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ABSTRACT 

 

Routing protocols for multihop wireless networks have traditionally used shortest path 

routing to obtain paths to destinations and do not consider traffic load or delay as an 

explicit factor in the choice of routes. We focus on static mesh networks and formally 

establish that if the number of sources is not too large, then it is possible to construct a 

perfect flow-avoiding routing, which can 

boost the throughput provided to each user over that of the shortest path routing by a 

factor of four when carrier sensing can be disabled or a factor of 3.2 otherwise. So 

motivated, we address the issue of designing a multipath, load adaptive routing protocol 

that is generally applicable even when there are more sources. We develop a protocol 

that adaptively equalizes the mean delay along all utilized routes from a source to 

destination and does not utilize any routes that have greater mean delay. This is the 

property satisfied by a system in Wardrop equilibrium. We also address the 

architectural challenges confronted in the software implementation of a 

multipath, delay-feedback-based, probabilistic routing algorithm. Our routing protocol 

is 1) completely distributed, 2) automatically load balances flows, 3) uses multiple 

paths whenever beneficial, 4) guarantees loop-free paths at every time instant even 

while the algorithm is suntil converging, and 5) amenable to clean implementation. An 

ns-2 simulation study indicates that the protocol is able to automatically route flows to 

―avoid‖ each other, consistently out performing shortest path protocols in a variety of 

scenarios. The protocol has been implemented in user space with a small amount of 

forwarding mechanism in a modified Linux 2.4.20 kernel. Finally, we discuss a proof-

of-concept measurement study of the implementation on a six node testbed 
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CHAPTER 1 

 

WIRELESS SENSOR NETWORKS 

 

 

1.1 INTRODUCTION  

 

Sensors integrated into structures, machinery, and the environment, coupled with the 

efficient delivery of sensed information, could provide tremendous benefits to society. 

Potential benefits include: fewer catastrophic failures, conservation of natural 

resources, improved manufacturing productivity, improved emergency response, and 

enhanced homeland security. However, barriers to the widespread use of sensors in 

structures and machines remain. Bundles of lead wires and fiber optic ―tails‖ are 

subject to breakage and connector failures. Long wire bundles represent a significant 

installation and long term maintenance cost, limiting the number of sensors that may be 

deployed, and therefore reducing the overall quality of the data reported. Wireless 

sensing networks can eliminate these costs, easing installation and eliminating 

connectors. 

 

The ideal wireless sensor is networked and scaleable, consumes very little power, is 

smart and software programmable, capable of fast data acquisition, reliable and 
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accurate over the long term, costs little to purchase and install, and requires no real 

maintenance. 

 

Selecting the optimum sensors and wireless communications link requires knowledge 

of the application and problem definition. Battery life, sensor update rates, and size are 

all major design considerations. Examples of low data rate sensors include temperature, 

humidity, and peak strain captured passively. Examples of high data rate sensors 

include strain, acceleration, and vibration. 

 

Recent advances have resulted in the ability to integrate sensors, radio communications, 

and digital electronics into a single integrated circuit (IC) package. This capability is 

enabling networks of very low cost sensors that are able to communicate with each 

other using low power wireless data routing protocols. A wireless sensor network 

(WSN) generally consists of a base station (or ―gateway‖) that can communicate with a 

number of wireless sensors via a radio link. Data is collected at the wireless sensor 

node, compressed, and transmitted to the gateway directly or, if required, uses other 

wireless sensor nodes to forward data to the gateway. The transmitted data is then 

presented to the system by the gateway connection. The purpose of this chapter is to 

provide a brief technical introduction to wireless sensor networks and present a few 

applications in which wireless sensor networks are enabling. 

 

 

 

 

 

 

 

1.2 Individual Wireless Sensor Node Architecture 

 

 

A functional block diagram of a versatile wireless sensing node is provided in Figure 

1.1. A modular design approach provides a flexible and versatile platform to address 

the needs of a wide variety of applications. For example, depending on the sensors to be 



9 

 

deployed, the signal-conditioning block can be re-programmed or replaced. This allows 

for a wide variety of different sensors to be used with the wireless sensing node. 

Similarly, the radio link may be swapped out as required for a given applications’ 

wireless range requirement and the need for bidirectional communications. The use of 

flash memory allows the remote nodes to acquire data on command from a base station, 

or by an event sensed by one or more inputs to the node. Furthermore, the embedded 

firmware can be upgraded through the wireless network in the field. 

 

The microprocessor has a number of functions including: 

 

1) Managing data collection from the sensors 

 

2) Performing power management functions 

 

3) Interfacing the sensor data to the physical radio layer 

 

4) Managing the radio network protocol 

 

A key feature of any wireless sensing node is to minimize the power consumed by the 

system. Generally, the radio subsystem requires the largest amount of power. 

Therefore, it is advantageous to send data over the radio network only when required. 

This sensor event-driven data collection model requires an algorithm to be loaded into 

the node to determine when to send data based on the sensed event. Additionally, it is 

important to minimize the power consumed by the sensor itself. Therefore, the 

hardware should be designed to allow the microprocessor to judiciously control power 

to the radio, sensor, and sensor signal conditioner. 
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                                  Figure 1.1: Wireless sensor node functional block diagram 

 

 

 

 

 

1.3 Wireless Sensor Networks Architecture 

 

 

There are a number of different topologies for radio communications networks. A brief 

discussion of the network topologies that apply to wireless sensor networks are outlined 

below. 

 

 

1.3.1 Star Network (Single Point-to-Multipoint) 

 

A star network (Figure 22.3.1) is a communications topology where a single base 

station can send and/or receive a message to a number of remote nodes. The remote 

nodes can only send or receive a message from the single base station, they are not 

permitted to send messages to each other. The advantage of this type of network for 

wireless sensor networks is in its simplicity and the ability to keep the remote node’s 

power consumption to a minimum. It also allows for low latency communications 

between the remote node and the basestation. The disadvantage of such a network is 
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that the basestation must be within radio transmission range of all the individual nodes 

and is not as robust as other networks due to its dependency on a single node to manage 

the network. 

 

 

 

                                                      

                                       Figure 1.2: Star network topology 

 

 

 

 

 

1.3.2 Mesh Network 

 

A mesh network allows for any node in the network to transmit to any other node in the 

network that is within its radio transmission range. This allows for what is 

known as multihop communications; that is, if a node wants to send a message to 

another node that is out of radio communications range, it can use an intermediate node 

to forward the message to the desired node. This network topology has the advantage of 

redundancy and scalability. If an individual node fails, a remote node still can 

communicate to any other node in its range, which in turn, can forward the message to 

the desired location. In addition, the range of the network is not necessarily limited by 

the range in between single nodes, it can simply be extended by adding more nodes to 
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the system. The disadvantage of this type of network is in power consumption for the 

nodes that implement the multihop communications are generally higher than for the 

nodes that don’t have this capability, often limiting the battery life. Additionally, as the 

number of communication hops to a destination increases, the time to deliver the 

message also increases, especially if low power operation of the nodes is a requirement. 

 

                                                     

                                        Figure 1.3: Mesh network topology 

 

 

 

 

 

1.3.3 Hybrid Star – Mesh Network 

 

A hybrid between the star and mesh network provides for a robust and versatile 

communications network, while maintaining the ability to keep the wireless sensor 

nodes power consumption to a minimum. In this network topology, the lowest power 

sensor nodes are not enabled with the ability to forward messages. This allows for 

minimal power consumption to be maintained. However, other nodes on the network 
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are enabled with multihop capability, allowing them to forward messages from the low 

power nodes to other nodes on the network. Generally, the nodes with the multihop 

capability are higher power, and if possible, are often plugged into the electrical mains 

line. This is the topology implemented by the up and coming mesh networking standard 

known as ZigBee. 

 

 

 

 

 

 

 

                              Figure 1.4: Hybrid star-mesh network topology 

 

 

1.4 Challenges 

 

 

In spite of the diverse applications, sensor networks pose a number of unique technical 

challenges due to the following factors: 
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>> Ad hoc deployment: Most sensor nodes are deployed in regions which have no 

infrastructure at all. A typical way of deployment in a forest would be tossing the 

sensor nodes from an aero plane. In such a situation, it is up to the nodes to identify its 

connectivity and distribution. 

 

>>Unattended operation: In most cases, once deployed, sensor networks have no 

human intervention. Hence the nodes themselves are responsible for reconfiguration in 

case of any changes. 

 

>>Untethered: The sensor nodes are not connected to any energy source. There is only 

a finite source of energy, which must be optimally used for processing and 

communication. An interesting fact is that communication dominates processing in 

energy consumption. Thus, in order to make optimal use of energy, communication 

should be minimized as much as possible. 

 

>> Dynamic changes: It is required that a sensor network system be adaptable to 

changing connectivity (for e.g., due to addition of more nodes, failure of nodes etc.) as 

well as changing environmental stimuli. Thus, unlike traditional networks, where the 

focus is on maximizing channel throughput or minimizing node deployment, the major 

consideration in a sensor network is to extend the system lifetime as well as the system 

robustness. 

 

 

 

1.6 Applications of Wireless Sensor Networks 

 

Structural Health Monitoring – Smart Structures 

 

Sensors embedded into machines and structures enable condition-based maintenance of 

these assets. Typically, structures or machines are inspected at regular time intervals, 

and components may be repaired or replaced based on their hours in service, rather than 

on their working conditions. This method is expensive if the components are in good 

working order, and in some cases, scheduled maintenance will not protect the asset if it 
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was damaged in between the inspection intervals. Wireless sensing will allow assets to 

be inspected when the sensors indicate that there may be a problem, reducing the cost 

of maintenance and preventing catastrophic failure in the event that damage is detected. 

Additionally, the use of wireless reduces the initial deployment costs, as the cost of 

installing long cable runs is often prohibitive. 

In some cases, wireless sensing applications demand the elimination of not only lead 

wires, but the elimination of batteries as well, due to the inherent nature of the machine, 

structure, or materials under 

test. These applications include sensors mounted on continuously rotating parts , within 

concrete and composite materials, and within medical implants. 

 

 

 

 

 

 

 

                 Application Highlight – Civil Structure Monitoring 

 

One of the most recent applications of today’s smarter, energy-aware sensor networks 

is structural health monitoring of large civil structures, such as the Ben Franklin Bridge 

(Figure 1.7), which spans the Delaware River, linking Philadelphia and Camden, N.J. 

The bridge carries automobile, train and pedestrian traffic. Bridge officials wanted to 

monitor the strains on the structure as high-speed commuter trains crossed over the 

bridge. 
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                                             Figure 1.7: Ben Franklin Bridge 

 

A star network of ten strain sensors were deployed on the tracks of the commuter rail 

train. The wireless sensing nodes were packaged in environmentally sealed NEMA 

rated enclosures. The strain gauges were also suitably sealed from the environment and 

were spot welded to the surface of the bridge steel support structure. Transmission 

range of the sensors on this star network was approximately 100 meters. 

 

The sensors operate in a low-power sampling mode where they check for presence of a 

train by sampling the strain sensors at a low sampling rate of approximately 6 Hz. 

When a train is present the strain increases on the rail, which is detected by the sensors. 

Once detected, the system starts sampling at a much higher sample rate. The strain 

waveform is logged into local Flash memory on the wireless sensor nodes. Periodically, 

the waveforms are downloaded from the wireless sensors to the base station. The base 

station has a cell phone attached to it which allows for the collected data to be 

transferred via the cell network to the engineers’ office for data analysis. This low-

power event-driven data collection method reduces the power required for continuous 

operation from 30 mA if the sensors were on all the time to less than 1 mA continuous. 

This enables a lithium battery to provide more than a year of continuous operation. 
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Resolution of the collected strain data was typically less then 1 micro strain. A typical 

waveform downloaded from the node is shown in Figure 1.8. Other performance 

specifications for these wireless strain sensing nodes have been provided in an earlier 

work . 

 

 

 

                                       Figure 1.8: Bridge strain data 

 

1.7 Future Developments 

The most general and versatile deployments of wireless sensing networks demand that 

batteries be deployed. Future work is being performed on systems that exploit 

piezoelectric materials to harvest ambient strain energy for energy storage in capacitors 

and/or rechargeable batteries. By combining smart, energy saving electronics with 

advanced thin film battery chemistries that permit infinite recharge cycles, these 

systems could provide a long term, maintenance free, wireless monitoring solution. 
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CHAPTER 2 

Wardrop Routing in Wireless Networks 

 

Abstract—Routing protocols for multihop wireless networks have traditionally used 

shortest path routing to obtain paths to destinations and do not consider traffic load or 

delay as an explicit factor in the choice of routes. We focus on static mesh networks 

and 

formally establish that if the number of sources is not too large, then it is possible to 

construct a perfect flow-avoiding routing, which can boost the throughput provided to 

each user over that of the shortest path routing by a factor of four when carrier sensing 

can be 

disabled or a factor of 3.2 otherwise. So motivated, we address the issue of designing a 

multipath, load adaptive routing protocol that is generally applicable even when there 

are more sources. We develop a protocol that adaptively equalizes the mean delay 

along all 

utilized routes from a source to destination and does not utilize any routes that have 

greater mean delay. This is the property satisfied by a system in Wardrop equilibrium. 

We also address the architectural challenges confronted in the software implementation 

of a 

multipath, delay-feedback-based, probabilistic routing algorithm.  

Our routing protocol is 

 1) completely distributed 

 2) automatically loadbalances flows, 

 3) uses multiple paths whenever beneficial, 

 4) guarantees loop-free paths at every time instant even while the algorithm is suntil 

converging,  

 5) amenable to clean implementation. 

 

 An ns-2 simulation study indicates that the protocol is able to automatically route 

flows to ―avoid‖ each other, consistently out-performing shortest path protocols in a 
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variety of scenarios. The protocol has been implemented in user space with a small 

amount of forwarding mechanism in a modified Linux 2.4.20 kernel. Finally, we 

discuss a proof-of-concept measurement study of the implementation on a six node 

testbed. 

 

Index Terms—Wireless networks, wardrop routing, delay-adaptive multipath routing, 

performance study, implementation. 

 

 

                                                             INTRODUCTION 

 

 

Routing research in wireless multihop networks has traditionally focused on shortest 

path routing protocols.A lot of effort has gone into designing protocols that route 

packets efficiently in mobile networks with minimal overhead, e.g., [1], [2], [3], [4], 

and [5]. 

This paper is addressed toward static or at best networks with slow mobility, for 

example, mesh networks or ad hoc networks in office environments where users do not 

move 

around with their laptops. Our focus is on wireless networks, e.g., mesh networks, 

where the focus is on boosting the throughput-delay performance, and energy 

limitations are not a constraining factor. Looking ahead to the next generation of 

wireless routing protocols for such quasi-static networks, users may want their routing 

to be adaptive to the load on the network. For example, users may want to improve 

their throughput-delay performance 

by intelligently routing flows in a manner to avoid interference from other paths as far 

as possible. Users may also want to utilize multiple paths so that they obtain more 

throughput. In addition, looking from a network standpoint, one may want the routing 

algorithms implemented at each node to combine together to balance load across the 

network. At the same time, one would like to retain some of the key features of current 

protocols, 

including the completely distributed operation, loop-free paths, and ease of 

implementability. 
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In this paper, we present a completely distributed, load adaptive, multipath routing 

protocol for quasi-static wireless mesh networks. For every source-destination (SD) 

pair, the protocol adaptively equalizes mean delays along all utilized routes and avoids 

using any paths with greater or equal mean delay. This is the property satisfied by a 

system in Wardrop equilibrium. Such an equilibrium is potentially useful in practice for 

a variety of reasons: 

1. Adaptive delay-based routing can automatically route around hotspots in 

interference-constrained wireless networks. 

 

2. Equalizing the average delay along used paths can reduce resequencing delays for 

packets in receiver socket buffers. 

 

3. TCP congestion control reacts adversely to reordered packets and thus misbehaves 

when TCP is used over multiple paths. Equalizing the average delay along used routes 

can reduce packet reordering and potentially improve TCP behavior when it is used on 

top of multipath routing.  

 

The work in this paper builds on earlier work on design [6] and convergence [7] of 

delay-adaptive routing algorithms in wireless networks. The goal of this paper is to 

bridge the gap between the theory of delay-adaptive routing and its implementation and 

use in practice as a 

routing protocol for 802.11-based wireless mesh networks. The issues addressed range 

from theoretical characterization and algorithmic properties to a detailed simulation 

study and architectural challenges in implementing multipath delay-adaptive routing 

protocols.  

 

 

1.) We prove a new result that formalizes the potential performance improvement for 

interference avoiding multipath routing in wireless networks. We show that when the 

number of active SD pairs is appropriately small in comparison with the number of 

nodes in the network, and the SD pairs are randomly distributed, then it is possible to 

choose two paths per each SD pair such that no two paths from different SD pairs cross 

or interfere with each 
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other and that the two paths for the same SD pair meet only at their end points. The 

throughput benefit realizable by such path disjoint multipath routing depends on 

whether carrier sensing (with twice the transmission range) can or cannot be turned off. 

The throughput that can be furnished to each SD pair is four times what would be 

furnished 

by minimum hop shortest path routing if carrier sensing can be disabled or 3.2 times 

otherwise. 

 

2.) The algorithm used to construct the flow-avoiding routing only illustrates the 

feasibility of such an approach and is not amenable to distributed implementation in a 

wireless network. Further, in practice, we would like our routing protocol to be load 

adaptive even when there are a large number of flows in the network that necessarily 

cross each other. So motivated, we design a multipath routing protocol with the 

following properties: 

 

a. The routing algorithm converges to a set of admissible routes for each SD pair with 

the 

following properties: for each SD pair, the mean delays experienced along the multiple 

paths are all the same. The potential delay along any unutilized admissible path through 

the network is greater than or equal to the delay along each of the utilized paths. This is 

the property satisfied by a system in Wardrop equilibrium. 

 

b. The admissible paths all have no more than twice the number of hops of the 

minimum hop path. 

 

c. Even during the transient phase while the algorithm is in the process of converging, 

the 

utilized paths are guaranteed to be loop free. 

 

3.) We demonstrate, via a theoretical example, how our delay adaptive routing can help 

automatically achieve flow avoiding routing whenever possible. We conduct a detailed 

ns-2 simulation study of the algorithm to study the throughput delivered, the number of 

hops along the paths, the delays experienced, the rate at which the algorithm converges, 

and the overhead consumed by the routing algorithm. The simulation study indicates 
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that Wardrop routing is effective in routing flows to ―avoid each other‖ and minimize 

interference. 

 

4.) We propose a software architecture for implementing the multipath, delay-feedback-

based, Wardrop equilibrating protocol. The architecture respects the IP stack layering. 

Even though it is adaptive to the end-to-end delay, it does not utilize transport layer 

mechanisms to implement network layer routing. 

 

5.) We implement the above protocol in a Linux 2.4.20-6 kernel. The routing policy is 

implemented completely in user space, with a small amount of forwarding mechanism 

in the kernel itself. 

 

6.) We conduct a proof-of-concept measurement study of the protocol on a six-node 

testbed. 

The rest of this paper is organized as follows: In Section 2, we survey related work. In 

Section 3, we demonstrate, by theoretical proof and simulation, the regime in which 

shortest path routing can lead to a loss of throughputperformance in large wireless 

networks. In Section 4, we introduce the traffic-adaptive routing algorithm, the 

challenges to be faced in developing a practical protocol and our solutions resulting in 

the P-STARA protocol. In Section 5, we describe the protocols for distributed delay 

estimation and link delay measurement. In Section 6, we present the results of a 

detailed simulation study. In Section 7, we present the implementation architecture, and 

in Section 8, we carry out a measurement study of the protocol. 
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                   THE ROUTING ALGORITHM 

 

The theoretical result in the previous section indicates that traffic-aware routing can 

provide considerable benefits. However, the scheme used to prove the result is 

centralized and should only be taken as proof of existence. Instead, we examine a more 

general adaptive approach. For every SD pair, we will attempt to drive routes toward an 

equilibrium, where the mean delay along all utilized paths is equalized, and all 

unutilized paths have greater or equal potential mean delay. In a communication 

network, such an equilibrium has attractive properties vis-a-vis multipath routing: 

1. When packets have to be resequenced at the receiver and delivered in-order to 

the application, equalizing the average delay along utilized paths reduces 

receiver socket buffer space requirements and receiver socket buffer 

resequencing delays. 

2. Equalizing the average delay along utilized paths mitigates TCP congestion 

misbehavior that results from TCP's adverse reaction to multiple paths and 

reordered packets. 

3. Route adaptation using delay feedback allows rerouting of flows around traffic 

bottlenecks in wireless environments. This allows flows to automatically 

―avoid‖ each other and minimize interference. 

2.3 Connection to the Wardrop Equilibrium 

The above equilibrium can be interpreted as a routing solution for a global optimization 

problem that minimizes the sum of the integral of delays on all links in the network 

[24]. In this sense, it is similar to the minimum-delay optimization approach in [18] and 

[19]. There is another interpretation—as the property of a system in Wardrop 

equilibrium. Suppose that wireless connectivity is represented by a graph , 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_24
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_18
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_19
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and let , where , , represent the set of SD pairs. Consider the 

problem of routing packets over such a network where the performance measure we are 

interested in minimizing is the expected delay. The setting is a noncooperative one in 

which each packet wishes to minimize the time taken to get from source to destination. 

The route chosen by each packet affects the latency experienced by other packets along 

its route, as well as in the vicinity of its route due to wireless interference. Since each 

packet has an infinitesimally small impact on the load of the network, the solution of 

this noncooperative game corresponds to the Nash equilibrium when the number of 

agents goes to infinity. For each  pair in , this corresponds to a solution where 

all flow paths have equal latency, which is lower than the latency experienced on any 

unutilized path. In the absence of this property, it would be possible for some packet to 

reduce its latency by switching to the unutilized path [25]. This is the ―Wardrop 

equilibrium,‖ defined in [26]: 

1. Wardrop's first principle. All utilized paths from a source to a destination have 

equal mean delays. 

2. Wardrop's second principle. Any unutilized path from a source to a destination 

has greater potential mean delay than that along utilized paths. 

2.4 Why Wardrop Routing Can Automatically Lead to Flow Avoiding Routes 

Before describing our algorithm, we illustrate a simple example to show that routing 

toward a Wardrop equilibrium can automatically result in flow avoiding routes in 

wireless networks. Consider the example in Fig. 5, where there are two flows traversing 

a wireless network. The first flow , from  to  has two available paths: path  of 

length , and path  of length . The second flow , from  to , is 

a one-hop flow that interferes with exactly one link of the path . Suppose the input 

rates for the two flows are  and , respectively. Let us determine the 

Wardrop equilibrium for this system as a function of the parameter , which captures 

the relative magnitude of the interference from the second flow on the first flow. In 

general, the link delay along a directed edge in a wireless network is a complex 

function of the topology, traffic on interfering edges, and the routing and scheduling 

algorithms used in the wireless network. As a first approximation, we assume that the 

delay along each directed edge is a convex nondecreasing function  of the 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_25
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_26
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#fig_5
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traffic  on that edge, and the cumulative traffic  on interfering edges. Since this 

example is merely illustrative, we will use the function , with . 

 

 

Fig. 5. Flow avoidance with Wardrop routing: a simple two flow example. 

 

Suppose, in Wardrop equilibrium, that the optimal routing for flow  directs  fraction 

of the traffic along path  and  fraction of the traffic along path . The delay 

along path  is given by 

. The delay along path  is given 

by . In Fig. 6, we have plotted the values 

of  and  as a function of the fraction of traffic  on the first path  for 

different values of . For , it is easy to see that the solution where all the traffic 

is on one of the two paths (i.e.,  or ) are not Wardrop equilibria, since the 

delay on the unutilized path in these cases is strictly lower than the delay on the utilized 

path. Thus, for a given , the Wardrop equilibrium is obtained by 

solving  for . On the other hand, when , the delay  on 

path  is always greater or equal the delay  on path , irrespective of what 

fraction of traffic  flows along . This implies that for , the unique equilibrium 

consists of routing all traffic along path , and completely avoiding the interference 

bottleneck along path  caused by the presence of flow . This equilibrium routing is 

plotted as a function of  in Fig. 7. This example shows the potential of traffic-adaptive 

routing to automatically lead to flow avoiding routing whenever possible in a wireless 

network. 

http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-5-large.gif
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-5-large.gif
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#fig_6
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#fig_7
http://ieeexplore.ieee.org/ielx5/7755/4804305/4674361/html/img/4674361-fig-5-large.gif


26 

 

 

 

Fig. 6. Determining the Wardrop equilibrium: the equilibrium for a given  is attained 

at the value of  for which the delays  and  are equalized. 

Previous | View All | Next 

 

 

Fig. 7. The optimal routing as a function of , the ratio of traffic betweens flows 

 and . 
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2.5 The STARA Algorithm 

Given these attractive features of routing toward a Wardrop equilibrium, our focus in 

the rest of this paper will be on the design and implementation of a practical distributed 

algorithm that equalizes the mean delays along all utilized paths in the network and 

ensures that all unutilized paths have greater or equal mean delay. We start off by 

describing earlier work on the design [6] and convergence [7] of delay-adaptive routing 

algorithms in wireless networks. The problem addressed there was to construct an 

algorithm for reducing or increasing the flows along paths that would equilibrate to a 

Wardrop equilibrium. The basic idea is to estimate end-to-end delay along various 

paths and adaptively shift traffic from higher delay paths to lower delay paths, 

equilibrating only when all utilized paths have the same average delay. For each node 

 and destination , let  denote the neighbours of  used to forward packets to 

destination . Under the STARA algorithm, when node  receives a packet destined 

for , it probabilistically sends it out to a neighbour in . Let  be the 

probability that it is forwarded to node . The routing 

probabilities  are adjusted based on delay feedback. 

Let  denote the average delay experienced by packets going from node  to  via the 

immediate neighbour . This information is obtained by delay feedback using ACKs 

from the destination. Also, denote by  the average delay experienced by all packets 

from node  to , without regard to what next node they were forwarded to. STARA 

iteratively adjusts the routing probabilities . It increases the 

probability  of sending a packet via node  if the delay  via  is less than the 

average delay  over all neighbours and decreases it otherwise. 

The algorithm consists of two components: an iterative scheme for delay estimation and 

an iterative scheme for updating routing probabilities [6]: 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_6
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_6
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1. Delay estimation. End-to-end ACKs are used to record , the measured 

delay of the packet sent at time . Exponential forgetting is used to estimate the 

delay:  

2. Probability update scheme. The routing probabilities are updated as follows:

where

and

 

The above algorithm features two modifications from the scheme discussed above. 

The is the projection map onto the simplex of probability vectors, and  are 

appropriate step sizes. When a packet for destination  arrives at node , the node 

routes the packet to one of its neighbours  with probability  rather 

than . The actual routing probabilities used are thus a convex combination of the 

s and a uniform probability distribution on all neighbours. This ensures a positive 

probability of probing to obtain delay information on unutilized routes [7] and is a 

standard feature in adaptive control; see [27]. Note that the Wardrop equilibrium is now 

defined with respect to , i.e., only 

if . 

An important issue in using delay information is that no two clocks are 

synchronized. The above algorithm works even when clocks in the network are not 

synchronized [6]. The probability update scheme only uses the difference between 

delays  for a SD pair. Thus, even if the clocks at  and  differ by an 

offset, by taking the difference , the offset is eliminated since it is present in 

both , as well as . 

2.6 The Challenges 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_27
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_6
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Our work on rendering Wardrop routing practical will build on the above algorithm. 

We will preserve all the valuable features, such as immunity to clock offsets at the 

nodes. However, to obtain a practical protocol that in fact delivers improved 

performance, we need to make several modifications. We begin by identifying three 

problems that render difficult the use of the algorithms presented in here 

1. The routes followed by packets are unrestricted. They can be arbitrarily long. 

This causes several problems: 

1. There are many bad routes that packets can go out on and delays 

experienced by such packets can be exceedingly long. 

2. Since the algorithm requires feedback on all these bad routes before it 

can adapt, its convergence can be very slow, rendering it impractical. 

2. After the routing probabilities have converged to the correct estimates, the 

algorithm produces loop-free routes. However, packets can follow loopy paths 

while the algorithm is converging, which, in practice, is always the case. 

3. The delay measurement in relies on acknowledgments to carry measurements 

back to sources and intermediate nodes on a per-packet basis. This poses 

problems in implementation: 

1. A scheme relying on transport layer ACKs to solve the network layer 

routing problem violates layering and does not extend to unreliable 

transport layers (e.g., UDP). 

2. Further, there is no guarantee that ACKs will follow the reversed path as 

the data packet. Thus, intermediate nodes will not be able to obtain delay 

information. 

To address these problems and obtain a practical protocol amenable to deployment, we 

redesigned the algorithm in [7] to obtain two protocols M-STARA and P-STARA: 

1. We propose new mechanisms to control the length of paths followed by packets, 

while the algorithm is converging. These mechanisms preserve the attractive 

properties of load adaptation and multipath utilization, while retaining the 

property of convergence toward the appropriately defined Wardrop equilibrium. 

2. We propose a mechanism that guarantees that routes followed by packets are 

loop-free even while the algorithm is suntil converging. This mechanism is not 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7
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only compatible with the path length control mechanism above but also 

continues to preserve convergence toward the appropriately defined Wardrop 

equilibrium for the resultant load adaptive multipath routing protocol. 

3. We propose a completely distributed delay measurement mechanism to replace 

the ACK-based scheme with the attendant problems discussed earlier. The new 

mechanism retains immunity to clock offsets. It consists of a light-weight link 

delay measurement protocol and a distance-vector like neighbourhood broadcast 

of average delay information. 

2.7Controlling Paths and Eliminating Loops 

Our first objective is to control paths so that the algorithm does not have to investigate 

all possible paths from source to destination, which would render the convergence very 

slow. The basic idea that we use is to modify the definition of the 

neighbourhood , the set of neighbours to which node  is allowed to forward 

packets destined for node . 

2.8 Controlling Paths with M-STARA 

Let  denote the shortest path distance in hops from node  to destination . 

Set . We call this algorithm, which only 

allows the nodes in  to be used for forwarding packets at  destined for , M-

STARA. (The reason for the name, denoting Multiplicative-STARA, is that with one 

additional modification, it can be used to strongly control path lengths. For brevity, we 

omit discussion on this, referring the reader to) The advantage of M-STARA is that it 

can be easily built on top of STARA by running a distance vector protocol to produce 

distances to all destinations. One other important property is that by merely suitably 

defining the notion of ―neighbourhood,‖ we can prove convergence to a suitably 

defined Wardrop equilibrium. 

2.9 Eliminating Loops and Controlling Path Lengths: P-STARA (Parity Stara) 

The above mechanism restricts the set of paths investigated by M-STARA and is easy 

to implement, but it does not provide any guarantees on path lengths. In fact, it does not 

eliminate routing loops. 
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Note that under any algorithm that converges to a Wardrop equilibrium with respect to 

the delay, after the routing probabilities have converged to the correct estimates 

asymptotically, the resulting probabilistic routes are guaranteed to be loop-free. 

However, while the adaptive algorithm is suntil converging, which in practice 

is always, packets can indeed follow loopy paths. Thus, we need to guarantee loop-

freedom of the algorithm at every instant. 

To solve these two problems of controlling the path lengths as well as eliminating 

routing loops, we propose an additional mechanism, resulting in P-STARA. 

The basic idea is to introduce a packet state which alternates between ―odd‖ and 

―even,‖ as a packet moves from hop to hop. When the packet state is ―odd,‖ only those 

neighbours that strictly decrease the distance in hops to the destination are considered 

for forwarding. When the packet state is ―even,‖ the neighbourhood , defined 

above for M-STARA, is used. In this way, we will show that over every two hops the 

distance to the destination is decreased by at least one hop. This simultaneously 

eliminates all routing loops, as well as strictly upper bounds the path length to be no 

more than twice the shortest path length. 

An equally important advantage, which we will expound on, is that this scheme admits 

a simple and completely distributed delay estimation algorithm matched to the 

definitions of the two neighbourhoods used. To understand the simplicity of the 

solution provided by P-STARA, one should note the difficulties of controlling route 

length as well as killing loops while preserving Wardrop equilibration, all without 

sacrificing simplicity of implementation. For example, if one just allows a budget of 

 over the shortest path length by initially setting an ―excess budget‖ packet field of 

 and then progressively decrements it by one after each hop, then one can guarantee that 

the path length does not exceed the shortest path length by more than  hops. However, 

one would then have to use  separate routing tables in order to assure the Wardrop 

property since packets would be differently treated depending on the excess budget 

with which they arrive at a node. In comparison, the parity feature of P-STARA allows 

us to get away with just two tables, kills all loops, and yet allows us to control path 

lengths by a factor of two proportional to the shortest path length. 
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We now describe the P-STARA algorithm. 

Define , recalling the definitions 

of and   from above 

1. We include a field  in each packet, which is decremented by one by every 

node along the path. The source initially sets  to an arbitrary value. In 

practice, a field like the IP TTL field already behaves in this manner and can be 

used as . 

2. We define the state of the packet as . 

3. When the packet has state , node  only consider neighbours 

in  as valid for routing. When the packet has state , it 

considers neighbours in  as valid for forwarding. 

4. Since  is decremented at each node, at successive nodes along its path, the 

packet's state  has different values (―0‖ or ―1‖). 

5. Corresponding to the two values of , we maintain two separate probability 

vectors, , and delay estimate vectors , for . 

6. When a packet for destination  arrives at node  with field , the node routes 

the packet to one of its neighbours  using the probabilities 

. The probability update and delay estimation rules for P-STARA are given 

by (4), (5),and(6) below:

 

We now prove that P-STARA has all the desired properties of controlling path lengths 

and eliminating all routing loops even during the transient phase, while providing the 

load adaptation of the multipath routing protocol so that it converges to a Wardrop 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#deqn4
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#deqn5
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#deqn6
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equilibrium.In fact, we will prove that it provides loop-free routes even when the 

distance estimates are not accurate or are suntil converging, provided only that the 

distance estimation scheme uses the destination originated sequence numbering 

technique of DSDV [10]. For brevity, we avoid an explanation of the sequence 

numbering technique used by DSDV, as well as the technical definitions of Cesaro 

convergence in [7], and provide only a brief outline of the corresponding proofs. 

Theorem 2. 

1. Suppose packet  with source  and destination  follows path  with 

length . Then, . 

2. P-STARA produces loop-free paths from every source  to every destination , 

provided that the distance estimates  are accurate. 

3. P-STARA produces loop-free paths from every source  to every destination , 

even when the distance estimates  are not accurate or are suntil 

converging, provided only that the distance vector scheme uses sequence 

numbering to avoid loops. 

4. The routing probabilities  produced by P-STARA converge almost 

surely to the set of  -Cesaro-Wardrop equilibria with respect to the restriction 

to the allowed routes. 

Proof. 

1. Since  is decremented by 1 at every step,  is alternately even and odd 

at every node along the path . Thus, after every two hops along the path , a 

packet is closer to the destination by at least one more hop (since we are forced 

to choose the shortest path neighbour at one of these two hops). 

Thus, . 

2. Let  be a path from  to . P-STARA never forwards packets upstream, i.e., 

from  to  if . Thus, if  contains a cycle , 

then . However, if  are three consecutive 

nodes along , then . This implies that  contains no 

cycle of size  for any . 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_10
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7
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3. We can redefine the neighbourhood sets  and  (see [28] for 

details) so that the sequence numbers do not decrease along a path  to the 

destination. Thus, a loop can be formed only if the sequence numbers are the 

same. In this case, we can obtain a contradiction by using the fact that the 

distance estimates  decrease by at least one after every two successive 

hops along the path . 

4. The last property capitalizes on the fact that all we have changed is the 

definition of admissible neighbourhoods with respect to a destination. This 

preserves the convergence properties of the original scheme. Thus, the proof 

paralleling that in [7] can be used. 

 

        Future Scope 

 

 

The future vision of WSNs is to embed numerous distributed devices to monitor and 

interact with physical world phenomena, and to exploit spatially and temporally dense 

sensing and actuation capabilities of those sensing devices. These nodes coordinate 

among themselves to create a network that performs higher-level tasks. 

Although extensive efforts have been exerted so far on the routing problem in WSNs, 

there are still some challenges that confront effective solutions of the routing problem. 

First, there is a tight coupling between sensor nodes and the physical world. Sensors are 

embedded in unattended places or systems. This is different from traditional Internet, 

PDA, and mobility applications that interface primarily and directly 32 with human 

users. Second, sensors are characterized by a small foot print, and as such nodes present 

stringent energy constraints since they are equipped with small, finite, energy source. 

This is also different from traditional fixed but reusable resources. Third, 

communications is primary consumer of energy in this environment where sending a bit 

over 10 or 100 meters consumes as much energy as thousands-to-millions of operations 

(known as R4 signal energy drop-off) [36]. 

Although the performance of these protocols is promising in terms of energy 

efficiency, further research would be needed to address issues such as Quality of 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_28
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4674361#ref_7
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Service (QoS) posed by video and imaging sensors and real-time applications. 

Energy-aware QoS routing in sensor networks will ensure guaranteed bandwidth (or 

delay) through the duration of connection as well as providing the use of most 

energy efficient path. Another interesting issue for routing protocols is the 

consideration of node mobility. Most of the current protocols assume that the sensor 

nodes and the BS are stationary. However, there might be situations such as battle 

environments where the BS and possibly the sensors need to be mobile. In such 

cases, the frequent update of the position of the command node and the sensor 

nodes and the propagation of that information through the network may excessively 

drain the energy of nodes. New routing algorithms are needed in order to handle the 

overhead of mobility and topology changes in such energy constrained 

environment. Future trends in routing techniques in WSNs focus on different 

directions, all share the common objective of prolonging the network lifetime. We 

summarize some of these directions and give some pertinent references as follows: 

 

• Exploit redundancy: typically a large number of sensor nodes are implanted inside 

or beside the phenomenon. Since sensor nodes are prone to failure, fault tolerance 

techniques come in picture to keep the network operating and performing its tasks. 

Routing techniques that explicitly employ fault tolerance techniques in an efficient 

manner are still under investigation. 

 

• Tiered architectures (mix of form/energy factors): Hierarchical routing is an old 

technique to enhance scalability and efficiency of the routing protocol. However, 

novel techniques to network clustering which maximize the network lifetime are 

also a hot area of research in WSNs. 

 

• Exploit spatial diversity and density of sensor/actuator nodes: Nodes will span a 

network area that might be large enough to provide spatial communication between 

sensor nodes. Achieving energy efficient communication in this densely populated 

environment deserves further investigation. The dense deployment of sensor nodes 

should allow the network to adapt to unpredictable environment. 

 

• Achieve desired global behavior with adaptive localized algorithms (i.e., do 

not rely on global inter- action or information). However, in a dynamic 
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environment, this is hard to model. 

 

• Leverage data processing inside the network and exploit computation near data 

sources to reduce communication, i.e., perform in-network distributed 

processing.WSNs are organized around naming data, not nodes identities. Since we 

have a large collections of distributed elements, localized algo- rithms that achieve 

system-wide properties in terms of local processing of data before being sent to the 

destination are still needed. Nodes in the network will store named data and make it 

available for processing. There is a high need to create efficient processing points in the 

network, e.g., duplicate suppression, aggregation, correlation of data. How to efficiently 

and optimally find those points is still an open research issue. 

 

• Time and location synchronization: energy-efficient techniques for associating time 

and spatial coor- dinates with data to support collaborative processing are also required 

[20]. 

 

• Localization: sensor nodes are randomly deployed into an unplanned infrastructure. 

The problem of estimating spatial-coordinates of the node is referred to as localization. 

Global Positioning System (GPS) cannot be used in WSNs as GPS can work only 

outdoors and cannot work in the presence of any obstruction. Moreover, GPS receivers 

are expensive and not suitable in the construction of small cheap sensor nodes. Hence, 

there is a need to develop other means of establishing a coordinate system without 

relying on an existing infrastructure. Most of the proposed localization techniques 

today, depend on recursive trilateration/multilateration techniques (e.g., [38]) which 

would not provide enough accuracy in WSNs. 

 

• Self-configuration and reconfiguration is essential to lifetime of unattended systems in 

dynamic, and constrained energy environment. This is important for keeping the 

network up and running. As nodes die and leave the network, update and 

reconfiguration mechanisms should take place. A feature that is important in every 

routing protocol is to adapt to topology changes very quickly and to maintain the 

network functions. 

 

• Secure Routing: Current routing protocols optimize for the limited capabilities of the 
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nodes and the application specific nature of the networks, but do not consider security. 

Although these protocols have not been designed with security as a goal, it is important 

to analyze their security properties. One aspect of sensor networks that complicates the 

design of a secure routing protocol is in-network aggregation. In WSNs, in-network 

processing makes end-to-end security mechanisms harder to deploy because 

intermediate nodes need direct access to the contents of the messages. 

 

• Other possible future research for routing protocols includes the integration of 

sensor networks with wired networks (i.e. Internet). Most of the applications in 

security and environmental monitoring require the data collected from the 

sensor nodes to be transmitted to a server so that further analysis can be done. 

On the other hand, the requests from the user should be made to the BS through 

Inter- net. Since the routing requirements of each environment are different, 

further research is necessary for handling these kinds of situations. 
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CODE 

I have use java as the programming language and I have the following classes: 

 AStarHeuristic.class 

 AStarPathFinder$1.class 

 AStarPathFinder$Node.class 

 AStarPathFinder$SortedList.class 

 AStarPathFinder.class 

 ClosestHeuristic.class 

 ClosestSquaredHeuristic.class 

 ExampleBreakpoint.class 

 GameMap.class 

 ManhattanHeuristtic.class 

 Monitoring$1.class 

 Monitoring$2.class 

 Monitoring.class 

 Mover.class 

 Path$Step.class 

 Path.class 

 PathFinder.class 

 PathTest$1.class 

 PathTest$2.class 

 PathTest$3.class 

 PathTest$4.class 

 PathTest.class 

 TileBasedMap.class 

 UnitMover.class 

 

 

Now,Codes for the respective classes follows: 
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package wardrop; 

 

 

public interface AStarHeuristic { 

 public float getCost(TileBasedMap map, Mover mover, int x, int y, int tx, int 

ty); 

} 

package wardrop; 

import java.util.ArrayList; 

import java.util.Collections; 

 

 

public class AStarPathFinder implements PathFinder { 

 

 private ArrayList closed = new ArrayList(); 

 

 private SortedList open = new SortedList(); 

 

 

 private TileBasedMap map; 

 private int maxSearchDistance; 

 

 private Node[][] nodes; 

 private boolean allowDiagMovement; 

 private AStarHeuristic heuristic; 

        int mapdirection=0; 

  

 public AStarPathFinder(TileBasedMap map, int maxSearchDistance, boolean 

allowDiagMovement) { 

  this(map, maxSearchDistance, allowDiagMovement, new 

ClosestHeuristic());             

 } 
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 public AStarPathFinder(TileBasedMap map, int maxSearchDistance, 

         boolean allowDiagMovement, 

AStarHeuristic heuristic) { 

  this.heuristic = heuristic; 

  this.map = map; 

  this.maxSearchDistance = maxSearchDistance; 

  this.allowDiagMovement = allowDiagMovement; 

 

  nodes = new Node[map.getWidthInTiles()][map.getHeightInTiles()]; 

  for (int x=0;x<map.getWidthInTiles();x++) { 

   for (int y=0;y<map.getHeightInTiles();y++) { 

    nodes[x][y] = new Node(x,y); 

   } 

  } 

 } 

 

  

 public Path findPath(Mover mover, int sx, int sy, int tx, int ty) {   

  if (map.blocked(mover, tx, ty)) { 

   return null; 

  } 

  nodes[sx][sy].cost = 0; 

  nodes[sx][sy].depth = 0; 

  closed.clear(); 

  open.clear(); 

  open.add(nodes[sx][sy]); 

 

  nodes[tx][ty].parent = null; 

   

  int maxDepth = 0; 

  while ((maxDepth < maxSearchDistance) && (open.size() != 0)) { 

   

   Node current = getFirstInOpen(); 

   if (current == nodes[tx][ty]) { 
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    break; 

   } 

 

   removeFromOpen(current); 

   addToClosed(current); 

   for (int x=-1;x<2;x++) { 

    for (int y=-1;y<2;y++) {    

  

     if ((x == 0) && (y == 0)) { 

      continue; 

     } 

     if (!allowDiagMovement) { 

      if ((x != 0) && (y != 0)) { 

       continue; 

      } 

     } 

 

     int xp = x + current.x; 

     int yp = y + current.y; 

 

     if (isValidLocation(mover,sx,sy,xp,yp)) { 

      float nextStepCost = current.cost + 

getMovementCost(mover, current.x, current.y, xp, yp); 

      Node neighbour = nodes[xp][yp]; 

      map.pathFinderVisited(xp, yp); 

      if (nextStepCost < neighbour.cost) { 

       if (inOpenList(neighbour)) { 

       

 removeFromOpen(neighbour); 

       } 

       if (inClosedList(neighbour)) { 

       

 removeFromClosed(neighbour); 

       } 
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      } 

 

      if (!inOpenList(neighbour) && 

!(inClosedList(neighbour))) { 

       neighbour.cost = nextStepCost; 

       neighbour.heuristic = 

getHeuristicCost(mover, xp, yp, tx, ty); 

       maxDepth = Math.max(maxDepth, 

neighbour.setParent(current)); 

       addToOpen(neighbour); 

      } 

     } 

    } 

   } 

  } 

 

  if (nodes[tx][ty].parent == null) { 

   return null; 

  } 

  Path path = new Path(); 

  Node target = nodes[tx][ty]; 

  while (target != nodes[sx][sy]) { 

   path.prependStep(target.x, target.y); 

   target = target.parent; 

  } 

  path.prependStep(sx,sy); 

 

  return path; 

 } 

 

 protected Node getFirstInOpen() { 

  return (Node) open.first(); 

 } 
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 protected void addToOpen(Node node) { 

  open.add(node); 

 } 

 

 protected boolean inOpenList(Node node) { 

  return open.contains(node); 

 } 

 

 protected void removeFromOpen(Node node) { 

  open.remove(node); 

 } 

 

  

 protected void addToClosed(Node node) { 

  closed.add(node); 

 } 

 

  

 protected boolean inClosedList(Node node) { 

  return closed.contains(node); 

 } 

 

  

 protected void removeFromClosed(Node node) { 

  closed.remove(node); 

 } 

 

  

 protected boolean isValidLocation(Mover mover, int sx, int sy, int x, int y) { 

  boolean invalid = (x < 0) || (y < 0) || (x >= map.getWidthInTiles()) || (y 

>= map.getHeightInTiles()); 

 

  if ((!invalid) && ((sx != x) || (sy != y))) { 

   invalid = map.blocked(mover, x, y); 
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  } 

 

  return !invalid; 

 } 

 

  

 public float getMovementCost(Mover mover, int sx, int sy, int tx, int ty) { 

  return map.getCost(mover, sx, sy, tx, ty); 

 } 

  

 public float getHeuristicCost(Mover mover, int x, int y, int tx, int ty) { 

  return heuristic.getCost(map, mover, x, y, tx, ty); 

 } 

 

 private class SortedList { 

 

  private ArrayList list = new ArrayList(); 

  public Object first() { 

   return list.get(0); 

  } 

 

  public void clear() { 

   list.clear(); 

  } 

 

  public void add(Object o) { 

   list.add(o); 

   Collections.sort(list); 

  } 

 

  public void remove(Object o) { 

   list.remove(o); 

  } 
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  public int size() { 

   return list.size(); 

  } 

 

 

  public boolean contains(Object o) { 

   return list.contains(o); 

  } 

 } 

 

 /** 

  * A single node in the search graph 

  */ 

 private class Node implements Comparable { 

   

  private int x; 

   

  private int y; 

   

  private float cost; 

   

  private Node parent; 

   

  private float heuristic; 

   

  private int depth; 

   

  public Node(int x, int y) { 

   this.x = x; 

   this.y = y; 

  } 

 

  public int setParent(Node parent) { 

   depth = parent.depth + 1; 
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   this.parent = parent; 

 

   return depth; 

  } 

 

  public int compareTo(Object other) { 

   Node o = (Node) other; 

 

   float f = heuristic + cost; 

   float of = o.heuristic + o.cost; 

 

   if (f < of) { 

    return -1; 

   } else if (f > of) { 

    return 1; 

   } else { 

    return 0; 

   } 

  } 

 } 

} 

package wardrop; 

import java.util.ArrayList; 

import java.util.Collections; 

public class AStarPathFinder implements PathFinder { 

 

 private ArrayList closed = new ArrayList(); 

 

 private SortedList open = new SortedList(); 

 

 

 private TileBasedMap map; 

 private int maxSearchDistance; 

 



47 

 

 private Node[][] nodes; 

 private boolean allowDiagMovement; 

 private AStarHeuristic heuristic; 

        int mapdirection=0; 

  

 public AStarPathFinder(TileBasedMap map, int maxSearchDistance, boolean 

allowDiagMovement) { 

  this(map, maxSearchDistance, allowDiagMovement, new 

ClosestHeuristic());             

 } 

  

 public AStarPathFinder(TileBasedMap map, int maxSearchDistance, 

         boolean allowDiagMovement, 

AStarHeuristic heuristic) { 

  this.heuristic = heuristic; 

  this.map = map; 

  this.maxSearchDistance = maxSearchDistance; 

  this.allowDiagMovement = allowDiagMovement; 

 

  nodes = new Node[map.getWidthInTiles()][map.getHeightInTiles()]; 

  for (int x=0;x<map.getWidthInTiles();x++) { 

   for (int y=0;y<map.getHeightInTiles();y++) { 

    nodes[x][y] = new Node(x,y); 

   } 

  } 

 } 

 

  

 public Path findPath(Mover mover, int sx, int sy, int tx, int ty) {   

  if (map.blocked(mover, tx, ty)) { 

   return null; 

  } 

  nodes[sx][sy].cost = 0; 

  nodes[sx][sy].depth = 0; 
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  closed.clear(); 

  open.clear(); 

  open.add(nodes[sx][sy]); 

 

  nodes[tx][ty].parent = null; 

   

  int maxDepth = 0; 

  while ((maxDepth < maxSearchDistance) && (open.size() != 0)) { 

   

   Node current = getFirstInOpen(); 

   if (current == nodes[tx][ty]) { 

    break; 

   } 

 

   removeFromOpen(current); 

   addToClosed(current); 

   for (int x=-1;x<2;x++) { 

    for (int y=-1;y<2;y++) {    

  

     if ((x == 0) && (y == 0)) { 

      continue; 

     } 

     if (!allowDiagMovement) { 

      if ((x != 0) && (y != 0)) { 

       continue; 

      } 

     } 

 

     int xp = x + current.x; 

     int yp = y + current.y; 

 

     if (isValidLocation(mover,sx,sy,xp,yp)) { 

      float nextStepCost = current.cost + 

getMovementCost(mover, current.x, current.y, xp, yp); 
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      Node neighbour = nodes[xp][yp]; 

      map.pathFinderVisited(xp, yp); 

      if (nextStepCost < neighbour.cost) { 

       if (inOpenList(neighbour)) { 

       

 removeFromOpen(neighbour); 

       } 

       if (inClosedList(neighbour)) { 

       

 removeFromClosed(neighbour); 

       } 

      } 

 

      if (!inOpenList(neighbour) && 

!(inClosedList(neighbour))) { 

       neighbour.cost = nextStepCost; 

       neighbour.heuristic = 

getHeuristicCost(mover, xp, yp, tx, ty); 

       maxDepth = Math.max(maxDepth, 

neighbour.setParent(current)); 

       addToOpen(neighbour); 

      } 

     } 

    } 

   } 

  } 

 

  if (nodes[tx][ty].parent == null) { 

   return null; 

  } 

  Path path = new Path(); 

  Node target = nodes[tx][ty]; 

  while (target != nodes[sx][sy]) { 

   path.prependStep(target.x, target.y); 



50 

 

   target = target.parent; 

  } 

  path.prependStep(sx,sy); 

 

  return path; 

 } 

 

 protected Node getFirstInOpen() { 

  return (Node) open.first(); 

 } 

 

 protected void addToOpen(Node node) { 

  open.add(node); 

 } 

 

 protected boolean inOpenList(Node node) { 

  return open.contains(node); 

 } 

 

 protected void removeFromOpen(Node node) { 

  open.remove(node); 

 } 

 

  

 protected void addToClosed(Node node) { 

  closed.add(node); 

 } 

 

  

 protected boolean inClosedList(Node node) { 

  return closed.contains(node); 

 } 
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 protected void removeFromClosed(Node node) { 

  closed.remove(node); 

 } 

 

  

 protected boolean isValidLocation(Mover mover, int sx, int sy, int x, int y) { 

  boolean invalid = (x < 0) || (y < 0) || (x >= map.getWidthInTiles()) || (y 

>= map.getHeightInTiles()); 

 

  if ((!invalid) && ((sx != x) || (sy != y))) { 

   invalid = map.blocked(mover, x, y); 

  } 

 

  return !invalid; 

 } 

 

  

 public float getMovementCost(Mover mover, int sx, int sy, int tx, int ty) { 

  return map.getCost(mover, sx, sy, tx, ty); 

 } 

  

 public float getHeuristicCost(Mover mover, int x, int y, int tx, int ty) { 

  return heuristic.getCost(map, mover, x, y, tx, ty); 

 } 

 

 private class SortedList { 

 

  private ArrayList list = new ArrayList(); 

  public Object first() { 

   return list.get(0); 

  } 

 

  public void clear() { 

   list.clear(); 
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  } 

 

  public void add(Object o) { 

   list.add(o); 

   Collections.sort(list); 

  } 

 

  public void remove(Object o) { 

   list.remove(o); 

  } 

 

  public int size() { 

   return list.size(); 

  } 

 

 

  public boolean contains(Object o) { 

   return list.contains(o); 

  } 

 } 

 

 /** 

  * A single node in the search graph 

  */ 

 private class Node implements Comparable { 

   

  private int x; 

   

  private int y; 

   

  private float cost; 

   

  private Node parent; 
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  private float heuristic; 

   

  private int depth; 

   

  public Node(int x, int y) { 

   this.x = x; 

   this.y = y; 

  } 

 

  public int setParent(Node parent) { 

   depth = parent.depth + 1; 

   this.parent = parent; 

 

   return depth; 

  } 

 

  public int compareTo(Object other) { 

   Node o = (Node) other; 

 

   float f = heuristic + cost; 

   float of = o.heuristic + o.cost; 

 

   if (f < of) { 

    return -1; 

   } else if (f > of) { 

    return 1; 

   } else { 

    return 0; 

   } 

  } 

 } 

} 

package wardrop; 

 



54 

 

ClosestHeuristic.class: 

public class ClosestHeuristic implements AStarHeuristic { 

 

 public float getCost(TileBasedMap map, Mover mover, int x, int y, int tx, int ty) 

{ 

  float dx = tx - x; 

  float dy = ty - y; 

 

  float result = (float) (Math.sqrt((dx*dx)+(dy*dy))); 

 

  return result; 

 } 

 

} 

 

ClosestSquaredHeuristic.class 

 

package wardrop; 

 

/** 

 * 

 * @author Admin 

 */ 

 

public class ClosestSquaredHeuristic implements AStarHeuristic { 

  

 public float getCost(TileBasedMap map, Mover mover, int x, int y, int tx, int ty) 

{ 

  float dx = tx - x; 

  float dy = ty - y; 

 

  return ((dx*dx)+(dy*dy)); 

 } 
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} 

ExampleBreakpoint.class 

 

package wardrop; 

 

/** 

 * 

 * @author Admin 

 */ 

public class ExampleBreakpoint { 

 

    private static int x = 5; 

 

    public ExampleBreakpoint() { 

    } 

 

    public static void main(String app[]) { 

        x++; 

        System.out.print(x); 

    } 

} 

 

GameMap.class 

package wardrop; 

import java.util.Locale; 

import javax.swing.JOptionPane; 

public class GameMap implements TileBasedMap { 

 

 

    public static final int WIDTH = 30; 

 

    public static final int HEIGHT = 30; 

 

    public static final int GRASS = 0; 
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    public static final int WATER = 1; 

 

    public static final int TREES = 2; 

 

    public static final int PLANE = 3; 

 

    public static final int BOAT = 4; 

 

    public static final int TANK = 5; 

 

    private int[][] terrain = new int[WIDTH][HEIGHT]; 

 

    private int[][] units = new int[WIDTH][HEIGHT]; 

 

    private boolean[][] visited = new boolean[WIDTH][HEIGHT]; 

 

    /** 

     * Create a new test map with some default configuration 

     */ 

    public GameMap() { 

        // create some test data 

       /* if (d == 1) { 

            fillArea(0, 0, 5, 5, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 15, 7, 15, WATER); 

            fillArea(7, 26, 22, 4, WATER); 

 

            fillArea(5, 0, 25, 3, WATER); 

            fillArea(27, 3, 3, 27, WATER); 

 

            fillArea(17, 9, 10, 3, TREES); 

            fillArea(20, 12, 5, 3, TREES); 
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            fillArea(8, 8, 7, 3, TREES); 

            fillArea(10, 11, 3, 3, TREES); 

 

            fillArea(15, 20, 3, 3, TREES); 

 

            units[15][15] = TANK; 

            units[2][7] = BOAT; 

            units[20][25] = PLANE; 

        } 

 

        /*if (d == 2) { 

            fillArea(0, 0, 5, 5, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 15, 7, 15, WATER); 

            fillArea(7, 26, 22, 4, WATER); 

 

            fillArea(5, 0, 25, 3, WATER); 

            fillArea(27, 3, 3, 27, WATER); 

 

            fillArea(17, 9, 10, 3, TREES); 

            fillArea(20, 12, 5, 3, TREES); 

 

            fillArea(8, 8, 7, 3, TREES); 

            fillArea(10, 11, 3, 3, TREES); 

 

            fillArea(15, 20, 3, 3, TREES); 

 

            units[15][15] = TANK; 

            units[2][7] = BOAT; 

            units[20][25] = PLANE; 

        } 

        if (d == 3) { 
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            fillArea(0, 0, 5, 5, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 15, 7, 15, WATER); 

            fillArea(7, 26, 22, 4, WATER); 

 

            fillArea(5, 0, 25, 3, WATER); 

            fillArea(27, 3, 3, 27, WATER); 

 

            fillArea(17, 9, 10, 3, TREES); 

            fillArea(20, 12, 5, 3, TREES); 

 

            fillArea(8, 8, 7, 3, TREES); 

            fillArea(10, 11, 3, 3, TREES); 

 

            fillArea(15, 20, 3, 3, TREES); 

 

            units[15][15] = TANK; 

            units[2][7] = BOAT; 

            units[20][25] = PLANE; 

 

        }*/ 

    } 

 

    /** 

     * Fill an area with a given terrain type 

     * 

     * @param x The x coordinate to start filling at 

     * @param y The y coordinate to start filling at 

     * @param width The width of the area to fill 

     * @param height The height of the area to fill 

     * @param type The terrain type to fill with 

     */ 
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    public void drawmap(int map) 

    { 

            if (map==1) {            

            fillArea(0, 0, 5, 5, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 15, 7, 15, WATER); 

            fillArea(7, 26, 22, 4, WATER); 

 

            fillArea(5, 0, 25, 3, WATER); 

            fillArea(27, 3, 3, 27, WATER); 

 

            fillArea(17, 9, 10, 3, TREES); 

            fillArea(20, 12, 5, 3, TREES); 

 

            fillArea(8, 8, 7, 3, TREES); 

            fillArea(10, 11, 3, 3, TREES); 

 

            fillArea(15, 20, 3, 3, TREES); 

 

            units[15][15] = TANK; 

            units[2][7] = BOAT; 

            units[20][25] = PLANE; 

        } 

    if (map==2) { 

            fillArea(0, 0, 5, 5, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            fillArea(0, 5, 3, 10, WATER); 

            

 

            fillArea(5, 9, 10, 3, TREES); 

            fillArea(10, 12, 5, 3, TREES); 

 

            fillArea(12, 9, 2, 3, TREES); 
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            fillArea(15, 10, 1, 3, TREES); 

             

            fillArea(8, 8, 7, 3, TREES); 

            fillArea(10, 11, 3, 3, TREES); 

 

            fillArea(15, 20, 3, 3, TREES); 

 

            units[15][15] = TANK; 

            units[2][7] = BOAT; 

            units[20][25] = PLANE; 

        } 

             

    } 

 

    private void fillArea(int x, int y, int width, int height, int type) { 

        for (int xp = x; xp < x + width; xp++) { 

            for (int yp = y; yp < y + height; yp++) { 

                terrain[xp][yp] = type; 

                // Monitoring.jTextArea1.append(""+terrain[xp][yp]); 

            } 

        } 

    } 

 

     

    public void clearVisited() { 

        for (int x = 0; x < getWidthInTiles(); x++) { 

            for (int y = 0; y < getHeightInTiles(); y++) { 

                visited[x][y] = false; 

            } 

        } 

    } 

 

    /** 

     * @see TileBasedMap#visited(int, int) 
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     */ 

    public boolean visited(int x, int y) { 

        return visited[x][y]; 

    } 

 

    /** 

     * Get the terrain at a given location 

     * 

     * @param x The x coordinate of the terrain tile to retrieve 

     * @param y The y coordinate of the terrain tile to retrieve 

     * @return The terrain tile at the given location 

     */ 

    public int getTerrain(int x, int y) { 

        return terrain[x][y]; 

    } 

 

    /** 

     * Get the unit at a given location 

     * 

     * @param x The x coordinate of the tile to check for a unit 

     * @param y The y coordinate of the tile to check for a unit 

     * @return The ID of the unit at the given location or 0 if there is no unit 

     */ 

    public int getUnit(int x, int y) { 

        return units[x][y]; 

    } 

 

    /** 

     * Set the unit at the given location 

     * 

     * @param x The x coordinate of the location where the unit should be set 

     * @param y The y coordinate of the location where the unit should be set 

     * @param unit The ID of the unit to be placed on the map, or 0 to clear the unit at 

the 
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     * given location 

     */ 

    public void setUnit(int x, int y, int unit) { 

        units[x][y] = unit; 

    } 

 

    /** 

     * @see TileBasedMap#blocked(Mover, int, int) 

     */ 

    public boolean blocked(Mover mover, int x, int y) { 

        // if theres a unit at the location, then it's blocked 

        if (getUnit(x, y) != 0) { 

            return true; 

        } 

 

        int unit = ((UnitMover) mover).getType(); 

 

        // planes can move anywhere 

        if (unit == PLANE) { 

            return false; 

        } 

        // tanks can only move across grass 

        if (unit == TANK) { 

            return terrain[x][y] != GRASS; 

        } 

        // boats can only move across water 

        if (unit == BOAT) { 

            return terrain[x][y] != WATER; 

        } 

 

        // unknown unit so everything blocks 

        return true; 

    } 

    public float getCost(Mover mover, int sx, int sy, int tx, int ty) { 
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        return 1; 

    } 

    public int getHeightInTiles() { 

        return WIDTH; 

    } 

    public int getWidthInTiles() { 

        return HEIGHT; 

    } 

 

    /** 

     * @see TileBasedMap#pathFinderVisited(int, int) 

     */ 

    public void pathFinderVisited(int x, int y) { 

        visited[x][y] = true; 

    } 

} 

 

ManhattanHeuristic.class 

 

public class ManhattanHeuristic implements AStarHeuristic { 

  

 private int minimumCost; 

 

 public ManhattanHeuristic(int minimumCost) { 

  this.minimumCost = minimumCost; 

 } 

 

  

 public float getCost(TileBasedMap map, Mover mover, int x, int y, int tx, 

   int ty) { 

  return minimumCost * (Math.abs(x-tx) + Math.abs(y-ty)); 

 } 

 

} 
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Mover.class 

package wardrop; 

 

public interface Mover { 

 

} 

 

Path$Step.class 

package wardrop; 

import java.util.ArrayList; 

public class Path { 

 

 private ArrayList steps = new ArrayList(); 

 

 public Path() { 

 

 } 

 

 

 public int getLength() { 

  return steps.size(); 

 } 

  

 public Step getStep(int index) { 

  return (Step) steps.get(index); 

 } 

 

 

 public int getX(int index) { 

  return getStep(index).x; 

 } 
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 public int getY(int index) { 

  return getStep(index).y; 

 } 

 

 public void appendStep(int x, int y) { 

  steps.add(new Step(x,y)); 

 } 

 

 public void prependStep(int x, int y) { 

  steps.add(0, new Step(x, y)); 

 } 

 

 public boolean contains(int x, int y) { 

  return steps.contains(new Step(x,y)); 

 } 

 

 public class Step { 

 

  private int x; 

  private int y; 

  public Step(int x, int y) { 

   this.x = x; 

   this.y = y; 

  } 

 

  public int getX() { 

   return x; 

  } 

 

  public int getY() { 

   return y; 

  } 

 

  public int hashCode() { 
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   return x*y; 

  } 

 

  public boolean equals(Object other) { 

   if (other instanceof Step) { 

    Step o = (Step) other; 

    return (o.x == x) && (o.y == y); 

   } 

   return false; 

  } 

 } 

} 

 

 

PathFinder.class 

 

package wardrop; 

 

public interface PathFinder { 

  

 public Path findPath(Mover mover, int sx, int sy, int tx, int ty); 

} 

 

 

PathTest$1.class 

package wardrop; 

 

import java.awt.Color; 

import java.awt.Graphics; 

import java.awt.Image; 

import java.awt.event.MouseAdapter; 

import java.awt.event.MouseEvent; 

import java.awt.event.MouseMotionListener; 

import java.awt.event.WindowAdapter; 
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import java.awt.event.WindowEvent; 

import java.awt.image.BufferedImage; 

import java.io.FileInputStream; 

import java.io.IOException; 

import java.io.InputStream; 

 

import javax.imageio.ImageIO; 

import javax.swing.JComboBox; 

import javax.swing.JFrame; 

import javax.swing.JLabel; 

import javax.swing.JOptionPane; 

import javax.swing.JPanel; 

import javax.swing.JScrollPane; 

import javax.swing.JTextArea; 

 

 

public class PathTest extends JPanel { 

 

 private static GameMap map =new GameMap(); 

 

        public static JTextArea textdisplay=new JTextArea(); 

        public static JTextArea direction=new JTextArea();         

 private PathFinder finder;  

 private Path path; 

        static PathTest test;          

 private Image[] tiles = new Image[6];  

 private Image buffer;  

 private int selectedx = -1;  

 private int selectedy = -1;  

 private int lastFindX = -1; 

  

 private int lastFindY = -1; 

        private int mapselection=0; 

        static JComboBox box=new JComboBox(); 
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        static  JFrame jf=new JFrame();         

  

 public PathTest() { 

  try {    

                        box.addItem("Load War field -1"); 

                        box.addItem("Load War field -2"); 

                        box.addItem("Load War field -3"); 

                        box.addItem("Load War field -4"); 

                        direction.append( "The Signal Covering area by node" );                                               

                        tiles[GameMap.TREES] = ImageIO.read(getResource("trees.png")); 

   tiles[GameMap.GRASS] = 

ImageIO.read(getResource("grass.png")); 

   tiles[GameMap.WATER] = 

ImageIO.read(getResource("water.png")); 

   tiles[GameMap.TANK] = 

ImageIO.read(getResource("tank.png")); 

   tiles[GameMap.PLANE] = 

ImageIO.read(getResource("plane.png")); 

   tiles[GameMap.BOAT] = 

ImageIO.read(getResource("boat.png"));                         

  } catch (IOException e) { 

   System.err.println("Failed to load resources: "+e.getMessage()); 

   System.exit(0); 

  }                 

                //int d=Integer.parseInt(JOptionPane.showInputDialog(null,"Selection 

map")); 

                

  finder = new AStarPathFinder(map, 500, true); 

               /*design.setLayout(null); 

                design.setSize(500, 500); 

                design.setVisible(true);*/ 

                //design.add(g); 

   

  addMouseListener(new MouseAdapter() { 
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   public void mousePressed(MouseEvent e) { 

    handleMousePressed(e.getX(), e.getY()); 

                                int x=e.getX(); 

                                int y=e.getY(); 

                                if((x>50 && x< 536) && (y<556 && y>50 )) 

                                textdisplay.append("The  node movement between node \n"+x+" 

:\t"+ y +"\n" ) ; 

   } 

  }); 

  addMouseMotionListener(new MouseMotionListener() { 

   public void mouseDragged(MouseEvent e) { 

   } 

 

   public void mouseMoved(MouseEvent e) { 

    handleMouseMoved(e.getX(), e.getY()); 

                                int x=e.getX(); 

                                int y=e.getY(); 

                                if((x>50 && x< 536) && (y<556 && y>50 ))                                                                

                                 direction.append( "X position \t :"+x +"\t"+"Y position \t :"+x 

+"\n" ); 

   } 

  });   

                 this.add(textdisplay); 

 } 

  

 private InputStream getResource(String ref) throws IOException { 

  InputStream in = 

Thread.currentThread().getContextClassLoader().getResourceAsStream(ref); 

  if (in != null) { 

   return in; 

  } 

  return new FileInputStream(ref); 

 } 
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 private void handleMouseMoved(int x, int y) { 

  x -= 50; 

  y -= 50; 

  x /= 16; 

  y /= 16; 

 

  if ((x < 0) || (y < 0) || (x >= map.getWidthInTiles()) || (y >= 

map.getHeightInTiles())) { 

   return; 

  } 

 

  if (selectedx != -1) { 

   if ((lastFindX != x) || (lastFindY != y)) { 

    lastFindX = x; 

    lastFindY = y; 

    path = finder.findPath(new 

UnitMover(map.getUnit(selectedx, selectedy)), 

            selectedx, 

selectedy, x, y); 

    repaint(0); 

   } 

  } 

 } 

  

 private void handleMousePressed(int x, int y) { 

  x -= 50; 

  y -= 50; 

  x /= 16; 

  y /= 16; 

 

  if ((x < 0) || (y < 0) || (x >= map.getWidthInTiles()) || (y >= 

map.getHeightInTiles())) { 

   return; 

  } 
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  if (map.getUnit(x, y) != 0) { 

   selectedx = x; 

   selectedy = y; 

   lastFindX = - 1; 

  } else { 

   if (selectedx != -1) { 

    map.clearVisited(); 

    path = finder.findPath(new 

UnitMover(map.getUnit(selectedx, selectedy)),selectedx, selectedy, x, y); 

                                if (path != null) { 

     path = null; 

     int unit = map.getUnit(selectedx, selectedy); 

     map.setUnit(selectedx, selectedy, 0); 

     map.setUnit(x,y,unit); 

     selectedx = x; 

     selectedy = y; 

     lastFindX = - 1; 

    } 

   } 

  } 

 

  repaint(0); 

 } 

    @Override 

 public void paintComponent(Graphics graphics) { 

            super.paintComponent(graphics); 

  // create an offscreen buffer to render the map 

                 

  if (buffer == null) { 

   buffer = new BufferedImage(600, 600, 

BufferedImage.TYPE_INT_ARGB); 

  } 

  Graphics g = buffer.getGraphics();                 
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  g.clearRect(0,0,600,600); 

  g.translate(50, 50); 

 

  // cycle through the tiles in the map drawing the appropriate 

  // image for the terrain and units where appropriate 

  for (int x=0;x<map.getWidthInTiles();x++) { 

   for (int y=0;y<map.getHeightInTiles();y++) { 

    g.drawImage(tiles[map.getTerrain(x, y)],x*16,y*16,null); 

    if (map.getUnit(x, y) != 0) { 

     g.drawImage(tiles[map.getUnit(x, 

y)],x*16,y*16,null); 

    } else { 

     if (path != null) { 

      if (path.contains(x, y)) { 

       g.setColor(Color.blue); 

       g.fillRect((x*16)+4, (y*16)+4,7,7); 

      } 

     } 

    } 

   } 

  }                 

  // if a unit is selected then draw a box around it 

  if (selectedx != -1) { 

   g.setColor(Color.black); 

   g.drawRect(selectedx*16, selectedy*16, 15, 15); 

   g.drawRect((selectedx*16)-2, (selectedy*16)-2, 19, 19); 

   g.setColor(Color.white); 

   g.drawRect((selectedx*16)-1, (selectedy*16)-1, 17, 17); 

  } 

  graphics.drawImage(buffer, 0, 0, null); 

 }      

      

        private static void BoxItemStateChanged(java.awt.event.ItemEvent evt) { 
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            JOptionPane.showMessageDialog(null, "select");             

            if (box.getSelectedIndex()==01) { 

                jf.getContentPane().remove(test);//setBounds(0, 40, 600, 600); 

                map.drawmap(1); 

                jf.getContentPane().add(test).setBounds(0, 40, 600, 600); 

                 

            } 

            if (box.getSelectedIndex()==02) { 

                //jf.getContentPane().remove(test);//setBounds(0, 40, 600, 600); 

                map.drawmap(2); 

                jf.getContentPane().add(test).setBounds(0, 40, 600, 600); 

            }              

        } 

 

 

 public static void main(String[] argv) { 

  test = new PathTest();               

                jf.setLayout(null);                 

                JScrollPane jp=new JScrollPane(textdisplay); 

                JScrollPane jp1=new JScrollPane(direction); 

                 

                jf.getContentPane().add(test.box).setBounds(700, 500, 70, 30); 

 

                jf.getContentPane().add(new JScrollPane(jp)).setBounds(650, 40, 200, 200); 

                jf.getContentPane().setBackground(Color.BLACK); 

                jf.getContentPane().add(new JScrollPane(jp1)).setBounds(650, 250, 200, 

200); 

                jf.getContentPane().setBackground(Color.BLACK); 

 

                box.addItemListener(new java.awt.event.ItemListener() { 

                          public void itemStateChanged(java.awt.event.ItemEvent evt) { 

                        BoxItemStateChanged(evt); 

                      } }); 
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                jf.setVisible(true); 

                jf.setSize(950,650); 

                jf.setLocation(10,30); 

                jf.setTitle("Welcome to The Wireles-communication "); 

                JLabel jLabel1=new JLabel(); 

                jLabel1.setFont(new java.awt.Font("Monotype Corsiva", 0, 35)); // NOI18N 

                jLabel1.setText("Monitoring System");jLabel1.setBackground(Color.BLUE); 

                jf.getContentPane().add(jLabel1).setBounds(350, 5, 250, 40); 

                jf.addWindowListener(new WindowAdapter() { 

   public void windowClosing(WindowEvent e) { 

    System.exit(0); 

   } 

  }); 

                jf.setResizable(false); 

 } 

 

} 

 

TileBasedMap.class 

 

package wardrop; 

 

public interface TileBasedMap { 

 

    public int getWidthInTiles(); 

 

    public int getHeightInTiles(); 

 

    public void pathFinderVisited(int x, int y); 

 

    public boolean blocked(Mover mover, int x, int y); 

 

    public float getCost(Mover mover, int sx, int sy, int tx, int ty); 
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} 
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