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17.1  Introduction

A system can be defined as a complex structure in which different components have 
a specific role, and when they work together, they accomplish tasks in much effi-
cient manner compared to each component separately (Kitano 2002). The system is 
a collection of elements or components that are organized for a common purpose. 
The biological system analysis provides us tools and techniques that help in 
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organizing the diverse piece of information and data gathered from traditional 
biological experiments. Development, integration, and experimental testing of 
hypothesis help us to analyze these systems, as depicted in Fig. 17.1.

Modeling means converting our hypothesis or assumptions into computational 
programs which further can be used for prediction. Some suitable assumptions are 
essential for model construction which includes modeling of the system into math-
ematical form. The mathematical model includes all kind of variables, real num-
bers, integers, Boolean flags, matrices, and other data structure. Each interaction 
represents a state in the model, and the final step involves converting the mathemati-
cal model into a computer program which is done by suitable genetic algorithms 
and other differential equation analysis-based algorithm. Once the computational 
model is built, it requires testing and verification in terms of validation. Models are 

Fig. 17.1 System level understanding of bio-models
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helpful as they help us to test the different hypothesis, refine and interpret experiment, 
and integrate knowledge, leading to new approaches by investigating  coupling and 
feedback. The model helps us to unlock biological systems as they offer different 
perspectives compared to the perspective provided by experiments and theory. 
Though models cannot replace lab experiments and cannot prove mechanism, still 
they serve as a standard feature for scientific investigations.

The illustrative models are precise representation of real situations. Here, we spe-
cifically focus on the controlling element from the real world which can be used as a 
deterministic factor to control our modeled system. Mathematics plays a dominant 
role in defining system using variables which precisely define real-world scenario. 
Using mathematical equations we can simply find the solution of various common 
problems. There are various network level studies exist in literature to perform mod-
eling for individual nodes or high throughput data (Bansal and Ramana 2015; 
Bansal and Srivastava 2018; Davis et al. 2017; Giraud et al. 2017; Griffen et al. 2017; 
Jindal and Bansal 2016; Jo et  al. 2017; Kim et  al. 2017; Nordholt et  al. 2017; 
Romero & López 2017; Vreven et al. 2017; Xie et al. 2017).

Once the model has been generated, it should be optimized. Optimization means 
to find the best solution that helps in better decision making. The key elements in 
optimization problems are decision variables and objective function (Zheng et al. 
2017). Decision variables are the variables that can be varied during the search of 
the best solution. An objective function helps us to quantify the quality of a solution, 
and constraints are the conditions that should be fulfilled in order to achieve the 
desired results. Different optimization techniques such as linear programming, 
nonlinear programming, parameter estimation, dynamic optimization, etc. are used 
for different problems.

Modeling is of no use until it is optimized as per the real situation. Thus, it is a key 
process for any kind of real model establishment. Optimization mainly controlled 
the principles of machine learning. We are considering one dataset for analysis and 
splitting it into two datasets, commonly known as training and test dataset. Various 
modelers use machine learning-based approaches in their algorithms for better effi-
ciency. Henceforth, we can say that model is typically dependent on optimization 
using set of variables or parameters which can be used to regulate or control the 
models as per the need of optimizer. Mathematical modeling is compiled with vari-
ous machine learning approaches in applicable manner which came into market in 
the form of various development tools and software.

With the increase of computer power and advanced mathematical techniques, 
mathematics is now playing the prominent role of integrating information and gen-
erating predictions, through the generation of the computationally inspired hypoth-
esis. Therefore, mathematical models can be used to understand the complex 
biological problems to unbind various diseases and drug effects to benefit the society 
in utmost sophisticated manner. Mathematical model allows a systematic approach 
for investigating system perturbations and is not limited to experimental constraints 
(Fan et al. 2017). These models are able to determine the systematic behavior of any 
real-world disease scenario.
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17.2  Development of Concept Map Models

Biological experiments deal with understanding of hidden processes in the layers of 
various unannotated datasets. The major goal of such analysis is to provide new 
insight about regulation mechanisms so that the system can be controlled in an effi-
cient manner. A variety of homogeneous and heterogeneous data are generated 
through various big data approaches using high-throughput methods. Generation of 
data is not sufficient to perform analysis to reveal the function of the system. There 
is a great need of concept map modeling to understand the systematic way to deal 
with such big data (Kumar et al. 2017).

Concept map modeling focuses on understanding and developing concept for 
development of methods for mathematical analysis. This approach is time- 
consuming as it involves the development of a model for the process and response 
for each level. Therefore it is important to derive such models that allow the incor-
poration of simple as well as complex methods for complete as well as incomplete 
datasets at defined instance (Sun et al. 2017). The main objective of this approach is 
to get acquainted with the quantitative formalization of the biological phenomenon 
by developing mathematical model for the hypothesis.

The initial step of this approach consists of converting or transforming a stable 
or static map to dynamic biological map. The next step consists of interpretation of 
local dynamic response under a set of conditions. By following these two steps, one 
can determine a parameterized model which is further analyzed and refined. A flow 
diagram of this approach is shown in Fig. 17.2.

Fig. 17.2 Molecular classification of system to modeling and optimization
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Fig. 17.3 Flow diagram of the proposed approach to formalizing biological concept maps

One needs to examine how the components and process in a concept map relate 
to each other and contribute to the overall functioning. Conversion of the map into 
mathematically testable structures is an essential part of maps as such system cannot 
provide quantitative analysis themselves. Considering a modeling method, regulatory 
interactions can be inferred using mathematical variables or symbolic representations 
(Fig. 17.3).

The static maps can be converted into Boolean or semiquantitative dynamics 
(SOD) map if a biologist has some prior knowledge about the information contained in 
the static map such as the type of reaction or time required to convert gene expression 
(Kumar and Singh 2017; Teku and Vihinen 2017). The Boolean case determines the 
close relationship of having direct control on the components within the global 
system. For instance, gene X is essential for process Y to occur. It helps us to deter-
mine the accurate function which is applied in inverse methods.

In the real case, the concept of the model represents control about dynamics of 
each node available rather than the detailed time series. An initial model can be 
constructed with the help of this minimum information. Once the model is substi-
tuted by actual time series, a simple function can be determined that captures the 
dynamics at each node (Sehgal et al. 2015). The overall mathematical formulation 
and understanding to develop models are not always a critical task as generalized 
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models can be used for depictions of user-specific data. This data can be further 
customized in the forms of graphs or curves. For instance, dynamicity of the system 
can be represented in the form of various distributional curves or sigmoid curves. 
Once we have constructed these model-derived curves, we can switch on or off the 
functions and change the curves as per the need in the presence or absence of defined 
variables or parameters. Condition-based approximation and differential analysis 
on the basis of conditions can be applied on these generated models.

17.3  Network of Networks

A network helps in understanding and combining scattered data at various dimen-
sions. One of the key features of systems biology is focusing on “network of net-
works.” In the human body, n number of networks is integrated in such a fashion so 
that efficient communication can happen at molecular and cellular levels. Generating 
understandable biosystems may help us to get insights about biological functions 
and variations and trace out changes at cellular to phenotypic levels. Figure 17.4 
represents the structure of “network of networks” which gives an idea about various 
system biology approaches which differs from traditional biological approaches. 

Fig. 17.4 Systems Dissection in terms of networks of networks
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17.4  System Dissection into Components

Biological systems can be implemented in various ways; precisely it can be dissected 
using four components.

 1. High-throughput methods for data generation which includes identifying 
unknown information from the depth of biological aura.

 2. Developing concept, logic, and computational methods to combine various 
biological datasets to infer meaningful information.

 3. Hypothesis generation and testing on newly generated data and comparison of 
the same existing data in various online portals and literature.

 4. Understanding global scenario as big data and solving the phenotypic effects 
related to problems in differential data analysis for new information discovery.

17.5  Types of Modeling

Mathematical modeling is composed of various standard parameters, conceptual 
framing of tools, and interpretation of any kind of real system in mathematical form 
to decipher the control mechanics of the system. Mathematical representation of 
biological systems not only constructs the models but also optimizes and predicts in 
much efficient way compared to various traditional approaches. Thus, mathematical 
models can be implemented in terms of stochastic process, continuous process, or 
any other black box representation which doesn’t have well-known information of 
composition.

For all the cases, the modeling process consists of the following same steps. 
First, using physical laws from first principles, a symbolic model is constructed 
which serves as an extension to the already known existing model (Athanasiou et al. 
2017). This model consists of variables and parameters. The analysis requires com-
prehension of all parameter values obtained from biological knowledge. Variables 
in mathematical modeling can represent anything, whether it is a plant, animal, 
metabolite, pathway, or gene expression. Approximation and estimation of any 
parameter in biological terms is quite difficult as biological phenomenon doesn’t 
reveal complete information in one go as other modeled systems do. The analysis of 
the model is done with the techniques and tricks of mathematics and computer 
 science once the parameters are estimated. Due to the complexity of biological 
 systems, optimization and analysis of differential conditions and large datasets are 
performed using computational approaches. Interpretation in terms of graphs and 
matrix provides an edge to scientific community to accurately depict the behavior of 
the aligned system.

The identification of unknown parameters in terms of biological entities is the 
genuine deterrent in the progress of biomathematical modeling. A non-specific 
approach called biochemical systems theory is used for biological systems modeling 
and analysis which is used for the improvements, developments, and applications of 
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thousands of research papers. BST was initially used to study the control systems 
and biochemical pathways.

The fundamental precepts of BST are very basic and transparent. Every variable 
that progresses after some time is given a name X and is represented in the form of 
the different orders of differential equation and depicts the variation in such a way 
so that it can affect other variables or parameters in positive or negative regulatory 
ways. BST also addresses the problem where the modeler has some broad data 
about the procedures but does not know their mathematical representation to develop 
a structure to solve the complexity of biological systems. Sometimes it is very 
difficult for a developer to develop a system which doesn’t contain absolute values, 
or sometimes a developer is not having an idea of unknown things in the systems, 
but logically if we speak about linear regression, we are not sure about what kind of 
data points are there which need to be included or excluded at initial point. Both 
approaches are somehow similar while dealing with unknown information and posi-
tively providing an edge to mathematical modeling to structure the unstructured 
data. As biological networks don’t follow the Poisson distribution and  converge 
toward scale-free networks which comprises the properties of power law. So, it will 
not be wrong to say that such approaches can result in successful analysis toward 
validation of real dataset.

17.5.1  Forward Modeling

Identification of a parameter in a system is based on local information which subse-
quently deals with small component integration and formation of complete net-
work. For instance, for metabolic pathway construction, there is a need to understand 
the enzymes involved in pathway, transporters involved, co-factors playing the role 
in regulation, and ultimately metabolite formation through secondary metabolisms. 
All these terms need to be integrated to form mathematical equations and depict the 
understanding of biological phenomenon. Biological modeling is generally dealt 
with Michaelis-Menten or power law function. Dynamicity of the system is con-
trolled by various rate law and parameter approximations like Km and Vmax, and 
forward rate of reactions can be controlled on the basis of concentration assigned to 
each entity defined in the model (Apostolopoulos et al. 2017). In such modeling 
methods, there is a need to study the direct rate law to control the local parameters 
and test various hypotheses on the basis of developed models.

The main utilization of this method is the use of kinetic equations, using 
enzyme concentration for tracing the rate of reaction. Variation in the rate of reac-
tion subsequently leads to variation at phenotypic levels. Construction of such 
models and their refinements always has been a crucial task for scientists in bio-
logical community.

A. Bansal et al.
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17.5.2  Inverse Modeling

Variables are observed from high end to low end which means reduction approach. 
The most important advantage of this technique is that data is originated from the 
same organism, acquired in a similar trial condition, and represented in all the pro-
cedures within the organism that could affect the factors of the framework (Kallhovd 
et  al. 2017). Computational time complexity is a major issue with such kind of 
analysis. Moreover, various biological entities are ignored in case of modeling. 
The inverse modeling also use time-dependent analysis where pathways information 
is not absolute.

17.5.3  Partial Modeling

A specific issue with any model building approaches emerges due to the presence of 
the “omnipresent” metabolites like energy molecules (ATP) which cannot be mod-
eled as they are additionally required in different reactions. As a result, a mathemat-
ical buffer is constructed that absorbs the excess material, thus adjusting the dynamic 
changes in concentration at an already determined rate (Yalçın et al. 2017). Better- 
characterized statements are defined as differential conditions in BST, and their 
progression includes energy molecules as factors.

17.6  Inference from Qualitative Data to Computational 
Simulation

Biological system usually deals with enormous methods and tools whether they are 
qualitative or quantitative. Sometimes, there are exact implications of a system that 
are missing, and semiquantitative methods are prioritized over other measures of 
data segmentation or integration for network model construction. For instance, 
graphical methods represent directional flow of the information by connecting com-
ponents of a system in a systematic fashion. Moreover, network construction and 
hypothesis testing on the basis of available information and predicting the informa-
tion of missing links in the networks provide more insights about qualitative mea-
surement from raw unstructured data. Various probabilistic measures like Markov 
chains which are used to represent Hidden Markov models and Bayesian model- 
based networks deal with graphical presentation of unknown entities in a network 
through random measure.

Sometimes, these graphical methods do not represent the dynamicity of the 
 network and do not express much detailed information as per real-time scenario; 
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therefore mechanistic models come to existence where data can be analyzed in an 
automated manner.

Computer-based models and simulations provide an easy tool to understand 
 biological systems in terms of complex nonlinear dynamics. The first is that “instinc-
tive thinking about MAP kinase pathways led to the long-held view that the 
obligatory cascade of three sequential kinases serves to provide signal intensifica-
tion. In contrast, computational studies have suggested that the purpose of such a 
network is to achieve extreme positive cooperativity so that the pathway behaves in 
a switch-like, rather than a graded, fashion.”

Simulations present an understanding of biological phenomenon over differen-
tial time. Using differential equations on the same biological dataset can reveal 
hidden properties of the systems. But it will be unfair to expect accurate prediction 
through computational methods as these methods are developed to get insight about 
candidate entity selection. More data leads to more simulation time and subse-
quently increases the rate of precise selection of prediction attribute. Optimization 
can be performed on the basis of simulation measures of selected parameter. 
Simulation results in certain biological behavior analysis especially can be used in 
case of complex disease like cancer, diabetes, and neurodegenerative diseases. 
Simulations are modern and nontraditional techniques. In earlier days, people used 
conferences, abstract, and poster presentations to grab the idea of one’s understand-
ing. With the advancement in the internet world, these techniques can be integrated 
to form network to get holistic view of understanding of different people across the 
world (Huang et al. 2017). With the advancement in computational resources, the 
time and space complexity has not been an issue in the present world. So, mathe-
matical simulations remain as the best alternative to reduce the time, effort, and 
resources of any wet lab experiments.

17.7  Protein Class Identification

The helix-turn-helix structural motif has an important and crucial role in various 
cellular pathways that are involved in transcription, DNA recombination and repair, 
and DNA replication. At present, methods that are used for motif identification are 
dependent on the amino acid sequence. The major drawback of these methods is 
that motif members belong to different sequence families that do not share common 
ancestry or homology, and hence these methods are incapable to identify all motif 
members (Qing and Gerson 2017).

So to overcome this drawback, a new method based on three-dimensional struc-
ture was created that involved the following steps:

 1. Selecting a conserved component of the motif.
 2. Computing structural features relative to that component.

A. Bansal et al.
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 3. Generating categorization models by comparing the relevant measurements of 
structures that contain motifs and those structures that do not contain motifs.

With the establishment of classification model, the entire Protein Data Bank of 
experimentally measured structures was searched, and new examples of motifs 
were identified that do not show any sequence homology with previously known 
examples. Two such examples are Esa1 histone acetyltransferase and flavone 
4-O-methyltransferase. This result shows the importance of classification-based 
method that is proven helpful for the two abovementioned examples. The sequence- 
based methods are used to recognize a functional class of protein which can be 
improved by using the classification model that is based on three-dimensional struc-
ture information.

17.8  Computational Structure and Function Prediction

With the help of X-ray, NMR, and computational method techniques, structural 
genomics is now showing great enhancement in producing the three-dimensional 
structures of proteins. The important and crucial step after this is to understand 
how protein structure and functions are related. Studying protein structure indi-
vidually impairs the overall understanding of the protein as various missing links 
will exist while studying a part of the protein. The availability of the expected 
surfeit protein structures has resulted in the development of computational meth-
ods that examines multiple protein structures at once and returns the important 
biophysical and  biochemical features. Apart from this, these methods can also 
recognize important features in new protein structures (Winter et  al. 2015) 
(Fig. 17.5).

FEATURE is an automated system developed by Wei and Altman. This system 
applies statistical parameters to study vital functional and structural sites in protein 
structures such as active sites, binding sites, disulfide bonding sites, and so forth. By 
collecting all known examples of a type of site and non-site, FEATURE computes 
the spatial distributions of defined biophysical and biochemical properties. It applies 
various statistical measures to calculate accurate, active, and binding sites. The use 
of parametric and nonparametric test provides this tool a high-level sensitivity and 
specificity.

SBML, Gepasi, and CellML are specialized systems for biological and biochem-
ical modeling (Webb and White 2005). Madonna is a general-purpose system for 
solving a variety of equations (differential equations, integral equations, and so on). 
This has been represented in Fig. 17.6.

17 Modeling and Optimization of Molecular Biosystems to Generate Predictive Models
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Fig. 17.5 Protein structure, docking and dynamics study

Fig. 17.6 Modeling system and screening key biomarkers

A. Bansal et al.
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17.9  Forest Dynamics

SORTIE is a stochastic and mechanistic model that has been developed to simulate 
the growth of northeastern forests. This model mimics the fate of individual tree and 
its offspring. The model is based on the species-specific information regarding the 
growth rates, fecundity, mortality, and seed dispersal distances as well as some 
information regarding local regimes. SORTIE generates dynamic map by following 
tens of thousands of trees. This dynamic map depicts the distribution of nine domi-
nant or subdominant species of trees that look like real forests. The model also 
predicts the realistic forest responses to certain minor and major disturbances like 
destruction of tress within small circle of forest boundary and improved tree 
mortality.

17.10  Cell Designer: A Computational Tool for Modeling

CellDesigner is a software developed by Systems Biology Institute using Systems 
Biology Markup Language and graphical notation. Different kinds of boxes were 
used to represent different kinds of biological entities. And different kinds of flux 
box reactions are present in the model to define kinetic equations. Interaction 
between one entity (i.e., node) to another is represented by edges. The graphical 
design of the software is supported by Jarnac, Plot, and Gibson, while associated 
databases are BioModels, PubMed, IHOP, KEGG, and SABIO. With the help of all 
these integrated modules, a user can model biochemical and gene regulatory net-
works. Using cell designer the user can create graphical notation for gene, RNA, 
and protein and also make a complex of protein. There are options to import and 
control the models developed by other people in systems biology field. The major 
parameter in this software is to perform simulation at molecular level using genes, 
proteins, or metabolite concentration at different time periods. Ordinary differential 
equations are used to create the simulation profiles. Simulation profiles can be ana-
lyzed and compared within a model, same organism model or other model. Another 
important feature of this modeling tool is to study the small pathway by considering 
a system as a whole which implies that the user need not to study complete informa-
tion at one instance. The user can split their pathway of interests into different mod-
ules and later integrate them to reduce the time complexity for the simulation. Apart 
from this, there are various plugins which can be integrated with this software.

Cytoscape is a similar tool for model development on the basis of  topological 
analysis. This tool lacks the use of simulation to study differential  conditions, but 
statistical analysis and beautiful graphical layouts for representing networks pro-
vide an edge for this tool over other modeling softwares.
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17.11  Conclusion

Major purpose of modeling and optimization in research is to systematically assem-
ble and simulate all the molecules and their interactions that are occurring inside the 
living cell. There is a need to understand how these molecular interactions take 
place and how to determine the function of this complex machinery that cannot be 
solved only by biotechnology lab experiments. The advancement in the modeling 
techniques indicates that cellular networks are governed by diverse universal prop-
erties and offer a new conceptual structure that could potentially renovate our view 
of biology and drug therapies.
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