Dr Shruti Jain

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-2 EXAMINATION- APRIL -2019 B.Tech VI Semester

COURSE CODE: 10B11EC612 COURSE NAME: VLSI TECHNOLOGY AND APPLICATIONS COURSE CREDITS: 04		MAX. MARKS: 25
		MAX. TIME: 1 HRS 30 MIN
Note: All questions are compulsory. Carryin	ng of mobile phone duri	ng examinations will be treated as
case of unfair means.		(001, 004) 11 (5, 5)
 (a) How Logic Swing is different from 	n Transition width?	(CO1, CO4) $[1 \times 5 = 5]$
(b) An <i>n</i> MOS is turned ON if its gate		voltage. On the other hand, a
pMOS is turned ON if its gate is co		
(c) Calculate the noise margin of a		
$V_{\rm IL} = 0.6 \text{V}, \ V_{\rm IH} = 1.5 \text{V}, \ V_{\rm OL} = 0.2 \text{V}$		
(d) The value of oxide related capacita	ance C_{GB} is $C_{\mathrm{ox}} WL$ in G	cutoff region. Explain.
(e) What is gate drain overlap? What i	s its effect? Show gate	drain overlap in MOS structure.
2. Consider <i>n</i> - channel enhancement MC	OSFET having following	ng physical parameters: grading
coefficient for junction, 0.26; the grad	ing coefficient for side	wall, 0.1; width, 5µm; length of
drain, 3μm; length of channel, 0.5 μn	n; built in voltage, 0.7°	V; built in voltage for sidewall
0.9V; $C_{\text{sb0}} = 0.86 \text{ fF/}\mu\text{m}^2$, $C_{\text{db0}} = 0.36 \text{ fF/}\mu\text{m}^2$	$24 \text{ fF/}\mu\text{m}^2$, $C_{\text{sbsw}} = 0.5$	24 fF/ μ m , $C_{\rm dbsw} = 0.24$ fF/ μ m
abrupt junction depth, 0.4µm; reve	rse bias voltage 3V.	Find source substrate diffusion
capacitance.		(CO3) [6]
3. An <i>n</i> -MOS transistor is fabric	ated with the fol	lowing physical parameters
$N_{\rm D(poly)} = 10^{20} {\rm cm}^{-3}, N_{\rm A(substrate)} = 10^{16} {\rm cr}$	m^{-3} , $W = 10 \mu m$, $Y = 5 \mu$	$L_{\rm m}$, $L = 1.5 \mu \text{m}$, $V_{\rm DB} = 2 \text{V}$ to 4V
gate to source voltage = 4V, drain to	source voltage = 4V	. Find drain capacitance for the
MOSFET assuming parasitic capacitar	nce as junction.	(CO1, CO3) [6]
4.		(CO4) $[2 \times 4 = 8]$
(a) Calculate the critical voltages of	a resistive load n-MC	
information: $V_{DD} = 5.0 \text{ V}, k_n = 5.0 \text{ V}$		
intormation, r DD = 3.0 v, $\kappa_{\rm h}$ = 3	$o\mu i i i$, $i o D = 0.5 i$, K	100122.

(b) Determine the V_{OH} and V_{OL} for Linear E-MOS inverter when biased at $V_{GG} = 4V$,

 $V_{\rm DD} = 3 \, \text{V}$, $k' = 100 \, \mu \text{A} / \text{V}^2$, $V_{\rm t0D} = 1 \, \text{V}$, $V_{\rm t0L} = 0.8 \, \text{V}$, $(\text{W/L})_D = 40/4$ and $(\text{W/L})_L = 28/2$.