

    getch(); 

    break; 

   case '5': 

    exit(0); 

   default: 

    printf("\n\n\t\t!!!!!Wrong Choice!!!!!"); 

    getch(); 

  } 

 } 

} 
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