
1

WARDROP ROUTING IN WIRELESS

SENSOR NETWORKS

Robin Rishi (101212)

Project Guide –

Dr.Nitin

Submitted in partial fulfilment of the Degree of

Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

2

Table of Content

 Page

Chapter – 1

Wireless Sensor Networks

1.1 Introduction ……………………………………………………………………1

1.2 Individual Wireless Sensor Node Architecture …..2

1.3 Wireless Sensor Networks Architecture………………………………………...3

1.3.1 Star Network (Single Point-to-Multipoint)……………………………..……..3

1.3.2 Mesh Network…………………………………………………………………4

1.3.3 Hybrid Star – Mesh Network………………………………………..…..........5

1.4 Challenges……………………………………………………………….….......6

1.6 Applications of Wireless Sensor Networks…………………………..………....8

1.7 Future Developments ..11

Chapter - 2

Literature Survey

2.1 Introduction ……………………………………………………………….…....13

2.2 Routing Algorithm………………………………………………….……….…..17

2.3 Connection to wardrop equilibrium………………………… …………...….....18

2.4 Why wardrop routing can automatically lead to flow avoiding routes………....18

2.5 The STARA Algorithm………………………………………………………….20

2.6 The Challenges………………………………………………..…………………21

2.7 Controlling Paths and flow avoiding Routes…………………………………….22

2.8 Controlling paths with M-STARA……………………………………...……….22

2.9 Eliminating and controlling with P-STARA…………………………………….24

3

FUTURE

WORK…………………………………………………

APPENDIX ...28

REFERENCES

..65

4

Certificate

This is to certify that the work titled ― “WAR DROP

ROUTING IN WIRELESS SENSOR NETWORKS”,

submitted by Robin Rishi, partial fulfillment for the award of

degree of Bachelor of Technology in Computer Science

Engineering to Jaypee University of Information Technology,

Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or wholly to any other

University or Institute for the award of this or any other degree or

diploma.

Signature of Supervisor ……………………..

Name of Supervisor Dr. Nitin

Designation Associate Professor

Date ……………………..

5

Acknowledgement

As we conclude our project with the God’s grace, we have many people to

thank; for all the help, guidance and support they lent us, throughout the

course of our endeavor.

First and foremost, we are sincerely thankful to Dr.Nitin, our Project

Guide, who has always encouraged us to put in our best efforts and deliver

a quality and professional output. His methodology of making the system

strong from inside has taught us that output is not the END of project. We

really thank him for his time & efforts.

We are deeply indebted to all those who provided reviews and suggestions

for improving the materials and topics covered in our project, and we

extend our apologies to anyone we may have failed to mention.

Robin Rishi

Enrollment no. 101212

CSE

Signature ……………………..

6

ABSTRACT

Routing protocols for multihop wireless networks have traditionally used shortest path

routing to obtain paths to destinations and do not consider traffic load or delay as an

explicit factor in the choice of routes. We focus on static mesh networks and formally

establish that if the number of sources is not too large, then it is possible to construct a

perfect flow-avoiding routing, which can

boost the throughput provided to each user over that of the shortest path routing by a

factor of four when carrier sensing can be disabled or a factor of 3.2 otherwise. So

motivated, we address the issue of designing a multipath, load adaptive routing protocol

that is generally applicable even when there are more sources. We develop a protocol

that adaptively equalizes the mean delay along all utilized routes from a source to

destination and does not utilize any routes that have greater mean delay. This is the

property satisfied by a system in Wardrop equilibrium. We also address the

architectural challenges confronted in the software implementation of a

multipath, delay-feedback-based, probabilistic routing algorithm. Our routing protocol

is 1) completely distributed, 2) automatically load balances flows, 3) uses multiple

paths whenever beneficial, 4) guarantees loop-free paths at every time instant even

while the algorithm is suntil converging, and 5) amenable to clean implementation. An

ns-2 simulation study indicates that the protocol is able to automatically route flows to

―avoid‖ each other, consistently out performing shortest path protocols in a variety of

scenarios. The protocol has been implemented in user space with a small amount of

forwarding mechanism in a modified Linux 2.4.20 kernel. Finally, we discuss a proof-

of-concept measurement study of the implementation on a six node testbed

7

CHAPTER 1

WIRELESS SENSOR NETWORKS

1.1 INTRODUCTION

Sensors integrated into structures, machinery, and the environment, coupled with the

efficient delivery of sensed information, could provide tremendous benefits to society.

Potential benefits include: fewer catastrophic failures, conservation of natural

resources, improved manufacturing productivity, improved emergency response, and

enhanced homeland security. However, barriers to the widespread use of sensors in

structures and machines remain. Bundles of lead wires and fiber optic ―tails‖ are

subject to breakage and connector failures. Long wire bundles represent a significant

installation and long term maintenance cost, limiting the number of sensors that may be

deployed, and therefore reducing the overall quality of the data reported. Wireless

sensing networks can eliminate these costs, easing installation and eliminating

connectors.

The ideal wireless sensor is networked and scaleable, consumes very little power, is

smart and software programmable, capable of fast data acquisition, reliable and

8

accurate over the long term, costs little to purchase and install, and requires no real

maintenance.

Selecting the optimum sensors and wireless communications link requires knowledge

of the application and problem definition. Battery life, sensor update rates, and size are

all major design considerations. Examples of low data rate sensors include temperature,

humidity, and peak strain captured passively. Examples of high data rate sensors

include strain, acceleration, and vibration.

Recent advances have resulted in the ability to integrate sensors, radio communications,

and digital electronics into a single integrated circuit (IC) package. This capability is

enabling networks of very low cost sensors that are able to communicate with each

other using low power wireless data routing protocols. A wireless sensor network

(WSN) generally consists of a base station (or ―gateway‖) that can communicate with a

number of wireless sensors via a radio link. Data is collected at the wireless sensor

node, compressed, and transmitted to the gateway directly or, if required, uses other

wireless sensor nodes to forward data to the gateway. The transmitted data is then

presented to the system by the gateway connection. The purpose of this chapter is to

provide a brief technical introduction to wireless sensor networks and present a few

applications in which wireless sensor networks are enabling.

1.2 Individual Wireless Sensor Node Architecture

A functional block diagram of a versatile wireless sensing node is provided in Figure

1.1. A modular design approach provides a flexible and versatile platform to address

the needs of a wide variety of applications. For example, depending on the sensors to be

9

deployed, the signal-conditioning block can be re-programmed or replaced. This allows

for a wide variety of different sensors to be used with the wireless sensing node.

Similarly, the radio link may be swapped out as required for a given applications’

wireless range requirement and the need for bidirectional communications. The use of

flash memory allows the remote nodes to acquire data on command from a base station,

or by an event sensed by one or more inputs to the node. Furthermore, the embedded

firmware can be upgraded through the wireless network in the field.

The microprocessor has a number of functions including:

1) Managing data collection from the sensors

2) Performing power management functions

3) Interfacing the sensor data to the physical radio layer

4) Managing the radio network protocol

A key feature of any wireless sensing node is to minimize the power consumed by the

system. Generally, the radio subsystem requires the largest amount of power.

Therefore, it is advantageous to send data over the radio network only when required.

This sensor event-driven data collection model requires an algorithm to be loaded into

the node to determine when to send data based on the sensed event. Additionally, it is

important to minimize the power consumed by the sensor itself. Therefore, the

hardware should be designed to allow the microprocessor to judiciously control power

to the radio, sensor, and sensor signal conditioner.

10

 Figure 1.1: Wireless sensor node functional block diagram

1.3 Wireless Sensor Networks Architecture

There are a number of different topologies for radio communications networks. A brief

discussion of the network topologies that apply to wireless sensor networks are outlined

below.

1.3.1 Star Network (Single Point-to-Multipoint)

A star network (Figure 22.3.1) is a communications topology where a single base

station can send and/or receive a message to a number of remote nodes. The remote

nodes can only send or receive a message from the single base station, they are not

permitted to send messages to each other. The advantage of this type of network for

wireless sensor networks is in its simplicity and the ability to keep the remote node’s

power consumption to a minimum. It also allows for low latency communications

between the remote node and the basestation. The disadvantage of such a network is

11

that the basestation must be within radio transmission range of all the individual nodes

and is not as robust as other networks due to its dependency on a single node to manage

the network.

 Figure 1.2: Star network topology

1.3.2 Mesh Network

A mesh network allows for any node in the network to transmit to any other node in the

network that is within its radio transmission range. This allows for what is

known as multihop communications; that is, if a node wants to send a message to

another node that is out of radio communications range, it can use an intermediate node

to forward the message to the desired node. This network topology has the advantage of

redundancy and scalability. If an individual node fails, a remote node still can

communicate to any other node in its range, which in turn, can forward the message to

the desired location. In addition, the range of the network is not necessarily limited by

the range in between single nodes, it can simply be extended by adding more nodes to

12

the system. The disadvantage of this type of network is in power consumption for the

nodes that implement the multihop communications are generally higher than for the

nodes that don’t have this capability, often limiting the battery life. Additionally, as the

number of communication hops to a destination increases, the time to deliver the

message also increases, especially if low power operation of the nodes is a requirement.

 Figure 1.3: Mesh network topology

1.3.3 Hybrid Star – Mesh Network

A hybrid between the star and mesh network provides for a robust and versatile

communications network, while maintaining the ability to keep the wireless sensor

nodes power consumption to a minimum. In this network topology, the lowest power

sensor nodes are not enabled with the ability to forward messages. This allows for

minimal power consumption to be maintained. However, other nodes on the network

13

are enabled with multihop capability, allowing them to forward messages from the low

power nodes to other nodes on the network. Generally, the nodes with the multihop

capability are higher power, and if possible, are often plugged into the electrical mains

line. This is the topology implemented by the up and coming mesh networking standard

known as ZigBee.

 Figure 1.4: Hybrid star-mesh network topology

1.4 Challenges

In spite of the diverse applications, sensor networks pose a number of unique technical

challenges due to the following factors:

14

>> Ad hoc deployment: Most sensor nodes are deployed in regions which have no

infrastructure at all. A typical way of deployment in a forest would be tossing the

sensor nodes from an aero plane. In such a situation, it is up to the nodes to identify its

connectivity and distribution.

>>Unattended operation: In most cases, once deployed, sensor networks have no

human intervention. Hence the nodes themselves are responsible for reconfiguration in

case of any changes.

>>Untethered: The sensor nodes are not connected to any energy source. There is only

a finite source of energy, which must be optimally used for processing and

communication. An interesting fact is that communication dominates processing in

energy consumption. Thus, in order to make optimal use of energy, communication

should be minimized as much as possible.

>> Dynamic changes: It is required that a sensor network system be adaptable to

changing connectivity (for e.g., due to addition of more nodes, failure of nodes etc.) as

well as changing environmental stimuli. Thus, unlike traditional networks, where the

focus is on maximizing channel throughput or minimizing node deployment, the major

consideration in a sensor network is to extend the system lifetime as well as the system

robustness.

1.6 Applications of Wireless Sensor Networks

Structural Health Monitoring – Smart Structures

Sensors embedded into machines and structures enable condition-based maintenance of

these assets. Typically, structures or machines are inspected at regular time intervals,

and components may be repaired or replaced based on their hours in service, rather than

on their working conditions. This method is expensive if the components are in good

working order, and in some cases, scheduled maintenance will not protect the asset if it

15

was damaged in between the inspection intervals. Wireless sensing will allow assets to

be inspected when the sensors indicate that there may be a problem, reducing the cost

of maintenance and preventing catastrophic failure in the event that damage is detected.

Additionally, the use of wireless reduces the initial deployment costs, as the cost of

installing long cable runs is often prohibitive.

In some cases, wireless sensing applications demand the elimination of not only lead

wires, but the elimination of batteries as well, due to the inherent nature of the machine,

structure, or materials under

test. These applications include sensors mounted on continuously rotating parts , within

concrete and composite materials, and within medical implants.

 Application Highlight – Civil Structure Monitoring

One of the most recent applications of today’s smarter, energy-aware sensor networks

is structural health monitoring of large civil structures, such as the Ben Franklin Bridge

(Figure 1.7), which spans the Delaware River, linking Philadelphia and Camden, N.J.

The bridge carries automobile, train and pedestrian traffic. Bridge officials wanted to

monitor the strains on the structure as high-speed commuter trains crossed over the

bridge.

16

 Figure 1.7: Ben Franklin Bridge

A star network of ten strain sensors were deployed on the tracks of the commuter rail

train. The wireless sensing nodes were packaged in environmentally sealed NEMA

rated enclosures. The strain gauges were also suitably sealed from the environment and

were spot welded to the surface of the bridge steel support structure. Transmission

range of the sensors on this star network was approximately 100 meters.

The sensors operate in a low-power sampling mode where they check for presence of a

train by sampling the strain sensors at a low sampling rate of approximately 6 Hz.

When a train is present the strain increases on the rail, which is detected by the sensors.

Once detected, the system starts sampling at a much higher sample rate. The strain

waveform is logged into local Flash memory on the wireless sensor nodes. Periodically,

the waveforms are downloaded from the wireless sensors to the base station. The base

station has a cell phone attached to it which allows for the collected data to be

transferred via the cell network to the engineers’ office for data analysis. This low-

power event-driven data collection method reduces the power required for continuous

operation from 30 mA if the sensors were on all the time to less than 1 mA continuous.

This enables a lithium battery to provide more than a year of continuous operation.

17

Resolution of the collected strain data was typically less then 1 micro strain. A typical

waveform downloaded from the node is shown in Figure 1.8. Other performance

specifications for these wireless strain sensing nodes have been provided in an earlier

work .

 Figure 1.8: Bridge strain data

1.7 Future Developments

The most general and versatile deployments of wireless sensing networks demand that

batteries be deployed. Future work is being performed on systems that exploit

piezoelectric materials to harvest ambient strain energy for energy storage in capacitors

and/or rechargeable batteries. By combining smart, energy saving electronics with

advanced thin film battery chemistries that permit infinite recharge cycles, these

systems could provide a long term, maintenance free, wireless monitoring solution.

18

CHAPTER 2

Wardrop Routing in Wireless Networks

Abstract—Routing protocols for multihop wireless networks have traditionally used

shortest path routing to obtain paths to destinations and do not consider traffic load or

delay as an explicit factor in the choice of routes. We focus on static mesh networks

and

formally establish that if the number of sources is not too large, then it is possible to

construct a perfect flow-avoiding routing, which can boost the throughput provided to

each user over that of the shortest path routing by a factor of four when carrier sensing

can be

disabled or a factor of 3.2 otherwise. So motivated, we address the issue of designing a

multipath, load adaptive routing protocol that is generally applicable even when there

are more sources. We develop a protocol that adaptively equalizes the mean delay

along all

utilized routes from a source to destination and does not utilize any routes that have

greater mean delay. This is the property satisfied by a system in Wardrop equilibrium.

We also address the architectural challenges confronted in the software implementation

of a

multipath, delay-feedback-based, probabilistic routing algorithm.

Our routing protocol is

 1) completely distributed

 2) automatically loadbalances flows,

 3) uses multiple paths whenever beneficial,

 4) guarantees loop-free paths at every time instant even while the algorithm is suntil

converging,

 5) amenable to clean implementation.

 An ns-2 simulation study indicates that the protocol is able to automatically route

flows to ―avoid‖ each other, consistently out-performing shortest path protocols in a

19

variety of scenarios. The protocol has been implemented in user space with a small

amount of forwarding mechanism in a modified Linux 2.4.20 kernel. Finally, we

discuss a proof-of-concept measurement study of the implementation on a six node

testbed.

Index Terms—Wireless networks, wardrop routing, delay-adaptive multipath routing,

performance study, implementation.

 INTRODUCTION

Routing research in wireless multihop networks has traditionally focused on shortest

path routing protocols.A lot of effort has gone into designing protocols that route

packets efficiently in mobile networks with minimal overhead, e.g., [1], [2], [3], [4],

and [5].

This paper is addressed toward static or at best networks with slow mobility, for

example, mesh networks or ad hoc networks in office environments where users do not

move

around with their laptops. Our focus is on wireless networks, e.g., mesh networks,

where the focus is on boosting the throughput-delay performance, and energy

limitations are not a constraining factor. Looking ahead to the next generation of

wireless routing protocols for such quasi-static networks, users may want their routing

to be adaptive to the load on the network. For example, users may want to improve

their throughput-delay performance

by intelligently routing flows in a manner to avoid interference from other paths as far

as possible. Users may also want to utilize multiple paths so that they obtain more

throughput. In addition, looking from a network standpoint, one may want the routing

algorithms implemented at each node to combine together to balance load across the

network. At the same time, one would like to retain some of the key features of current

protocols,

including the completely distributed operation, loop-free paths, and ease of

implementability.

20

In this paper, we present a completely distributed, load adaptive, multipath routing

protocol for quasi-static wireless mesh networks. For every source-destination (SD)

pair, the protocol adaptively equalizes mean delays along all utilized routes and avoids

using any paths with greater or equal mean delay. This is the property satisfied by a

system in Wardrop equilibrium. Such an equilibrium is potentially useful in practice for

a variety of reasons:

1. Adaptive delay-based routing can automatically route around hotspots in

interference-constrained wireless networks.

2. Equalizing the average delay along used paths can reduce resequencing delays for

packets in receiver socket buffers.

3. TCP congestion control reacts adversely to reordered packets and thus misbehaves

when TCP is used over multiple paths. Equalizing the average delay along used routes

can reduce packet reordering and potentially improve TCP behavior when it is used on

top of multipath routing.

The work in this paper builds on earlier work on design [6] and convergence [7] of

delay-adaptive routing algorithms in wireless networks. The goal of this paper is to

bridge the gap between the theory of delay-adaptive routing and its implementation and

use in practice as a

routing protocol for 802.11-based wireless mesh networks. The issues addressed range

from theoretical characterization and algorithmic properties to a detailed simulation

study and architectural challenges in implementing multipath delay-adaptive routing

protocols.

1.) We prove a new result that formalizes the potential performance improvement for

interference avoiding multipath routing in wireless networks. We show that when the

number of active SD pairs is appropriately small in comparison with the number of

nodes in the network, and the SD pairs are randomly distributed, then it is possible to

choose two paths per each SD pair such that no two paths from different SD pairs cross

or interfere with each

21

other and that the two paths for the same SD pair meet only at their end points. The

throughput benefit realizable by such path disjoint multipath routing depends on

whether carrier sensing (with twice the transmission range) can or cannot be turned off.

The throughput that can be furnished to each SD pair is four times what would be

furnished

by minimum hop shortest path routing if carrier sensing can be disabled or 3.2 times

otherwise.

2.) The algorithm used to construct the flow-avoiding routing only illustrates the

feasibility of such an approach and is not amenable to distributed implementation in a

wireless network. Further, in practice, we would like our routing protocol to be load

adaptive even when there are a large number of flows in the network that necessarily

cross each other. So motivated, we design a multipath routing protocol with the

following properties:

a. The routing algorithm converges to a set of admissible routes for each SD pair with

the

following properties: for each SD pair, the mean delays experienced along the multiple

paths are all the same. The potential delay along any unutilized admissible path through

the network is greater than or equal to the delay along each of the utilized paths. This is

the property satisfied by a system in Wardrop equilibrium.

b. The admissible paths all have no more than twice the number of hops of the

minimum hop path.

c. Even during the transient phase while the algorithm is in the process of converging,

the

utilized paths are guaranteed to be loop free.

3.) We demonstrate, via a theoretical example, how our delay adaptive routing can help

automatically achieve flow avoiding routing whenever possible. We conduct a detailed

ns-2 simulation study of the algorithm to study the throughput delivered, the number of

hops along the paths, the delays experienced, the rate at which the algorithm converges,

and the overhead consumed by the routing algorithm. The simulation study indicates

22

that Wardrop routing is effective in routing flows to ―avoid each other‖ and minimize

interference.

4.) We propose a software architecture for implementing the multipath, delay-feedback-

based, Wardrop equilibrating protocol. The architecture respects the IP stack layering.

Even though it is adaptive to the end-to-end delay, it does not utilize transport layer

mechanisms to implement network layer routing.

5.) We implement the above protocol in a Linux 2.4.20-6 kernel. The routing policy is

implemented completely in user space, with a small amount of forwarding mechanism

in the kernel itself.

6.) We conduct a proof-of-concept measurement study of the protocol on a six-node

testbed.

The rest of this paper is organized as follows: In Section 2, we survey related work. In

Section 3, we demonstrate, by theoretical proof and simulation, the regime in which

shortest path routing can lead to a loss of throughputperformance in large wireless

networks. In Section 4, we introduce the traffic-adaptive routing algorithm, the

challenges to be faced in developing a practical protocol and our solutions resulting in

the P-STARA protocol. In Section 5, we describe the protocols for distributed delay

estimation and link delay measurement. In Section 6, we present the results of a

detailed simulation study. In Section 7, we present the implementation architecture, and

in Section 8, we carry out a measurement study of the protocol.

23

 THE ROUTING ALGORITHM

The theoretical result in the previous section indicates that traffic-aware routing can

provide considerable benefits. However, the scheme used to prove the result is

centralized and should only be taken as proof of existence. Instead, we examine a more

general adaptive approach. For every SD pair, we will attempt to drive routes toward an

equilibrium, where the mean delay along all utilized paths is equalized, and all

unutilized paths have greater or equal potential mean delay. In a communication

network, such an equilibrium has attractive properties vis-a-vis multipath routing:

1. When packets have to be resequenced at the receiver and delivered in-order to

the application, equalizing the average delay along utilized paths reduces

receiver socket buffer space requirements and receiver socket buffer

resequencing delays.

2. Equalizing the average delay along utilized paths mitigates TCP congestion

misbehavior that results from TCP's adverse reaction to multiple paths and

reordered packets.

3. Route adaptation using delay feedback allows rerouting of flows around traffic

bottlenecks in wireless environments. This allows flows to automatically

―avoid‖ each other and minimize interference.

2.3 Connection to the Wardrop Equilibrium

The above equilibrium can be interpreted as a routing solution for a global optimization

problem that minimizes the sum of the integral of delays on all links in the network

[24]. In this sense, it is similar to the minimum-delay optimization approach in [18] and

[19]. There is another interpretation—as the property of a system in Wardrop

equilibrium. Suppose that wireless connectivity is represented by a graph ,

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_24
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_18
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_19

24

and let , where , , represent the set of SD pairs. Consider the

problem of routing packets over such a network where the performance measure we are

interested in minimizing is the expected delay. The setting is a noncooperative one in

which each packet wishes to minimize the time taken to get from source to destination.

The route chosen by each packet affects the latency experienced by other packets along

its route, as well as in the vicinity of its route due to wireless interference. Since each

packet has an infinitesimally small impact on the load of the network, the solution of

this noncooperative game corresponds to the Nash equilibrium when the number of

agents goes to infinity. For each pair in , this corresponds to a solution where

all flow paths have equal latency, which is lower than the latency experienced on any

unutilized path. In the absence of this property, it would be possible for some packet to

reduce its latency by switching to the unutilized path [25]. This is the ―Wardrop

equilibrium,‖ defined in [26]:

1. Wardrop's first principle. All utilized paths from a source to a destination have

equal mean delays.

2. Wardrop's second principle. Any unutilized path from a source to a destination

has greater potential mean delay than that along utilized paths.

2.4 Why Wardrop Routing Can Automatically Lead to Flow Avoiding Routes

Before describing our algorithm, we illustrate a simple example to show that routing

toward a Wardrop equilibrium can automatically result in flow avoiding routes in

wireless networks. Consider the example in Fig. 5, where there are two flows traversing

a wireless network. The first flow , from to has two available paths: path of

length , and path of length . The second flow , from to , is

a one-hop flow that interferes with exactly one link of the path . Suppose the input

rates for the two flows are and , respectively. Let us determine the

Wardrop equilibrium for this system as a function of the parameter , which captures

the relative magnitude of the interference from the second flow on the first flow. In

general, the link delay along a directed edge in a wireless network is a complex

function of the topology, traffic on interfering edges, and the routing and scheduling

algorithms used in the wireless network. As a first approximation, we assume that the

delay along each directed edge is a convex nondecreasing function of the

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_25
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_26
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#fig_5

25

traffic on that edge, and the cumulative traffic on interfering edges. Since this

example is merely illustrative, we will use the function , with .

Fig. 5. Flow avoidance with Wardrop routing: a simple two flow example.

Suppose, in Wardrop equilibrium, that the optimal routing for flow directs fraction

of the traffic along path and fraction of the traffic along path . The delay

along path is given by

. The delay along path is given

by . In Fig. 6, we have plotted the values

of and as a function of the fraction of traffic on the first path for

different values of . For , it is easy to see that the solution where all the traffic

is on one of the two paths (i.e., or) are not Wardrop equilibria, since the

delay on the unutilized path in these cases is strictly lower than the delay on the utilized

path. Thus, for a given , the Wardrop equilibrium is obtained by

solving for . On the other hand, when , the delay on

path is always greater or equal the delay on path , irrespective of what

fraction of traffic flows along . This implies that for , the unique equilibrium

consists of routing all traffic along path , and completely avoiding the interference

bottleneck along path caused by the presence of flow . This equilibrium routing is

plotted as a function of in Fig. 7. This example shows the potential of traffic-adaptive

routing to automatically lead to flow avoiding routing whenever possible in a wireless

network.

http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-5-large.gif
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-5-large.gif
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#fig_6
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#fig_7
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-5-large.gif

26

Fig. 6. Determining the Wardrop equilibrium: the equilibrium for a given is attained

at the value of for which the delays and are equalized.

Previous | View All | Next

Fig. 7. The optimal routing as a function of , the ratio of traffic betweens flows

 and .

http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-6-large.gif
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-6-large.gif
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#fig_5
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361&pgName=figures
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#fig_7
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-7-large.gif
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-7-large.gif
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-6-large.gif
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-7-large.gif

27

2.5 The STARA Algorithm

Given these attractive features of routing toward a Wardrop equilibrium, our focus in

the rest of this paper will be on the design and implementation of a practical distributed

algorithm that equalizes the mean delays along all utilized paths in the network and

ensures that all unutilized paths have greater or equal mean delay. We start off by

describing earlier work on the design [6] and convergence [7] of delay-adaptive routing

algorithms in wireless networks. The problem addressed there was to construct an

algorithm for reducing or increasing the flows along paths that would equilibrate to a

Wardrop equilibrium. The basic idea is to estimate end-to-end delay along various

paths and adaptively shift traffic from higher delay paths to lower delay paths,

equilibrating only when all utilized paths have the same average delay. For each node

 and destination , let denote the neighbours of used to forward packets to

destination . Under the STARA algorithm, when node receives a packet destined

for , it probabilistically sends it out to a neighbour in . Let be the

probability that it is forwarded to node . The routing

probabilities are adjusted based on delay feedback.

Let denote the average delay experienced by packets going from node to via the

immediate neighbour . This information is obtained by delay feedback using ACKs

from the destination. Also, denote by the average delay experienced by all packets

from node to , without regard to what next node they were forwarded to. STARA

iteratively adjusts the routing probabilities . It increases the

probability of sending a packet via node if the delay via is less than the

average delay over all neighbours and decreases it otherwise.

The algorithm consists of two components: an iterative scheme for delay estimation and

an iterative scheme for updating routing probabilities [6]:

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_6
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_6

28

1. Delay estimation. End-to-end ACKs are used to record , the measured

delay of the packet sent at time . Exponential forgetting is used to estimate the

delay:

2. Probability update scheme. The routing probabilities are updated as follows:

where

and

The above algorithm features two modifications from the scheme discussed above.

The is the projection map onto the simplex of probability vectors, and are

appropriate step sizes. When a packet for destination arrives at node , the node

routes the packet to one of its neighbours with probability rather

than . The actual routing probabilities used are thus a convex combination of the

s and a uniform probability distribution on all neighbours. This ensures a positive

probability of probing to obtain delay information on unutilized routes [7] and is a

standard feature in adaptive control; see [27]. Note that the Wardrop equilibrium is now

defined with respect to , i.e., only

if .

An important issue in using delay information is that no two clocks are

synchronized. The above algorithm works even when clocks in the network are not

synchronized [6]. The probability update scheme only uses the difference between

delays for a SD pair. Thus, even if the clocks at and differ by an

offset, by taking the difference , the offset is eliminated since it is present in

both , as well as .

2.6 The Challenges

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_27
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_6

29

Our work on rendering Wardrop routing practical will build on the above algorithm.

We will preserve all the valuable features, such as immunity to clock offsets at the

nodes. However, to obtain a practical protocol that in fact delivers improved

performance, we need to make several modifications. We begin by identifying three

problems that render difficult the use of the algorithms presented in here

1. The routes followed by packets are unrestricted. They can be arbitrarily long.

This causes several problems:

1. There are many bad routes that packets can go out on and delays

experienced by such packets can be exceedingly long.

2. Since the algorithm requires feedback on all these bad routes before it

can adapt, its convergence can be very slow, rendering it impractical.

2. After the routing probabilities have converged to the correct estimates, the

algorithm produces loop-free routes. However, packets can follow loopy paths

while the algorithm is converging, which, in practice, is always the case.

3. The delay measurement in relies on acknowledgments to carry measurements

back to sources and intermediate nodes on a per-packet basis. This poses

problems in implementation:

1. A scheme relying on transport layer ACKs to solve the network layer

routing problem violates layering and does not extend to unreliable

transport layers (e.g., UDP).

2. Further, there is no guarantee that ACKs will follow the reversed path as

the data packet. Thus, intermediate nodes will not be able to obtain delay

information.

To address these problems and obtain a practical protocol amenable to deployment, we

redesigned the algorithm in [7] to obtain two protocols M-STARA and P-STARA:

1. We propose new mechanisms to control the length of paths followed by packets,

while the algorithm is converging. These mechanisms preserve the attractive

properties of load adaptation and multipath utilization, while retaining the

property of convergence toward the appropriately defined Wardrop equilibrium.

2. We propose a mechanism that guarantees that routes followed by packets are

loop-free even while the algorithm is suntil converging. This mechanism is not

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7

30

only compatible with the path length control mechanism above but also

continues to preserve convergence toward the appropriately defined Wardrop

equilibrium for the resultant load adaptive multipath routing protocol.

3. We propose a completely distributed delay measurement mechanism to replace

the ACK-based scheme with the attendant problems discussed earlier. The new

mechanism retains immunity to clock offsets. It consists of a light-weight link

delay measurement protocol and a distance-vector like neighbourhood broadcast

of average delay information.

2.7Controlling Paths and Eliminating Loops

Our first objective is to control paths so that the algorithm does not have to investigate

all possible paths from source to destination, which would render the convergence very

slow. The basic idea that we use is to modify the definition of the

neighbourhood , the set of neighbours to which node is allowed to forward

packets destined for node .

2.8 Controlling Paths with M-STARA

Let denote the shortest path distance in hops from node to destination .

Set . We call this algorithm, which only

allows the nodes in to be used for forwarding packets at destined for , M-

STARA. (The reason for the name, denoting Multiplicative-STARA, is that with one

additional modification, it can be used to strongly control path lengths. For brevity, we

omit discussion on this, referring the reader to) The advantage of M-STARA is that it

can be easily built on top of STARA by running a distance vector protocol to produce

distances to all destinations. One other important property is that by merely suitably

defining the notion of ―neighbourhood,‖ we can prove convergence to a suitably

defined Wardrop equilibrium.

2.9 Eliminating Loops and Controlling Path Lengths: P-STARA (Parity Stara)

The above mechanism restricts the set of paths investigated by M-STARA and is easy

to implement, but it does not provide any guarantees on path lengths. In fact, it does not

eliminate routing loops.

31

Note that under any algorithm that converges to a Wardrop equilibrium with respect to

the delay, after the routing probabilities have converged to the correct estimates

asymptotically, the resulting probabilistic routes are guaranteed to be loop-free.

However, while the adaptive algorithm is suntil converging, which in practice

is always, packets can indeed follow loopy paths. Thus, we need to guarantee loop-

freedom of the algorithm at every instant.

To solve these two problems of controlling the path lengths as well as eliminating

routing loops, we propose an additional mechanism, resulting in P-STARA.

The basic idea is to introduce a packet state which alternates between ―odd‖ and

―even,‖ as a packet moves from hop to hop. When the packet state is ―odd,‖ only those

neighbours that strictly decrease the distance in hops to the destination are considered

for forwarding. When the packet state is ―even,‖ the neighbourhood , defined

above for M-STARA, is used. In this way, we will show that over every two hops the

distance to the destination is decreased by at least one hop. This simultaneously

eliminates all routing loops, as well as strictly upper bounds the path length to be no

more than twice the shortest path length.

An equally important advantage, which we will expound on, is that this scheme admits

a simple and completely distributed delay estimation algorithm matched to the

definitions of the two neighbourhoods used. To understand the simplicity of the

solution provided by P-STARA, one should note the difficulties of controlling route

length as well as killing loops while preserving Wardrop equilibration, all without

sacrificing simplicity of implementation. For example, if one just allows a budget of

 over the shortest path length by initially setting an ―excess budget‖ packet field of

 and then progressively decrements it by one after each hop, then one can guarantee that

the path length does not exceed the shortest path length by more than hops. However,

one would then have to use separate routing tables in order to assure the Wardrop

property since packets would be differently treated depending on the excess budget

with which they arrive at a node. In comparison, the parity feature of P-STARA allows

us to get away with just two tables, kills all loops, and yet allows us to control path

lengths by a factor of two proportional to the shortest path length.

32

We now describe the P-STARA algorithm.

Define , recalling the definitions

of and from above

1. We include a field in each packet, which is decremented by one by every

node along the path. The source initially sets to an arbitrary value. In

practice, a field like the IP TTL field already behaves in this manner and can be

used as .

2. We define the state of the packet as .

3. When the packet has state , node only consider neighbours

in as valid for routing. When the packet has state , it

considers neighbours in as valid for forwarding.

4. Since is decremented at each node, at successive nodes along its path, the

packet's state has different values (―0‖ or ―1‖).

5. Corresponding to the two values of , we maintain two separate probability

vectors, , and delay estimate vectors , for .

6. When a packet for destination arrives at node with field , the node routes

the packet to one of its neighbours using the probabilities

. The probability update and delay estimation rules for P-STARA are given

by (4), (5),and(6) below:

We now prove that P-STARA has all the desired properties of controlling path lengths

and eliminating all routing loops even during the transient phase, while providing the

load adaptation of the multipath routing protocol so that it converges to a Wardrop

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#deqn4
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#deqn5
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#deqn6

33

equilibrium.In fact, we will prove that it provides loop-free routes even when the

distance estimates are not accurate or are suntil converging, provided only that the

distance estimation scheme uses the destination originated sequence numbering

technique of DSDV [10]. For brevity, we avoid an explanation of the sequence

numbering technique used by DSDV, as well as the technical definitions of Cesaro

convergence in [7], and provide only a brief outline of the corresponding proofs.

Theorem 2.

1. Suppose packet with source and destination follows path with

length . Then, .

2. P-STARA produces loop-free paths from every source to every destination ,

provided that the distance estimates are accurate.

3. P-STARA produces loop-free paths from every source to every destination ,

even when the distance estimates are not accurate or are suntil

converging, provided only that the distance vector scheme uses sequence

numbering to avoid loops.

4. The routing probabilities produced by P-STARA converge almost

surely to the set of -Cesaro-Wardrop equilibria with respect to the restriction

to the allowed routes.

Proof.

1. Since is decremented by 1 at every step, is alternately even and odd

at every node along the path . Thus, after every two hops along the path , a

packet is closer to the destination by at least one more hop (since we are forced

to choose the shortest path neighbour at one of these two hops).

Thus, .

2. Let be a path from to . P-STARA never forwards packets upstream, i.e.,

from to if . Thus, if contains a cycle ,

then . However, if are three consecutive

nodes along , then . This implies that contains no

cycle of size for any .

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_10
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7

34

3. We can redefine the neighbourhood sets and (see [28] for

details) so that the sequence numbers do not decrease along a path to the

destination. Thus, a loop can be formed only if the sequence numbers are the

same. In this case, we can obtain a contradiction by using the fact that the

distance estimates decrease by at least one after every two successive

hops along the path .

4. The last property capitalizes on the fact that all we have changed is the

definition of admissible neighbourhoods with respect to a destination. This

preserves the convergence properties of the original scheme. Thus, the proof

paralleling that in [7] can be used.

 Future Scope

The future vision of WSNs is to embed numerous distributed devices to monitor and

interact with physical world phenomena, and to exploit spatially and temporally dense

sensing and actuation capabilities of those sensing devices. These nodes coordinate

among themselves to create a network that performs higher-level tasks.

Although extensive efforts have been exerted so far on the routing problem in WSNs,

there are still some challenges that confront effective solutions of the routing problem.

First, there is a tight coupling between sensor nodes and the physical world. Sensors are

embedded in unattended places or systems. This is different from traditional Internet,

PDA, and mobility applications that interface primarily and directly 32 with human

users. Second, sensors are characterized by a small foot print, and as such nodes present

stringent energy constraints since they are equipped with small, finite, energy source.

This is also different from traditional fixed but reusable resources. Third,

communications is primary consumer of energy in this environment where sending a bit

over 10 or 100 meters consumes as much energy as thousands-to-millions of operations

(known as R4 signal energy drop-off) [36].

Although the performance of these protocols is promising in terms of energy

efficiency, further research would be needed to address issues such as Quality of

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_28
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7

35

Service (QoS) posed by video and imaging sensors and real-time applications.

Energy-aware QoS routing in sensor networks will ensure guaranteed bandwidth (or

delay) through the duration of connection as well as providing the use of most

energy efficient path. Another interesting issue for routing protocols is the

consideration of node mobility. Most of the current protocols assume that the sensor

nodes and the BS are stationary. However, there might be situations such as battle

environments where the BS and possibly the sensors need to be mobile. In such

cases, the frequent update of the position of the command node and the sensor

nodes and the propagation of that information through the network may excessively

drain the energy of nodes. New routing algorithms are needed in order to handle the

overhead of mobility and topology changes in such energy constrained

environment. Future trends in routing techniques in WSNs focus on different

directions, all share the common objective of prolonging the network lifetime. We

summarize some of these directions and give some pertinent references as follows:

• Exploit redundancy: typically a large number of sensor nodes are implanted inside

or beside the phenomenon. Since sensor nodes are prone to failure, fault tolerance

techniques come in picture to keep the network operating and performing its tasks.

Routing techniques that explicitly employ fault tolerance techniques in an efficient

manner are still under investigation.

• Tiered architectures (mix of form/energy factors): Hierarchical routing is an old

technique to enhance scalability and efficiency of the routing protocol. However,

novel techniques to network clustering which maximize the network lifetime are

also a hot area of research in WSNs.

• Exploit spatial diversity and density of sensor/actuator nodes: Nodes will span a

network area that might be large enough to provide spatial communication between

sensor nodes. Achieving energy efficient communication in this densely populated

environment deserves further investigation. The dense deployment of sensor nodes

should allow the network to adapt to unpredictable environment.

• Achieve desired global behavior with adaptive localized algorithms (i.e., do

not rely on global inter- action or information). However, in a dynamic

36

environment, this is hard to model.

• Leverage data processing inside the network and exploit computation near data

sources to reduce communication, i.e., perform in-network distributed

processing.WSNs are organized around naming data, not nodes identities. Since we

have a large collections of distributed elements, localized algo- rithms that achieve

system-wide properties in terms of local processing of data before being sent to the

destination are still needed. Nodes in the network will store named data and make it

available for processing. There is a high need to create efficient processing points in the

network, e.g., duplicate suppression, aggregation, correlation of data. How to efficiently

and optimally find those points is still an open research issue.

• Time and location synchronization: energy-efficient techniques for associating time

and spatial coor- dinates with data to support collaborative processing are also required

[20].

• Localization: sensor nodes are randomly deployed into an unplanned infrastructure.

The problem of estimating spatial-coordinates of the node is referred to as localization.

Global Positioning System (GPS) cannot be used in WSNs as GPS can work only

outdoors and cannot work in the presence of any obstruction. Moreover, GPS receivers

are expensive and not suitable in the construction of small cheap sensor nodes. Hence,

there is a need to develop other means of establishing a coordinate system without

relying on an existing infrastructure. Most of the proposed localization techniques

today, depend on recursive trilateration/multilateration techniques (e.g., [38]) which

would not provide enough accuracy in WSNs.

• Self-configuration and reconfiguration is essential to lifetime of unattended systems in

dynamic, and constrained energy environment. This is important for keeping the

network up and running. As nodes die and leave the network, update and

reconfiguration mechanisms should take place. A feature that is important in every

routing protocol is to adapt to topology changes very quickly and to maintain the

network functions.

• Secure Routing: Current routing protocols optimize for the limited capabilities of the

37

nodes and the application specific nature of the networks, but do not consider security.

Although these protocols have not been designed with security as a goal, it is important

to analyze their security properties. One aspect of sensor networks that complicates the

design of a secure routing protocol is in-network aggregation. In WSNs, in-network

processing makes end-to-end security mechanisms harder to deploy because

intermediate nodes need direct access to the contents of the messages.

• Other possible future research for routing protocols includes the integration of

sensor networks with wired networks (i.e. Internet). Most of the applications in

security and environmental monitoring require the data collected from the

sensor nodes to be transmitted to a server so that further analysis can be done.

On the other hand, the requests from the user should be made to the BS through

Inter- net. Since the routing requirements of each environment are different,

further research is necessary for handling these kinds of situations.

38

CODE

I have use java as the programming language and I have the following classes:

 AStarHeuristic.class

 AStarPathFinder$1.class

 AStarPathFinder$Node.class

 AStarPathFinder$SortedList.class

 AStarPathFinder.class

 ClosestHeuristic.class

 ClosestSquaredHeuristic.class

 ExampleBreakpoint.class

 GameMap.class

 ManhattanHeuristtic.class

 Monitoring$1.class

 Monitoring$2.class

 Monitoring.class

 Mover.class

 Path$Step.class

 Path.class

 PathFinder.class

 PathTest$1.class

 PathTest$2.class

 PathTest$3.class

 PathTest$4.class

 PathTest.class

 TileBasedMap.class

 UnitMover.class

Now,Codes for the respective classes follows:

39

package wardrop;

public interface AStarHeuristic {

 public float getCost(TileBasedMap map, Mover mover, int x, int y, int tx, int

ty);

}

package wardrop;

import java.util.ArrayList;

import java.util.Collections;

public class AStarPathFinder implements PathFinder {

 private ArrayList closed = new ArrayList();

 private SortedList open = new SortedList();

 private TileBasedMap map;

 private int maxSearchDistance;

 private Node[][] nodes;

 private boolean allowDiagMovement;

 private AStarHeuristic heuristic;

 int mapdirection=0;

 public AStarPathFinder(TileBasedMap map, int maxSearchDistance, boolean

allowDiagMovement) {

 this(map, maxSearchDistance, allowDiagMovement, new

ClosestHeuristic());

 }

40

 public AStarPathFinder(TileBasedMap map, int maxSearchDistance,

 boolean allowDiagMovement,

AStarHeuristic heuristic) {

 this.heuristic = heuristic;

 this.map = map;

 this.maxSearchDistance = maxSearchDistance;

 this.allowDiagMovement = allowDiagMovement;

 nodes = new Node[map.getWidthInTiles()][map.getHeightInTiles()];

 for (int x=0;x<map.getWidthInTiles();x++) {

 for (int y=0;y<map.getHeightInTiles();y++) {

 nodes[x][y] = new Node(x,y);

 }

 }

 }

 public Path findPath(Mover mover, int sx, int sy, int tx, int ty) {

 if (map.blocked(mover, tx, ty)) {

 return null;

 }

 nodes[sx][sy].cost = 0;

 nodes[sx][sy].depth = 0;

 closed.clear();

 open.clear();

 open.add(nodes[sx][sy]);

 nodes[tx][ty].parent = null;

 int maxDepth = 0;

 while ((maxDepth < maxSearchDistance) && (open.size() != 0)) {

 Node current = getFirstInOpen();

 if (current == nodes[tx][ty]) {

41

 break;

 }

 removeFromOpen(current);

 addToClosed(current);

 for (int x=-1;x<2;x++) {

 for (int y=-1;y<2;y++) {

 if ((x == 0) && (y == 0)) {

 continue;

 }

 if (!allowDiagMovement) {

 if ((x != 0) && (y != 0)) {

 continue;

 }

 }

 int xp = x + current.x;

 int yp = y + current.y;

 if (isValidLocation(mover,sx,sy,xp,yp)) {

 float nextStepCost = current.cost +

getMovementCost(mover, current.x, current.y, xp, yp);

 Node neighbour = nodes[xp][yp];

 map.pathFinderVisited(xp, yp);

 if (nextStepCost < neighbour.cost) {

 if (inOpenList(neighbour)) {

 removeFromOpen(neighbour);

 }

 if (inClosedList(neighbour)) {

 removeFromClosed(neighbour);

 }

42

 }

 if (!inOpenList(neighbour) &&

!(inClosedList(neighbour))) {

 neighbour.cost = nextStepCost;

 neighbour.heuristic =

getHeuristicCost(mover, xp, yp, tx, ty);

 maxDepth = Math.max(maxDepth,

neighbour.setParent(current));

 addToOpen(neighbour);

 }

 }

 }

 }

 }

 if (nodes[tx][ty].parent == null) {

 return null;

 }

 Path path = new Path();

 Node target = nodes[tx][ty];

 while (target != nodes[sx][sy]) {

 path.prependStep(target.x, target.y);

 target = target.parent;

 }

 path.prependStep(sx,sy);

 return path;

 }

 protected Node getFirstInOpen() {

 return (Node) open.first();

 }

43

 protected void addToOpen(Node node) {

 open.add(node);

 }

 protected boolean inOpenList(Node node) {

 return open.contains(node);

 }

 protected void removeFromOpen(Node node) {

 open.remove(node);

 }

 protected void addToClosed(Node node) {

 closed.add(node);

 }

 protected boolean inClosedList(Node node) {

 return closed.contains(node);

 }

 protected void removeFromClosed(Node node) {

 closed.remove(node);

 }

 protected boolean isValidLocation(Mover mover, int sx, int sy, int x, int y) {

 boolean invalid = (x < 0) || (y < 0) || (x >= map.getWidthInTiles()) || (y

>= map.getHeightInTiles());

 if ((!invalid) && ((sx != x) || (sy != y))) {

 invalid = map.blocked(mover, x, y);

44

 }

 return !invalid;

 }

 public float getMovementCost(Mover mover, int sx, int sy, int tx, int ty) {

 return map.getCost(mover, sx, sy, tx, ty);

 }

 public float getHeuristicCost(Mover mover, int x, int y, int tx, int ty) {

 return heuristic.getCost(map, mover, x, y, tx, ty);

 }

 private class SortedList {

 private ArrayList list = new ArrayList();

 public Object first() {

 return list.get(0);

 }

 public void clear() {

 list.clear();

 }

 public void add(Object o) {

 list.add(o);

 Collections.sort(list);

 }

 public void remove(Object o) {

 list.remove(o);

 }

45

 public int size() {

 return list.size();

 }

 public boolean contains(Object o) {

 return list.contains(o);

 }

 }

 /**

 * A single node in the search graph

 */

 private class Node implements Comparable {

 private int x;

 private int y;

 private float cost;

 private Node parent;

 private float heuristic;

 private int depth;

 public Node(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int setParent(Node parent) {

 depth = parent.depth + 1;

46

 this.parent = parent;

 return depth;

 }

 public int compareTo(Object other) {

 Node o = (Node) other;

 float f = heuristic + cost;

 float of = o.heuristic + o.cost;

 if (f < of) {

 return -1;

 } else if (f > of) {

 return 1;

 } else {

 return 0;

 }

 }

 }

}

package wardrop;

import java.util.ArrayList;

import java.util.Collections;

public class AStarPathFinder implements PathFinder {

 private ArrayList closed = new ArrayList();

 private SortedList open = new SortedList();

 private TileBasedMap map;

 private int maxSearchDistance;

47

 private Node[][] nodes;

 private boolean allowDiagMovement;

 private AStarHeuristic heuristic;

 int mapdirection=0;

 public AStarPathFinder(TileBasedMap map, int maxSearchDistance, boolean

allowDiagMovement) {

 this(map, maxSearchDistance, allowDiagMovement, new

ClosestHeuristic());

 }

 public AStarPathFinder(TileBasedMap map, int maxSearchDistance,

 boolean allowDiagMovement,

AStarHeuristic heuristic) {

 this.heuristic = heuristic;

 this.map = map;

 this.maxSearchDistance = maxSearchDistance;

 this.allowDiagMovement = allowDiagMovement;

 nodes = new Node[map.getWidthInTiles()][map.getHeightInTiles()];

 for (int x=0;x<map.getWidthInTiles();x++) {

 for (int y=0;y<map.getHeightInTiles();y++) {

 nodes[x][y] = new Node(x,y);

 }

 }

 }

 public Path findPath(Mover mover, int sx, int sy, int tx, int ty) {

 if (map.blocked(mover, tx, ty)) {

 return null;

 }

 nodes[sx][sy].cost = 0;

 nodes[sx][sy].depth = 0;

48

 closed.clear();

 open.clear();

 open.add(nodes[sx][sy]);

 nodes[tx][ty].parent = null;

 int maxDepth = 0;

 while ((maxDepth < maxSearchDistance) && (open.size() != 0)) {

 Node current = getFirstInOpen();

 if (current == nodes[tx][ty]) {

 break;

 }

 removeFromOpen(current);

 addToClosed(current);

 for (int x=-1;x<2;x++) {

 for (int y=-1;y<2;y++) {

 if ((x == 0) && (y == 0)) {

 continue;

 }

 if (!allowDiagMovement) {

 if ((x != 0) && (y != 0)) {

 continue;

 }

 }

 int xp = x + current.x;

 int yp = y + current.y;

 if (isValidLocation(mover,sx,sy,xp,yp)) {

 float nextStepCost = current.cost +

getMovementCost(mover, current.x, current.y, xp, yp);

49

 Node neighbour = nodes[xp][yp];

 map.pathFinderVisited(xp, yp);

 if (nextStepCost < neighbour.cost) {

 if (inOpenList(neighbour)) {

 removeFromOpen(neighbour);

 }

 if (inClosedList(neighbour)) {

 removeFromClosed(neighbour);

 }

 }

 if (!inOpenList(neighbour) &&

!(inClosedList(neighbour))) {

 neighbour.cost = nextStepCost;

 neighbour.heuristic =

getHeuristicCost(mover, xp, yp, tx, ty);

 maxDepth = Math.max(maxDepth,

neighbour.setParent(current));

 addToOpen(neighbour);

 }

 }

 }

 }

 }

 if (nodes[tx][ty].parent == null) {

 return null;

 }

 Path path = new Path();

 Node target = nodes[tx][ty];

 while (target != nodes[sx][sy]) {

 path.prependStep(target.x, target.y);

50

 target = target.parent;

 }

 path.prependStep(sx,sy);

 return path;

 }

 protected Node getFirstInOpen() {

 return (Node) open.first();

 }

 protected void addToOpen(Node node) {

 open.add(node);

 }

 protected boolean inOpenList(Node node) {

 return open.contains(node);

 }

 protected void removeFromOpen(Node node) {

 open.remove(node);

 }

 protected void addToClosed(Node node) {

 closed.add(node);

 }

 protected boolean inClosedList(Node node) {

 return closed.contains(node);

 }

51

 protected void removeFromClosed(Node node) {

 closed.remove(node);

 }

 protected boolean isValidLocation(Mover mover, int sx, int sy, int x, int y) {

 boolean invalid = (x < 0) || (y < 0) || (x >= map.getWidthInTiles()) || (y

>= map.getHeightInTiles());

 if ((!invalid) && ((sx != x) || (sy != y))) {

 invalid = map.blocked(mover, x, y);

 }

 return !invalid;

 }

 public float getMovementCost(Mover mover, int sx, int sy, int tx, int ty) {

 return map.getCost(mover, sx, sy, tx, ty);

 }

 public float getHeuristicCost(Mover mover, int x, int y, int tx, int ty) {

 return heuristic.getCost(map, mover, x, y, tx, ty);

 }

 private class SortedList {

 private ArrayList list = new ArrayList();

 public Object first() {

 return list.get(0);

 }

 public void clear() {

 list.clear();

52

 }

 public void add(Object o) {

 list.add(o);

 Collections.sort(list);

 }

 public void remove(Object o) {

 list.remove(o);

 }

 public int size() {

 return list.size();

 }

 public boolean contains(Object o) {

 return list.contains(o);

 }

 }

 /**

 * A single node in the search graph

 */

 private class Node implements Comparable {

 private int x;

 private int y;

 private float cost;

 private Node parent;

53

 private float heuristic;

 private int depth;

 public Node(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int setParent(Node parent) {

 depth = parent.depth + 1;

 this.parent = parent;

 return depth;

 }

 public int compareTo(Object other) {

 Node o = (Node) other;

 float f = heuristic + cost;

 float of = o.heuristic + o.cost;

 if (f < of) {

 return -1;

 } else if (f > of) {

 return 1;

 } else {

 return 0;

 }

 }

 }

}

package wardrop;

54

ClosestHeuristic.class:

public class ClosestHeuristic implements AStarHeuristic {

 public float getCost(TileBasedMap map, Mover mover, int x, int y, int tx, int ty)

{

 float dx = tx - x;

 float dy = ty - y;

 float result = (float) (Math.sqrt((dx*dx)+(dy*dy)));

 return result;

 }

}

ClosestSquaredHeuristic.class

package wardrop;

/**

 *

 * @author Admin

 */

public class ClosestSquaredHeuristic implements AStarHeuristic {

 public float getCost(TileBasedMap map, Mover mover, int x, int y, int tx, int ty)

{

 float dx = tx - x;

 float dy = ty - y;

 return ((dx*dx)+(dy*dy));

 }

55

}

ExampleBreakpoint.class

package wardrop;

/**

 *

 * @author Admin

 */

public class ExampleBreakpoint {

 private static int x = 5;

 public ExampleBreakpoint() {

 }

 public static void main(String app[]) {

 x++;

 System.out.print(x);

 }

}

GameMap.class

package wardrop;

import java.util.Locale;

import javax.swing.JOptionPane;

public class GameMap implements TileBasedMap {

 public static final int WIDTH = 30;

 public static final int HEIGHT = 30;

 public static final int GRASS = 0;

56

 public static final int WATER = 1;

 public static final int TREES = 2;

 public static final int PLANE = 3;

 public static final int BOAT = 4;

 public static final int TANK = 5;

 private int[][] terrain = new int[WIDTH][HEIGHT];

 private int[][] units = new int[WIDTH][HEIGHT];

 private boolean[][] visited = new boolean[WIDTH][HEIGHT];

 /**

 * Create a new test map with some default configuration

 */

 public GameMap() {

 // create some test data

 /* if (d == 1) {

 fillArea(0, 0, 5, 5, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 15, 7, 15, WATER);

 fillArea(7, 26, 22, 4, WATER);

 fillArea(5, 0, 25, 3, WATER);

 fillArea(27, 3, 3, 27, WATER);

 fillArea(17, 9, 10, 3, TREES);

 fillArea(20, 12, 5, 3, TREES);

57

 fillArea(8, 8, 7, 3, TREES);

 fillArea(10, 11, 3, 3, TREES);

 fillArea(15, 20, 3, 3, TREES);

 units[15][15] = TANK;

 units[2][7] = BOAT;

 units[20][25] = PLANE;

 }

 /*if (d == 2) {

 fillArea(0, 0, 5, 5, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 15, 7, 15, WATER);

 fillArea(7, 26, 22, 4, WATER);

 fillArea(5, 0, 25, 3, WATER);

 fillArea(27, 3, 3, 27, WATER);

 fillArea(17, 9, 10, 3, TREES);

 fillArea(20, 12, 5, 3, TREES);

 fillArea(8, 8, 7, 3, TREES);

 fillArea(10, 11, 3, 3, TREES);

 fillArea(15, 20, 3, 3, TREES);

 units[15][15] = TANK;

 units[2][7] = BOAT;

 units[20][25] = PLANE;

 }

 if (d == 3) {

58

 fillArea(0, 0, 5, 5, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 15, 7, 15, WATER);

 fillArea(7, 26, 22, 4, WATER);

 fillArea(5, 0, 25, 3, WATER);

 fillArea(27, 3, 3, 27, WATER);

 fillArea(17, 9, 10, 3, TREES);

 fillArea(20, 12, 5, 3, TREES);

 fillArea(8, 8, 7, 3, TREES);

 fillArea(10, 11, 3, 3, TREES);

 fillArea(15, 20, 3, 3, TREES);

 units[15][15] = TANK;

 units[2][7] = BOAT;

 units[20][25] = PLANE;

 }*/

 }

 /**

 * Fill an area with a given terrain type

 *

 * @param x The x coordinate to start filling at

 * @param y The y coordinate to start filling at

 * @param width The width of the area to fill

 * @param height The height of the area to fill

 * @param type The terrain type to fill with

 */

59

 public void drawmap(int map)

 {

 if (map==1) {

 fillArea(0, 0, 5, 5, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 15, 7, 15, WATER);

 fillArea(7, 26, 22, 4, WATER);

 fillArea(5, 0, 25, 3, WATER);

 fillArea(27, 3, 3, 27, WATER);

 fillArea(17, 9, 10, 3, TREES);

 fillArea(20, 12, 5, 3, TREES);

 fillArea(8, 8, 7, 3, TREES);

 fillArea(10, 11, 3, 3, TREES);

 fillArea(15, 20, 3, 3, TREES);

 units[15][15] = TANK;

 units[2][7] = BOAT;

 units[20][25] = PLANE;

 }

 if (map==2) {

 fillArea(0, 0, 5, 5, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(0, 5, 3, 10, WATER);

 fillArea(5, 9, 10, 3, TREES);

 fillArea(10, 12, 5, 3, TREES);

 fillArea(12, 9, 2, 3, TREES);

60

 fillArea(15, 10, 1, 3, TREES);

 fillArea(8, 8, 7, 3, TREES);

 fillArea(10, 11, 3, 3, TREES);

 fillArea(15, 20, 3, 3, TREES);

 units[15][15] = TANK;

 units[2][7] = BOAT;

 units[20][25] = PLANE;

 }

 }

 private void fillArea(int x, int y, int width, int height, int type) {

 for (int xp = x; xp < x + width; xp++) {

 for (int yp = y; yp < y + height; yp++) {

 terrain[xp][yp] = type;

 // Monitoring.jTextArea1.append(""+terrain[xp][yp]);

 }

 }

 }

 public void clearVisited() {

 for (int x = 0; x < getWidthInTiles(); x++) {

 for (int y = 0; y < getHeightInTiles(); y++) {

 visited[x][y] = false;

 }

 }

 }

 /**

 * @see TileBasedMap#visited(int, int)

61

 */

 public boolean visited(int x, int y) {

 return visited[x][y];

 }

 /**

 * Get the terrain at a given location

 *

 * @param x The x coordinate of the terrain tile to retrieve

 * @param y The y coordinate of the terrain tile to retrieve

 * @return The terrain tile at the given location

 */

 public int getTerrain(int x, int y) {

 return terrain[x][y];

 }

 /**

 * Get the unit at a given location

 *

 * @param x The x coordinate of the tile to check for a unit

 * @param y The y coordinate of the tile to check for a unit

 * @return The ID of the unit at the given location or 0 if there is no unit

 */

 public int getUnit(int x, int y) {

 return units[x][y];

 }

 /**

 * Set the unit at the given location

 *

 * @param x The x coordinate of the location where the unit should be set

 * @param y The y coordinate of the location where the unit should be set

 * @param unit The ID of the unit to be placed on the map, or 0 to clear the unit at

the

62

 * given location

 */

 public void setUnit(int x, int y, int unit) {

 units[x][y] = unit;

 }

 /**

 * @see TileBasedMap#blocked(Mover, int, int)

 */

 public boolean blocked(Mover mover, int x, int y) {

 // if theres a unit at the location, then it's blocked

 if (getUnit(x, y) != 0) {

 return true;

 }

 int unit = ((UnitMover) mover).getType();

 // planes can move anywhere

 if (unit == PLANE) {

 return false;

 }

 // tanks can only move across grass

 if (unit == TANK) {

 return terrain[x][y] != GRASS;

 }

 // boats can only move across water

 if (unit == BOAT) {

 return terrain[x][y] != WATER;

 }

 // unknown unit so everything blocks

 return true;

 }

 public float getCost(Mover mover, int sx, int sy, int tx, int ty) {

63

 return 1;

 }

 public int getHeightInTiles() {

 return WIDTH;

 }

 public int getWidthInTiles() {

 return HEIGHT;

 }

 /**

 * @see TileBasedMap#pathFinderVisited(int, int)

 */

 public void pathFinderVisited(int x, int y) {

 visited[x][y] = true;

 }

}

ManhattanHeuristic.class

public class ManhattanHeuristic implements AStarHeuristic {

 private int minimumCost;

 public ManhattanHeuristic(int minimumCost) {

 this.minimumCost = minimumCost;

 }

 public float getCost(TileBasedMap map, Mover mover, int x, int y, int tx,

 int ty) {

 return minimumCost * (Math.abs(x-tx) + Math.abs(y-ty));

 }

}

64

Mover.class

package wardrop;

public interface Mover {

}

Path$Step.class

package wardrop;

import java.util.ArrayList;

public class Path {

 private ArrayList steps = new ArrayList();

 public Path() {

 }

 public int getLength() {

 return steps.size();

 }

 public Step getStep(int index) {

 return (Step) steps.get(index);

 }

 public int getX(int index) {

 return getStep(index).x;

 }

65

 public int getY(int index) {

 return getStep(index).y;

 }

 public void appendStep(int x, int y) {

 steps.add(new Step(x,y));

 }

 public void prependStep(int x, int y) {

 steps.add(0, new Step(x, y));

 }

 public boolean contains(int x, int y) {

 return steps.contains(new Step(x,y));

 }

 public class Step {

 private int x;

 private int y;

 public Step(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int getX() {

 return x;

 }

 public int getY() {

 return y;

 }

 public int hashCode() {

66

 return x*y;

 }

 public boolean equals(Object other) {

 if (other instanceof Step) {

 Step o = (Step) other;

 return (o.x == x) && (o.y == y);

 }

 return false;

 }

 }

}

PathFinder.class

package wardrop;

public interface PathFinder {

 public Path findPath(Mover mover, int sx, int sy, int tx, int ty);

}

PathTest$1.class

package wardrop;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.awt.event.MouseMotionListener;

import java.awt.event.WindowAdapter;

67

import java.awt.event.WindowEvent;

import java.awt.image.BufferedImage;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStream;

import javax.imageio.ImageIO;

import javax.swing.JComboBox;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

public class PathTest extends JPanel {

 private static GameMap map =new GameMap();

 public static JTextArea textdisplay=new JTextArea();

 public static JTextArea direction=new JTextArea();

 private PathFinder finder;

 private Path path;

 static PathTest test;

 private Image[] tiles = new Image[6];

 private Image buffer;

 private int selectedx = -1;

 private int selectedy = -1;

 private int lastFindX = -1;

 private int lastFindY = -1;

 private int mapselection=0;

 static JComboBox box=new JComboBox();

68

 static JFrame jf=new JFrame();

 public PathTest() {

 try {

 box.addItem("Load War field -1");

 box.addItem("Load War field -2");

 box.addItem("Load War field -3");

 box.addItem("Load War field -4");

 direction.append("The Signal Covering area by node");

 tiles[GameMap.TREES] = ImageIO.read(getResource("trees.png"));

 tiles[GameMap.GRASS] =

ImageIO.read(getResource("grass.png"));

 tiles[GameMap.WATER] =

ImageIO.read(getResource("water.png"));

 tiles[GameMap.TANK] =

ImageIO.read(getResource("tank.png"));

 tiles[GameMap.PLANE] =

ImageIO.read(getResource("plane.png"));

 tiles[GameMap.BOAT] =

ImageIO.read(getResource("boat.png"));

 } catch (IOException e) {

 System.err.println("Failed to load resources: "+e.getMessage());

 System.exit(0);

 }

 //int d=Integer.parseInt(JOptionPane.showInputDialog(null,"Selection

map"));

 finder = new AStarPathFinder(map, 500, true);

 /*design.setLayout(null);

 design.setSize(500, 500);

 design.setVisible(true);*/

 //design.add(g);

 addMouseListener(new MouseAdapter() {

69

 public void mousePressed(MouseEvent e) {

 handleMousePressed(e.getX(), e.getY());

 int x=e.getX();

 int y=e.getY();

 if((x>50 && x< 536) && (y<556 && y>50))

 textdisplay.append("The node movement between node \n"+x+"

:\t"+ y +"\n") ;

 }

 });

 addMouseMotionListener(new MouseMotionListener() {

 public void mouseDragged(MouseEvent e) {

 }

 public void mouseMoved(MouseEvent e) {

 handleMouseMoved(e.getX(), e.getY());

 int x=e.getX();

 int y=e.getY();

 if((x>50 && x< 536) && (y<556 && y>50))

 direction.append("X position \t :"+x +"\t"+"Y position \t :"+x

+"\n");

 }

 });

 this.add(textdisplay);

 }

 private InputStream getResource(String ref) throws IOException {

 InputStream in =

Thread.currentThread().getContextClassLoader().getResourceAsStream(ref);

 if (in != null) {

 return in;

 }

 return new FileInputStream(ref);

 }

70

 private void handleMouseMoved(int x, int y) {

 x -= 50;

 y -= 50;

 x /= 16;

 y /= 16;

 if ((x < 0) || (y < 0) || (x >= map.getWidthInTiles()) || (y >=

map.getHeightInTiles())) {

 return;

 }

 if (selectedx != -1) {

 if ((lastFindX != x) || (lastFindY != y)) {

 lastFindX = x;

 lastFindY = y;

 path = finder.findPath(new

UnitMover(map.getUnit(selectedx, selectedy)),

 selectedx,

selectedy, x, y);

 repaint(0);

 }

 }

 }

 private void handleMousePressed(int x, int y) {

 x -= 50;

 y -= 50;

 x /= 16;

 y /= 16;

 if ((x < 0) || (y < 0) || (x >= map.getWidthInTiles()) || (y >=

map.getHeightInTiles())) {

 return;

 }

71

 if (map.getUnit(x, y) != 0) {

 selectedx = x;

 selectedy = y;

 lastFindX = - 1;

 } else {

 if (selectedx != -1) {

 map.clearVisited();

 path = finder.findPath(new

UnitMover(map.getUnit(selectedx, selectedy)),selectedx, selectedy, x, y);

 if (path != null) {

 path = null;

 int unit = map.getUnit(selectedx, selectedy);

 map.setUnit(selectedx, selectedy, 0);

 map.setUnit(x,y,unit);

 selectedx = x;

 selectedy = y;

 lastFindX = - 1;

 }

 }

 }

 repaint(0);

 }

 @Override

 public void paintComponent(Graphics graphics) {

 super.paintComponent(graphics);

 // create an offscreen buffer to render the map

 if (buffer == null) {

 buffer = new BufferedImage(600, 600,

BufferedImage.TYPE_INT_ARGB);

 }

 Graphics g = buffer.getGraphics();

72

 g.clearRect(0,0,600,600);

 g.translate(50, 50);

 // cycle through the tiles in the map drawing the appropriate

 // image for the terrain and units where appropriate

 for (int x=0;x<map.getWidthInTiles();x++) {

 for (int y=0;y<map.getHeightInTiles();y++) {

 g.drawImage(tiles[map.getTerrain(x, y)],x*16,y*16,null);

 if (map.getUnit(x, y) != 0) {

 g.drawImage(tiles[map.getUnit(x,

y)],x*16,y*16,null);

 } else {

 if (path != null) {

 if (path.contains(x, y)) {

 g.setColor(Color.blue);

 g.fillRect((x*16)+4, (y*16)+4,7,7);

 }

 }

 }

 }

 }

 // if a unit is selected then draw a box around it

 if (selectedx != -1) {

 g.setColor(Color.black);

 g.drawRect(selectedx*16, selectedy*16, 15, 15);

 g.drawRect((selectedx*16)-2, (selectedy*16)-2, 19, 19);

 g.setColor(Color.white);

 g.drawRect((selectedx*16)-1, (selectedy*16)-1, 17, 17);

 }

 graphics.drawImage(buffer, 0, 0, null);

 }

 private static void BoxItemStateChanged(java.awt.event.ItemEvent evt) {

73

 JOptionPane.showMessageDialog(null, "select");

 if (box.getSelectedIndex()==01) {

 jf.getContentPane().remove(test);//setBounds(0, 40, 600, 600);

 map.drawmap(1);

 jf.getContentPane().add(test).setBounds(0, 40, 600, 600);

 }

 if (box.getSelectedIndex()==02) {

 //jf.getContentPane().remove(test);//setBounds(0, 40, 600, 600);

 map.drawmap(2);

 jf.getContentPane().add(test).setBounds(0, 40, 600, 600);

 }

 }

 public static void main(String[] argv) {

 test = new PathTest();

 jf.setLayout(null);

 JScrollPane jp=new JScrollPane(textdisplay);

 JScrollPane jp1=new JScrollPane(direction);

 jf.getContentPane().add(test.box).setBounds(700, 500, 70, 30);

 jf.getContentPane().add(new JScrollPane(jp)).setBounds(650, 40, 200, 200);

 jf.getContentPane().setBackground(Color.BLACK);

 jf.getContentPane().add(new JScrollPane(jp1)).setBounds(650, 250, 200,

200);

 jf.getContentPane().setBackground(Color.BLACK);

 box.addItemListener(new java.awt.event.ItemListener() {

 public void itemStateChanged(java.awt.event.ItemEvent evt) {

 BoxItemStateChanged(evt);

 } });

74

 jf.setVisible(true);

 jf.setSize(950,650);

 jf.setLocation(10,30);

 jf.setTitle("Welcome to The Wireles-communication ");

 JLabel jLabel1=new JLabel();

 jLabel1.setFont(new java.awt.Font("Monotype Corsiva", 0, 35)); // NOI18N

 jLabel1.setText("Monitoring System");jLabel1.setBackground(Color.BLUE);

 jf.getContentPane().add(jLabel1).setBounds(350, 5, 250, 40);

 jf.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 });

 jf.setResizable(false);

 }

}

TileBasedMap.class

package wardrop;

public interface TileBasedMap {

 public int getWidthInTiles();

 public int getHeightInTiles();

 public void pathFinderVisited(int x, int y);

 public boolean blocked(Mover mover, int x, int y);

 public float getCost(Mover mover, int sx, int sy, int tx, int ty);

75

}

REFERENCES

[1]T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, and

P. Muhlethaler, ―Optimized Link State Routing Protocol (OLSR),‖

IETF RFC 3626.

[2] D.B. Johnson and D.A. Maltz, ―Dynamic Source Routing in

Ad Hoc Wireless Networks,‖ Mobile Computing, Kluwer Academic

Publishers, 1996.

[3] C.E. Perkins, E.M. Royer, and S. Das, ―Ad Hoc on Demand

76

Distance Vector Routing,‖ Proc. Second IEEE Workshop Mobile

Computing Systems and Applications (WMCSA ’99), 1999.

[4] V. Park and S. Corson, ―A Highly Adaptive Distributed Routing

Algorithm for Mobile Wireless Networks,‖ Proc. IEEE INFOCOM,

1997.

[5] M.P. Zygmunt Haas and P. Samar, ―The Zone Routing Protocol

for Ad Hoc Networks,‖ IETF Internet draft, work in progress,

1999.

[6] P. Gupta and P.R. Kumar, ―A System and Traffic Independent

Adaptive Routing Algorithm for Ad Hoc Networks,‖ Proc. IEEE

Conf. Decision and Control (CDC ’97), 1997.

