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Abstract An Elliptic Curve Cryptography (ECC) is used on the Noncommutative
Cryptographic (NCC) principles. The security and strengths of the manuscript are
resilient on these two cryptographic assumptions. The claims on theNoncommutative
cryptographic scheme on monomials generated elements is considered be based on
hidden subgroup or subfield problems that strengthen this manuscript, where original
assumptions are hidden and its equivalents semiring takes part in the computation
process. In relation to the same, the research gap is well designed on Dihedral orders
of 6 and 8, but our contributions are in security- and length-based attacks enhance-
ment over Dihedral order 12, reported in work done. We modeled the said strategies
and represent the ideal security concerns for applications.

Keywords ECC · Noncommutative cryptography · Monomials generations ·
Length based attacks

1 Introduction

In cryptography, the security algorithm and its measures are playing important role
responsiveness, which has been considered as an integral part of computer science.
Cryptography is a combined discipline of mathematics, computer science, electrical
engineering, and physics. It is one of the foundations that give guaranteed secure
communication in the presence of adversaries. Where, the strength and powerful
computing techniques are most useful to avoid the threats and supports challenges.
A lot of applications are available in the realistic sense for showing the essential
requirements that contain to avoid adversaries to occur, the assurance of legitimacy,
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protection of information from confession, protected message communication sys-
tems involved in transmission(s), and storage of information(s). The cryptographic
algorithms are shown appropriateness in the full-fledged measurements with the
proposed and/or available resources. But instead of the same, from a research point
of view, the motivational issues on the algorithms with more impulsiveness and
arbitrariness fondness are a guide for future research with an assortment on compar-
atively more and strong responses. In essence of cryptography, these are termed as
private-key and public-key authentication and key exchange.

An immense revolution came through the use of Public-KeyCryptography (PKC),
proposed by Diffie and Hellman [1]. The PKC’s techniques introduced further in var-
ious forms, where on a variety of special features in Elliptic Curve Cryptography
(ECC) [2, 3] is attracted the most attention in the area of cryptography. It is well
available in the literature to show with marginal enhancement on the lower commu-
nication as well as computation costs. ECC provides better security and performance
than RSA/DSA algorithms for equivalent security strengths on shorter key sizes [we
followed National Institute of Standard and Technology (NIST) guidelines released
in 2012]. Today, ECC is considered being tenable above the key length of 224 bits
up to the year 2031, corresponding to the same 256 bits key lengths unsusceptible
beyond 2031 and above key lengths are not defined but is secure, (Table 1). This table
is indicating the RSA algorithm using 2048 and 3072 keyed sized bits for the same
security strength for 224-255 and 256-383 varied lengths keyed and its an obvious
relative performance advancements indicators.

From research points of view, all PKC’s approaches are generalized on
commutative-based principles, but some of the researchers were looking into the fact
to generalize the cryptographic approach on noncommutative basis, and the given
name for the same is noncommutative cryptography or non-Abelion cryptography. It
is one of the approaches based on noncommutative nature, where it is mathematically
based on random arithmetic operation star (*) (holds on rotation and/or reflection)
on any of the noncommutative group G of (G, *), where group Gmay be any Group
elements, Ring elements, Semiring elements, or some algebraic structural elements
or its combinations. According to its noncommutative naturalness properties for two
elements or combinations of [if considered order be appropriate] a and b operations
of G are not resembles the same results, such as a ∗ b �= b ∗ a. It can be achieved
on the combined principles from physics and mathematics that are producing the
noncommutative natural generalization.

Table 1 Equivalent security
for RSA versus ECC

RSA ECC Protection from attack

1024 160–223 Until 2010

2048 224–255 Until 2031

3072 256–383 Beyond 2031

7680 384–511 –

15360 512+ –
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1.1 Related Work and Associated Issues

Noncommutative cryptographic approach keeps a solid backbone security enrich-
ments and better performances than the existing approaches. Using noncommuta-
tive cryptography implementations in a number of applications are based on PKC’s
approaches such as on RSA/DSA, Diffie–Hellman, and ECC algorithms. For the
cryptographic purposes, these are working efficiently in session-key establishment,
en/decryption and/or in authentication systems on noncommutative too. The discrete
logarithmic is acting as an intermediary strength near to non-negligible solutions.
On behalf of the open opinion on security experts, a brief observation is presented
here.

For solving a discrete logarithm problem (DLP) and integer factorization prob-
lem (IFP), Shor in 1994 [4] is given a competent algorithm on the quantum basis,
so likely a representation of possible security breach on commutative-based cryp-
tography. Further, Kitaev [5] considered the same as a special case on its DLP, and
analyzed on its significance, called hidden subfield or subgroup problem (HSP). The
general ideas from Paeng et al. [6], Joux and Nguyen [7], and Cocks [8] are one
of the important steps in making the finite Abelian group’s decision separations on
cryptographic groups and its equivalents on quadratic residues. Magliveras et al. [9]
designed PKC’s using one-way functions and trapdoors infinite groups, therefore in
2002, Stinson observed sensibly on most of the PKCs that only belong on Abelian
or commutative approach, whose forthcoming future intention may be susceptible
in the arena. On behalf of same, Goldreich and Lee suggested don’t put all the cryp-
tographic generalizations in single “commutative group” only. Therefore, the reason
was a clear indication to look at alternative cryptography for specific purposes; this
was the opening of noncommutative cryptography. Noncommutative cryptography
is a generalization of a commutative approach in such a way that it doesn’t follow the
commutative case properties, but those are analogous to be the commutative cases.
Afterward, there are session-key establishment, en/decryption, and authentication
schemes on noncommutative are generalized on a variety of schemes [10, 11]. HSP
over elliptic curve cryptography-DLP (ECC-DLP) is comprehensively resolved by
Proos andZalka [12]. Lee [13] in 2004 organized quantumalgorithmswell on the ran-
domHSP forNoncommutative group elements and it was reportingwell, with respect
to braid group based attacks [14]. Further, Rotteler [15] suggested to use HSP over
noncommutative with proven evidence are much harder and better in the adversaries
presence. Cao et al. [16] used polynomials functions to build cryptographic scheme
over noncommutative semirings or ring elements. Further, the protocol application
was based on non-Abelian given by Kubo [17] on Dihedral order 6, which has been
considered the initial order for this group and its construction is based on revolutions
of three-dimensional approaches.Reddy et al. [18] build signature schemesovermod-
ular method on noncommutative groups and semirings. Moldovyan and Moldovyan
[19] constructed the cryptographic implementations on four dimensions; the major
intention was to generalize the security enhancement. Myasnikov and Ushakov [20]
have the crypt analyzed on encrypted texts and the authentication schemes on the
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hardness tests of the Conjugacy search problem on monoids elements. An algorithm
is devised to solve the same problems and got anxious on the strategies. Svozil [21]
recognized the metaphorical structures with hidden variable indecisiveness on non-
contextual elements that can’t be figured out on cryptanalysis, and it doesn’t any
assembled proofs. Kumar and Saini [22] have shown the cryptographic applications
on extra special group (ESG) that providesmore robustness and unpredictable behav-
ior as compared to all the known schemes using Noncommutative Cryptography on
the extra special group (ESG) and applied the same in cryptographic schemes gener-
ations. Where the center of ESG is cyclic and its quotient belongs to nontrivial, i.e.,
the resultants are not equal to zero or identity to its group elements. Transitions from
group elements to its equivalent semiring elements finish finitely on monomials (the
proposed assumptions for a group and semiring elements are unique and irreversible
on the proposed group) and contain all the algorithmic properties. It is designed the
authentication and integrity schemes on Mono-morphism for a group and semiring
elements on Dihedral Order 8 of ESG. Also, ESG defaults contain the authentication
and integrity schemes on Heisenberg and Quaternion groups and finally it is illus-
trated on the exponential growth on Length Based Attacks and predicted almost to
be unpredictable.

1.2 Motivation and Our Contribution

The issue related to security enhancement is one of the most motivational concerns,
where monomials with semiring structures and Dihedral orders are presented on
potential advantages to keep away the assumptions from various attacks. The mono-
mials structured foundation is, in general, uses the equivalent semiring elements
consideration takes part in the computation process, whereas main group parameters
work in hidden, and it is based on polynomial modular reductions.

Our contribution highlights the monomials generations on the three dihedral
orders of 6, 8, and 12. The Dihedral 6 is already presented so we didn’t take into con-
siderations, and Dihedral order 8 monomials generations for key-exchange, encryp-
tion–decryption, and authentication schemes presented in [22]. The virtual consider-
ation for Dihedral order 12 is considered in themanuscript. In last, we have presented
a scenario for length based attacks in order to investigate into Monomials Crypto-
graphic generation approach.

1.3 Manuscript Organization

The manuscript is organized into subsequent sections, in the next section, it is
presented with cryptographic assumptions on modular polynomials and further its
hypothesis is presented on group and ring elements, in brief. In Sect. 3, preliminary
knowledge of dihedral order 6 and 8 are presented frommathematical points of view
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in justification of proposed strategies, which releases the significant contribution our
proposed cryptography. In Sect. 4, a length-based attacks scenario is presented on
input sequence generation and further presents scenario on attacks by the adversaries
in reverse to find the original key. This represents security strength guarantees on
enlarged search species.

2 Preliminaries

2.1 Noncommutative Assumptions on ZModular Strategies

A PKCs over the Noncommutative cryptography on polynomials with the semiring
R elements is proposed by Cao et al. [16], and this scheme is generalized with
the name of Z-modular approach. The notation for a Z-modular structure on ring
r is Z(r), and its structural applications available on Z

+[r] for positive elements on
noncommutativeR and it is aswell as applicable on negativeZ−[r], where r ∈ R is not
certain on general and monomials, where group and semiring are comprehensively
applicable on Z-modular.

2.2 The Basis of Noncommutative Cryptographic Algorithm

The concerns on security strengths are based on the following two assumptions:

(i) Conjugacy Decisional Problem (CDP): The definition of CDP says on given
two group elements a and b of group G, using the random secret chosen x
to generate the other group elements that satisfies for b = ax or to generate
the Conjugacy multiplicative inverse of: b = x−1ax. It works in the forward
direction.

(ii) Conjugacy Search Problem (CSP): For a group G of elements a and b, that
try to finds a secret x if there exists x in G such that b = ax or b = x−1ax. It is
a reverse process to determine the random secret key as x.

CSP is considered to be a one-way hash function generation, i.e., the designed
algorithm(s) are not able to determine the other group elements values such as
a → bx. In modern cryptography on Noncommutative, generalized assumption is
completed enough to frustrate the cryptographers. Also, CSP is well known for its
unrealistic nature to solve the same probably on polynomial time.
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2.3 Monomials Used in ZModular Method

The Z-Modular method is constrained to be monomials on the chosen polynomials
on secrets parameters, i.e., original information of group elements are hidden with
its equivalents ring/semiring elements on polynomials functions. Such participation
Conjugacy assumptions are viewed as a special case. Conjugacy Search Problem is
proposed under these considerations.

3 The Preamble to Dihedral Orders

3.1 Dihedral Orders 6

The dihedral is a virtual concept works on a finite set of group elements. After defined
operations on it, the group elements show some specific variations that make the
unique nature for cryptographic uses. The first initiated step for the noncommutative
or non-Abelian group is dihedral order 6, denoted by D3, given by Uno and Kano
in [23]. In which, three colored blocks such as Red, Green, and Blue is considered
as an assumption, where three actions applies as “a: swap the first block and second
block from left to right, b: swap the second and third block from left to right, e: leave
the block as they are, and if two actions then do the operation from right to left as
specified”. The set of operations works is as follows:

e: RGB → RGB or (), a: RGB → GRB, b: RGB → RBG, ab: RGB → BRG, ba:
RGB → GBR, aba: RGB → BGR

Here, the block operations are represented in the form of mathematics, with con-
siderations on R= 1; G= 2; B= 3 and arranged the same in various group elements.
Further, equivalent ring elements are assigned to group elements. It shows the center
of group element results on a cyclic rotation having its quotient belongs to nontrivial
elements, where variables or terms that don’t result on the identity or zero elements.

(
1 2 3
1 2 3

)
→

(
1 0
0 1

)
,

(
1 2 3
2 1 3

)
→

(
0 1
1 0

)
,

(
1 2 3
1 3 2

)
→

(
1 1
1 1

)
,

(
1 2 3
2 3 1

)
→

(
0 1
1 1

)
,

(
1 2 3
3 1 2

)
→

(
1 1
1 0

)
,

(
1 2 3
3 2 1

)
→

(
1 0
1 1

)

The cryptographic schemes such as key-agreement, encryption–decryption, and
its authentication have presented on general and monomials generations in [24], and
interested authors can go in detail with this reference.



An ECC with Probable Secure and Efficient Approach … 7

3.2 Dihedral Order 8

The initial order for Dihedral order 8, denoted by D4 is available in [25] and the
use of this order for the cryptographic purpose is presented in [22]. These consist
of the operations on the cyclic subgroup generation by rotations and reflections. For
virtualization point of view Dihedral order 8 represented with an on a square of
glass with the alphabetic letter “F”. In the same, some defined operations have been
considered, such as e acts as an initial assumption likely be an identity element, a is
used for a rotation by 90° and b is used for reflection. To make use of cryptographic
aspects, square movement makes a difference on 0°, 90°, 180°, 270° [clockwise
rotations], are taken into its considerations and reflections on the other hand, as
shown in Fig. 1.

This virtual concept we apply for numeric consideration for the use of crypto-
graphic purposes. Another way to represent the dihedral order 8 concepts is still
possible. The schematic representation is based on the square glass on three opera-
tions e, a, b and its corresponding mixed operations, represented in Fig. 2.

Finally, consider these group elements in a group from G1 to G8, like
e, a, a2, a3, b, ba, ba2, ba3, which have been used in cryptography for its specific
uses such as session-key generation, en/decryption as part of its resultant. A similar
idea for the same has assumed for Dihedral 12 on group elements from G1 to G12,
detailed decryption is not available here, but we have considered. Interested authors
may refer from Kumar and Saini [22].

Fig. 1 Symmetries of
Dihedral order-8

Fig. 2 Schematic
representation on Dihedral 8
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4 The Investigation into Length Based Attacks and Its
Proposal

Length based attacks (LBA) is an approach to determine the user secret key; it works
on word lengths, it is related to LBA, in Ruinskiy et al. [26], and in Myasnikov and
Ushakov [27]. It is presented on Dihedral order 6 [24]. In these regards, it is one of
the reverse procedures that try to recover the factors of conjugates. A good approach
results in finding its Conjugator in the form of its group elements generation. The
procedure is generating the Conjugators as follows for the Dihedral order of 6, 8, and
12, Fig. 3. On the input sequence and Dihedral order 6, there are 6 group elements
and on the successful completion of this task a total of 36 elements to satisfy for the
same. Similarly, for Dihedral 8, there are 8 group elements and a total of 64 elements.
Finally, for the Dihedral 12 (hexagon element), there are 12 group elements and a
total of 144 elements to satisfy for the same.

Our proposed approach is based on complexity enhancement for cryptogra-
phers (or complication) on Dihedral order of 6, 8, and 12. The group elements
are SG = {

g±1
1 , g±1

2 , g±1
3

}
for order 6, SG = {

g±1
1 , g±1

2 , g±1
3 , g±1

4

}
for order 8 and

SG = {
g±1
1 , g±1

2 , g±1
3 , g±1

4 , g±1
5 , g±1

6

}
for order 12. The generation of input sequence

on input y = g1g
−1
2 g3g

−1
4 , for length n = 4 for all the three orders as follows. On

the assumption of any sequence of chosen input(s), perform operations on likely
be on the 2k-ary tree. Where it does starts with an initial assumption word e, and
generation of any further word/group elements depends on successful proceeding is
one of the probable of its child generalized nodes. The successful accomplishment
is based on chosen input yn to length y = y1y2 . . . .yn traces likely as presented in
Fig. 3. The nth-level contains elements on (2k)n leaf nodes. The leaf node of each
one group is a potential element in any of y. The proposed work is difficult in finding
its traces back on its cryptanalysis and/or decomposition of an encrypted message.
The supporting group provides an unpredictable and robustness behavior on center
and resultants in midair is/are rotates cyclic. Further, the assumptions are unique,
irreversible and appropriate in sustaining to algorithmic properties. Therefore, for
the proposed orders, it is assumed secure in reference to brute-force search.

Fig. 3 The process of generating y = g1g
−1
2 g3g

−1
4 on Dihedral 6, 8 and 12
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Fig. 4 Decomposition of length y = g1g
−1
2 g3g

−1
4 on Dihedral 6, 8 and 12

Especially, when an attacker(s) tries to determine with equal child nodes, such as
P and Q in same length, then the procedure have been created in such a fashion to
fall for the same with insignificant solution. The general observation for Dihedral
order 6, six candidates group elements forms at each level, so the time complexity
work in the form to attack on the proposed strategy is O(62n) for all n word length, on
the success or failure attempts. Next on average, 8 candidates (in Dihedral order 8)
elements in each level for one group element, so the time complexity of this strategy
is O(82n) for all n word length, on the success or failure attempts. Finally on average,
12 candidates (in Dihedral order 12, denoted by D6) elements in each level for each
group element, the time complexity of the attack algorithm is O(122n) for n length
words, either on failure or success proceedings. The attack procedure is considered to
be reversed searching the instance on the 2k-ary tree. In reference to shown Fig. 4, the
decomposition on any lengths, the dark nodes are considered to be target nodes that
forms paths, where this technique is suitable to find the path if it successful works.
Therefore, we are able to enhance the robustness properties on its orders and acceler-
ate the unpredictable behavior for cryptographic purposes. Its practical feasibility of
the proposed idea is keeping a lot of benefits in noncommutativematrix operations on
a finite group. Theoretically, the proposed approach is working; therefore interested
authors and/or security agencies may apply this principle in various cryptographic
applications, such as mobile techniques, online services, cloud in security, Internet
of Things (IOT).

5 Conclusion and Future Scope

Due to tremendous demands on secured tools and techniques for various applications,
our considered approach is oneof the prime research concerns. Themanuscript claims
the Noncommutative cryptographic scheme on monomials generated elements. The
monomials working principles are acting onDihedral order of 6, 8, and 12. In regards
to security and performance, these are reporting an immense contribution in the field
of cryptography and making the proposal stronger based on the hidden subgroup
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or subfields problem. For the adversary, the attacks like length based, cryptanalysis,
and brute-force are likely being negligible to find.

As the proposed approach itself is a representation of polynomial functions that
doesn’t reveal secrets and/or finding polynomial for attacker is hard to find. The
deployment considerations for applications are on high demand, designing for accel-
erating the algorithms, also in the area of security, is in tremendous demands.
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