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7.1 Introduction

Clustering is an important data analysis and well-recognized technique in the
field of data mining. Since past few decades, it has attained a wide awareness
from research community having theoretical as well as practical views. It is an
unsupervised classification technique, and there is no need for training and testing
of data objects. This technique can split the data objects into different clusters
using a distance criterion. Literature survey has revealed the use of this technique
in diverse research domains [3, 4, 7, 8, 18, 19, 21] . In recent years, a number
of heuristics algorithms have been reported to determine the optimal solution
for clustering problems. These algorithms have been derived from the heuristics,
natural phenomena, swarms behavior, insects, animals, etc. Some physics-based
algorithms (such as charged system search algorithm, galaxy-based algorithm, black
hole optimization algorithm, magnetic charged system search algorithm) have also
been used to find out the optimal solution for optimization problems [6, 9, 10,
16]. Some other algorithms like CSS [11], MCSS [12], BH [6], and CSO [13, 14]
have also been applied successfully to solve the clustering problems. With time, the
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importance and significance of these algorithms have increased among the research
community due to following reasons:

• These algorithms have a variety of solution strategies.
• These algorithms do not depend on the size of the problem, variables, constraints,

and solution space.
• These algorithms can be adopted according to the problem. Only need to adjust

the objectives and fitness functions. It means no hard mathematical functions are
defined in these algorithms.

• These algorithms provide efficient and effective results for combinatorial and
nonlinear problems.

• These algorithms have the low computation power and minimum chances to trap
in local optima.

• These algorithms have the capacity to solve the problem with different initial
points.

• These algorithms provide better results as compared to the classical methods.

Due to abovementioned advantages, these algorithms have been used in diverse
fields such as image processing, biology, sciences, market research, biomedi-
cal process, engineering, etc. Some new versions of these algorithms also have
been proposed. Artificial chemical reaction optimization (ACRO) algorithm is a
chemistry-based heuristic algorithm to solve the global optimization problems [1,
2]. This algorithm is based on the chemical reactions such as their types, evaluation,
decomposition, etc. ACRO algorithm is mainly described in terms of reactants.
For reactants, any encoding schemes, like integer, real, floating, and character,
are used for solving the optimization problems. Further, in the ACRO algorithm,
some reaction rules are specified to consume and generate the reactants. The
execution of the algorithm is stopped when termination condition is met. The
primary objective of this work is to investigate the competences of the ACRO
algorithm for finding the optimal cluster centers for partitional clustering problems.
The performance of proposed algorithm is examined on well-known benchmark
datasets downloaded from UCI repository and few artificial datasets. The simulation
results are compared with several meta-heuristic algorithms such as K-means [15],
particle swarm optimization (PSO) [20], ant colony optimization (ACO) [17], and
bat algorithm (BA) [5].

Organization of the Paper: The ACRO algorithm and different chemical reactions
adopted in the algorithm are presented in Sect. 7.2. Section 7.3 presents the ACRO
algorithm for partitional clustering problems. Section 7.4 illustrates the results of
the proposed study. Section 7.5 gives a summary of the entire work.

7.2 Chemical Reactions

The chemical reaction can be defined as the formation of new chemical products
using chemical reactants. Reaction completion timings may differ like some
chemical reactions take few minutes, while others may take hours or days. Some
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chemical reactions require single step for product formation, while others need
multiple steps. In general, chemical reactions can be divided into two categories
such as consecutive reaction and competing reaction. Basically, the motion of the
electrons is generally responsible for the formation and breakage of the chemical
bond in chemical reactions. It is also possible that the newly derive products, may
differ in properties from reactants. A chemical process contains different types
of molecules or chemical species, and further, these molecules can participate in
one or more chemical reactions. Reactions may be exothermic or endothermic in
nature. Reactions may be reversible or irreversible. In some reactions, the rate of
the forward reaction is equal to rate of the reverse reaction such condition is known
as chemical equilibrium condition. In equilibrium state, concentrations of reactants
and products are constant. Observation shows that sometime output of a reaction is
the input of other reaction. Broadly, chemical reactions can be characterized into
following categories:

7.2.1 Synthesis Reactions

In these reactions, two or more reactants combine for producing a single product or
compound. The reaction is given below.

2K + Cl2 → 2KCl (Elements)

2KCl + 3O2 → 2KClO3
(
Compounds

)

7.2.2 Decomposition Reactions

Through this reaction, two or more compounds form using a single reactant. It
just reverses of the synthesis reaction. Decomposition reactions need some energy
source like heat, light, or electricity. A decomposition reaction can be shown as

MgCl2 → Mg + Cl2

7.2.3 Single Displacement Reactions

In single displacement reaction, an element can interact with another element of a
compound and takes position of another element in the resultant compound. This
reaction can be given as

Zn + 2HCl → 2ZnCl2 + H2
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7.2.4 Metathesis

In metathesis reactions, after the interaction of the elements, the position of cations
and anions changes and produce two new elements. This reaction can be specified
as given below.

AgNO3 + NaCl → 2AgCl + NaNO3

7.2.5 Combustion Reactions

In this reaction, oxygen reacts with an element and produced energy in terms of heat
and light. Combustion reactions can be given as

C2H5 + 3O2 → 2CO2 + 3H2O

7.2.6 Redox Reactions

In this reaction, electrons transfer from one reactant to another reactant in terms of
release and uptake. The element that can uptake the electrons is called an oxidizing
agent, whereas the element that can release the electrons is known as the reducing
agent. The example of such reaction is given as

MnO−
4

(
aq

) + I−
(
aq

) → Mn+2 (
aq

) + I2 (s)

Mn gains five electrons to form Mn2+. Further, iodine lost electrons, so it is an
oxidizing agent. Moreover, Mn2+ gains five electrons, so it is a reducing agent.

7.2.7 Reversible Reactions

These reactions occur both in forward and backward direction. In such types
of reactions, the products change into reactants and reactants into products. The
example of such reaction is given below.

H2CO3 (l) + H2O (l) ↔ HCO3
− (

aq
) + H3O

(
aq

)
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7.3 Artificial Chemical Reaction Optimization (ACRO)
Algorithm

The motivation behind the artificial chemical reaction optimization (ACRO) algo-
rithm is the chemical reaction. It is discovered that atoms and molecules constantly
move and collide in a viscous fluid filled 2D cellular space. Atoms are defined as
the elementary particle of a chemical reaction and having a type, charge, mass,
position, radius, orientation, and velocity. Whereas, a molecule can be defined as
a group of two or more atoms linked through bonds. During a chemical reaction,
several changes occur like formation and breaking of bonds, orientation change,
substitution, and replacement in molecules. It is considered that ACRO algorithm
begins with the action of reactants in a vessel. Let us consider a fixed volume vessel
filled with a uniform mixture of N chemical reactants which undergo different types
of chemical reactions. Let Ri ∈ (1 ≤ i ≥ N) is the list of chemical types, and it
is considered that these types can cooperate through M specified chemical reaction
channels. In ACRO algorithm, the encoding scheme of the reactants depends on the
user choice, and it can be binary, real, string, integer, etc. The new reactant produces
through the interaction of one or two reactants. The ACRO algorithm starts with a
set of initial reactants in a solution. Further, reactants are consumed and produced
through different chemical reactions. The algorithm stops; either the termination
condition is met or when no more reaction occurs. For the chemical reactions,
reactants are chosen based on their concentrations and potentials. Moreover, it is
observed that consecutive and competing reactions are the two mainly reported
reactions. Reactants are joined together serially in a consecutive reaction, whereas in
competing type reactions, different products are produced depending on the specific
condition. It is also noticed that sometimes output of one reaction may act as a
reactant for other reaction. There are many factors that can affect the execution of
a reaction. However, the ACRO algorithm is based on a simple concept of an equal
probability of monomolecular or bimolecular reactions and their alternatives. The
main steps of the ACRO algorithm are listed below.

Step 1: Initialize the problem and algorithm parameters.
Step 2: Evaluate the initial reactants and evaluation.
Step 3: Apply chemical reactions.
Step 4: Update reactants.
Step 5: Termination condition.

7.4 Proposed ACRO Algorithm for Clustering Problems

This section describes the proposed ACRO algorithm to find the optimal cluster
centers for the partition-based clustering problems. In partition-based clustering
problems, numbers of clusters are known in advance, and the main task is to find the
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optimum set of cluster centers such that the intra-cluster distance between cluster
centers and objects should be minimized. The steps of the proposed algorithm are
described in Sect. 7.4.1.

7.4.1 Steps of Proposed ACRO Algorithm

Step 1: Initialization of the User-Defined Parameters and Problem Statement
The clustering problem can be expressed as minimization problem and defined as
follows:

Minimize f
(
x subject to xi ∈ Ck; where i = 1, 2, 3, . . . ,D and k = 1, 2, . . . ,K

)

where f (x) is an objective function which is defined in terms of Euclidean distance,
xiis the set of data objects, D is the dimension of data object, Ck is the set of kth

cluster centers, and K describes a number of clusters in a given dataset. It is to be
noted that the computed cluster centers should be in the range of xmin

i and xmax
i and

also known as boundary constraints. Further, in this work, integer encoding scheme
is used to obtain the desired results. The user-defined parameters of ACROA and
Reactnum (maximum number of iterations) are also defined in this step.

Step 2: Set Initial Reactants and Evaluation
In this step, the population of the ACRO algorithm is specified; the population is
defined in terms of initial reactants. The initial reactants are uniformly identified
from the feasible search space. For clustering problem, initially, two reactants,
i.e., R1 and R2, are identified from the dataset such as R1 = {xi, 1, xi, 2, . . . , xi, d},
R2 = {xj, 1, xj, 2, . . . , xj, d}, where d denotes the length (dimension) of reactant. The
number of reactants is similar to a number of clusters (K). Then, rests of reactants are
derived from initially determined reactants R1 and R2 using the following procedure.
To compute R1 and R2, firstly, a dividing factor (k) is initialized. Suppose k = 2;
then, two new extra reactants, i.e., R3, R4, are generated from R1 and R2 using below
mentioned procedure:

R3 =
⎧
⎨

⎩

r ∗ xi,1, r ∗ xi,2, . . . , r ∗ x
i, d

2
;

r ∗ x
j, d

2 +1, r ∗ x
j,d− 1

2 +2, . . . , r ∗ xj,1

⎫
⎬

⎭
(7.1)

R4 =
⎧
⎨

⎩

r ∗ xj,1, r ∗ xj,2, . . . , r ∗ x
j, d

2
;

r ∗ x
i, d

2 +1, r ∗ x
i, d− 1

2 +2, . . . , r ∗ xi,1

⎫
⎬

⎭
(7.2)

where r denotes a random number and should be in the range of 0 ≤ r ≥ 1. Further,
more reactants are generated using the following procedure until the number of
reactants is not similar to the desired clusters (K):
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R5 =
{

r ∗ xi,1, r ∗ xi,2, . . . , r ∗ x
i, 2d

3
;

r ∗ xj,2d/3+1, r ∗ xj,2(d−1)/3+2, . . . , r ∗ xj,1

}

(7.3)

R6 =
⎧
⎨

⎩

r ∗ xi,1, r ∗ xi,2, . . . , r ∗ x
i, d

3
; r ∗ xj,d/3+1, r ∗ xj,2(d−1)/3+2,

r ∗ x
i, 2d

3
, . . . , r ∗ xj,1

⎫
⎬

⎭
(7.4)

R7 =
{
r ∗ xi,1, r ∗ xi,2, . . . , r ∗ x

i, d
3
; r ∗ xj,d/3+1, , . . . , r ∗ xj,1

}
(7.5)

R8 =
{
r ∗ xj,1, r ∗ xj,2, . . . , r ∗ x

j, d
3
; r ∗ x

i, d
3
, . . . , r ∗ xi,1

}
(7.6)

R9 =
{

r ∗ xj,1, r ∗ xj,2, . . . , r ∗ x
j, d

3
; r ∗ x

i, d
3 +1, r ∗ x

i,
2(d−1)

3
,

r ∗ xj,2d/3+1 . . . , r ∗ xi,1

}

(7.7)

R10 =
{
r ∗ xj,1, r ∗ xj,2, . . . , r ∗ x

j, 2d
3
; r ∗ x

i,
2(d−1)

3 +1, r ∗ x
i, 2d

3 +2, . . . , r ∗ xi,1

}

(7.8)

Step 3: Applying Chemical Reactions
Step 3.1: Bimolecular Reactions

Let us consider R1 = {xi, 1, xi, 2, . . . , xi, d} and R2 = {xj, 1, xj, 2, . . . , xj, d} are two
reactants that can participate in bimolecular reaction. As a result of this, various
bimolecular reactions are incorporated in the ACRO algorithm such as synthesis
reaction, displacement reaction, redox 2 reaction, and monomolecular reaction. For
all these operations, integer representation of the population is considered rather
than binary encoding. The detailed explanation of these reactions is described as
below.

Step 3.2: Synthesis Reaction: Using this reaction, a new reactant can be
obtained using the following equation:

R = (
r1, r2, r3, . . . , ri , rj , rk, . . . , rn

) ; where, Ri,new = Ri + λi

(
Rj − Ri

)
(7.9)

In the above equation, λi is a random value in the interval [0.25, 1.25]; Ri and Rj

are randomly selected reactants.
Step 3.3: Displacement Reaction
The new reactants are obtained using below mentioned procedure. Suppose

Rk = (R1, R2 . . . Ri, Rj, . . . , RK) where, k = 1,2 . . . . . . .K:

Ri,new = Ri

(
1 − λtdRj

)
(7.10)

Rj,new = λtdRj + (1 − λtdRi) (7.11)
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where λtd ∈ {0, 1} andλtd+1 = 2.3 (λtd)
2 sin(πλtd) and where in λtd the suffix “td” is

increased by 1, when the reaction is completed.
Step 3.4: Redox 2 Reaction
In this reaction, if R1 is a better reactant in terms of the objective function, then

in λtr, the suffix “tr” is updated by using 1 when the reaction is performed and it is
computed using the following equation:

Ri,new = Ri + λtr
(
Ri − Rj

) ; where, λtr ∈ {0, 1} (7.12)

Otherwise, if R2 is a better reactant, then in λtr, the suffix “tr” is updated by using
1 when the reaction is performed and it is computed using the following equation:

Rj,new = Rj + λtr
(
Rj − Ri

) ; where, λtr ∈ {0, 1} (7.13)

The value of λtr is computed using the following equation:

λtr+1 =
{

0 λtr = 0
1

λtr mod(1)
λtr ∈ (0, 1)

(7.14)

1/λtr mod(1) = 1

λtr
−

⌊
1

λtr

⌋
(7.15)

Step 3.4: Monomolecular Reactions
Step 3.4.1: Decomposition Reaction
In this reaction, suppose R = (R1, R2 . . . Ri, Rj, . . . , Rn) is the reactant and

Ck ∈ {Rm, Rn} is an atom that takes part in monomolecular reaction. The new atom
of the molecule Ri, new is a random population or reactant from {Rm, Rn} ∈ Ck, but
{Rm, Rn} �= (Ri and Rj).

Step 3.4.2: Redox 1 Reaction
In this reaction, the new reactant is generated using the following procedure:

Ri,new = Rm + λt (Rn − Rm) (7.16)

where λt ∈ {0, 1} such that initial λ0 ∈ {0.0, 0.25, 0.5, 0.75, 1.0} and λt + 1 =
4λt(1 − λt); t is updated by using 1 when the reaction is performed.

Step 4: Reactants Update
In this step, a chemical equilibrium test is carried out. If the fitness function of
the new generated reactants is better than another, the generated reactant includes
into the chemical reaction process and excludes the worst reactant from reversible
chemical reactions.
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Table 7.1 Description of the datasets used for experiment

Dataset Cluster (K) Attributes Objects Objects in clusters

Iris 3 4 150 (50, 50, 50)
Wine 3 13 178 (59, 71, 48)
CMC 3 9 1473 (629,334, 510)
Cancer 2 9 683 (444, 239)
Glass 6 9 214 (70,17, 76, 13, 9, 29)

Step 5: Termination Condition
If the Reactnum is equal to the user-defined maximum number of iterations, then
the algorithm stops its execution and produces the optimal cluster centers; otherwise
steps 3 and 4 are repeated, until the desired results are not obtained or termination
condition is not satisfied.

7.5 Simulation Results

This section presents the experimental results of our study. To examine the efficacy
of the proposed ACRO based clustering algorithm, some well-known benchmark
datasets are taken from the UCI repository. These datasets are iris, CMC, glass,
wine, and cancer. The description these datasets are reported in Table 7.1. Further,
in this work, intra-cluster distance and f-measure parameters are adopted as
performance measure parameters. The intra-cluster distance parameter presents
the quality of clusters, and it can be measured using best, average, and worst
intra-cluster distances. The precision can be computed using f-measure parameter.
The MATLAB environment is used to implement the proposed algorithm using
Windows-based operating system. Table 7.1 demonstrates the details of datasets
taken for the experiments. The simulation results of proposed algorithm are com-
pared with other well-known clustering algorithms K-means [15], particle swarm
optimization (PSO) [20], ant colony optimization (ACO) [17], and bat algorithm
(BA) [5].

7.5.1 Performance Matrices

In this section, different performance matrices are described that are adopted
to compute the performance of the ACRO algorithm for partitional clustering
problems. In this work, f-measure and intra-cluster distance parameters are taken
to evaluate the performance of the algorithms. These matrices are explained as
below.
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• Intra-cluster distances

This parameter is used to compute the distance between data objects and cluster
centers and also represents the quality of clustering. The results describe using best,
average, and worst cases.

• F-Measure

It is expressed in terms of recall and precision. The value of f-measure parameter
is computed through Eq. 7.17.

F
(
i, j

) =
∑n

i=1

ni

n

∗
max

i

∗F
(
i, j

)
(7.17)

Where, F(i, j)is determined using Eq. 7.18.

F
(
i, j

) = 2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(7.18)

The recall and precision are measured using Eq. 7.19.

Recall
(
r
(
i, j

)) = ni,j

ni

and Precision
(
p

(
i, j

)) = ni,j

nj

(7.19)

7.5.2 Results and Discussion

This subsection describes the results of our study using proposed algorithm. Tables
7.2 and 7.3 present the results of the proposed ACRO algorithm and other clustering
using artificial dataset 1 and artificial dataset 2. It is noticed that the proposed
algorithm gives better results in comparison to all other algorithms. It is also
observed that K-means algorithm obtains worst results among all other algorithm
using intra-cluster distance parameter both of artificial dataset1 and artificial dataset
2 using intra-cluster distance parameter.

Tables 7.4 and 7.5 illustrate the results of the proposed algorithm and other
algorithms using iris and cancer dataset. It is reported that the proposed algorithm

Table 7.2 Performance comparison of proposed ACRO and other algorithms using artificial
dataset 1

Parameters K-means PSO ACO CSO BA Proposed ACRO

Best case 161.32 153.45 154.29 159.73 151.81 143.36
Avg. case 166.12 161.24 158.52 163.37 154.98 149.56
Worst case 174.64 169.39 165.42 168.13 159.08 154.21
SD 7.625 6.437 4.712 5.418 4.564 5.243
F-Measure 0.94 0.96 0.99 0.95 0.97 1
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Table 7.3 Performance comparison of proposed ACRO and other algorithms using artificial
dataset 2

Parameters K-means PSO ACO CSO Bat Proposed ACRO

Best case 761.45 753.24 759.87 752.34 756.09 746.53
Avg. case 768.38 759.82 766.15 756.21 761.44 752.26
Worst case 776.49 769.58 773.41 764.39 169.17 758.13
SD 6.837 7.614 6.845 4.936 5.432 4.214
F-Measure 0.89 0.91 0.93 0.937 0.946 0.976

Table 7.4 Performance comparison of proposed ACRO and other algorithms using iris dataset

Parameters K-means PSO ACO CSO Bat Proposed ACRO

Best case 97.52 97.05 97.21 96.98 96.84 95.56
Avg. case 113.56 98.73 98.36 97.64 97.53 96.73
Worst case 125.23 99.89 99.59 98.78 98.09 97.48
SD 15.326 0.467 0.426 0.392 0.263 0.196
F-Measure 0.781 0.78 0.778 0.781 0.782 0.785

Table 7.5 Performance comparison of proposed ACRO and other algorithms using cancer dataset

Parameters K-means PSO ACO CSO Bat Proposed ACRO

Best case 2989.46 2978.68 2983.49 2985.16 2972.36 2912.66
Avg. case 3248.25 3116.64 3178.09 3124.15 3098.93 3063.34
Worst case 3566.94 3358.43 3292.41 3443.56 3282.75 3179.25
SD 256.58 107.14 93.45 128.46 56.24 71.22
F-Measure 0.832 0.826 0.829 0.831 0.833 0.835

obtains better quality results than other algorithms. Further, it is noted that the K-
means algorithm obtains a maximum intra-cluster distance among all algorithms
using both of datasets. It is also noticed that the performance of the K-means,
PSO, ACO, and CSO algorithm is similar in case of f-measure parameter using
iris dataset. But, the significant difference occurs in terms of intra-cluster distance
parameter. It is observed that the PSO algorithm has worst performance using f-
measure parameter among the rest of algorithms for cancer dataset.

Tables 7.6, 7.7, and 7.8 demonstrate the results of proposed ACRO and other
algorithms using CMC, wine, and glass dataset. It is revealed that the proposed
algorithm provides enhanced results in comparison to other algorithms for CMC and
wine datasets. Moreover, it is noticed that the performance of BA algorithm is better
for the glass dataset in comparison to all other algorithms. Further, it is reported
that K-means algorithm obtains maximum intra-cluster distance for CMC and wine
datasets, whereas, an ACO algorithm obtains a maximum intra-cluster distance for
glass dataset. For wine and glass datasets, K-means and ACO algorithms exhibit
worst f-measure results. In case of the CMC dataset, PSO, ACO, and CSO provide
similar f-measure results.
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Table 7.6 Performance comparison of proposed ACRO and other algorithms using CMC dataset

Parameters K-means PSO ACO CSO Bat Proposed ACRO

Best case 5828.25 5792.48 5756.42 5712.78 5689.16 5681.56
Avg. case 5903.82 5846.63 5831.25 5804.52 5778.14 5746.32
Worst case 5974.46 5936.14 5929.36 5921.28 5914.25 5894.63
SD 49.62 48.86 44.34 43.29 39.54 36.41
F-Measure 0.337 0.333 0.332 0.334 0.336 0.339

Table 7.7 Performance comparison of proposed ACRO and other algorithms using wine dataset

Parameters K-means PSO ACO CSO Bat Proposed ACRO

Best case 16768.18 16483.61 16448.35 16431.76 16372.02 16256.42
Avg. case 18061.24 16417.47 16530.53 16395.18 16357.89 16336.21
Worst case 18764.49 16594.26 16616.36 16589.54 16556.76 16396. 56
SD 796.13 88.27 48.86 62.41 41.78 37.83
F-Measure 0.519 0.516 0.522 0.521 0.523 0.526

Table 7.8 Performance comparison of proposed ACRO and other algorithms using glass dataset

Parameters K-means PSO ACO CSO Bat Proposed ACRO

Best case 222.43 264.56 273.22 256.53 256.47 261.47
Avg. case 246.51 278.71 281.46 264.44 261.61 266.23
Worst case 258.38 283.52 286.08 282.27 278.24 274.14
SD 18.32 8.59 6.58 15.43 7.09 8.11
F-Measure 0.426 0.412 0.402 0.416 0.430 0.428

Figures 7.1, 7.2 and 7.3 illustrate the dispersion of the data objects in artificial
dataset 1 and dataset 2, respectively. These artificial datasets are generated in
the MATLAB. Artificial dataset 1 is a two-dimensional dataset, whereas artificial
dataset 2 is three-dimensional datasets. Figures 7.2, 7.3 and 7.4 show the clustering
of the data objects into different clusters using the proposed algorithm.

Figures 7.5 and 7.6 show the clustering of the iris dataset using proposed artificial
chemical reaction optimization algorithm. The data objects of iris dataset are divided
into three clusters such as setosa, versicolor, and virginica. It is seen that data objects
in setosa cluster are linearly separable from versicolor and virginica, while the
data objects of versicolor and virginica clusters are linearly inseparable that can
also affect the performance of the algorithm. But, it is observed that the proposed
algorithm gives better results for all three clusters. Figure 7.5 shows the illustration
of the data objects of the iris dataset using sepal width and petal width attributes,
whereas Fig. 7.6 shows the illustration of data objects using petal length, sepal
width, and petal width.
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Fig. 7.1 Distribution of data
objects in artificial dataset 1
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Fig. 7.2 Clustering results of
proposed ACRO algorithm on
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7.6 Conclusion

In this work, an artificial chemical reaction optimization algorithm is presented
for solving partitional clustering problems. The proposed algorithm is inspired by
the chemical reaction process. In this algorithm, reactants are used to search the
optimal solution, and these reactants are uniformly determined from the search
space. Further, optimal solution for the problems can be represented using the
reactants. The main work of the ACRO algorithm is to measure optimal cluster
centroid for partitional clustering problems. The reactants represent the initial
cluster centers, which are determined uniformly from the dataset. The proposed
algorithm is applied to optimize the value of initially chosen reactants through its
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Fig. 7.3 Distribution of data
objects in artificial dataset 2
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Fig. 7.4 Clustering results of
proposed ACRO algorithm on
artificial dataset 2
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various steps. The performance of the proposed algorithm is tested on several real-
life clustering problems and compared with state-of-the-art clustering algorithms.
From the simulation results, it is noticed that the proposed algorithm achieves better
clustering results in comparison to other clustering algorithms. Finally, it is stated
that proposed ACRO algorithm is one of the efficient and effective algorithm for
solving partitional clustering problems.



7 Chemical Reaction-Based Optimization Algorithm for Solving Clustering Problems 161

Fig. 7.5 Clustering results of
proposed ACRO algorithm on
iris dataset (2D view)
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Fig. 7.6 Clustering results of
proposed ACRO algorithm on
iris dataset (3D view)
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