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ABSTRACT

Compression serves as a significant feature for efficient storage and transmission of medical, satellite, 
and natural images. Transmission speed is a key challenge in transmitting a large amount of data espe-
cially for magnetic resonance imaging and computed tomography scan images. Compressive sensing 
is an optimization-based option to acquire sparse signal using sub-Nyquist criteria exploiting only the 
signal of interest. This chapter explores compressive sensing for correct sensing, acquisition, and recon-
struction of clinical images. In this chapter, distinctive overall performance metrics like peak signal to 
noise ratio, root mean square error, structural similarity index, compression ratio, etc. are assessed for 
medical image evaluation by utilizing best three reconstruction algorithms: basic pursuit, least square, 
and orthogonal matching pursuit. Basic pursuit establishes a well-renowned reconstruction method 
among the examined recovery techniques. At distinct measurement samples, on increasing the number 
of measurement samples, PSNR increases significantly and RMSE decreases.
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INTRODUCTION

With the advancement in information and communication technology, data traffic generates noticeably 
massive amount of information data especially in biomedical area. Radiological medical imaging meth-
ods (MRI and CT-Scan experiments) are used to inspect and analyze the inner structure of human body. 
These methods generate a large amount of scientific information which is digitally stored in the form of 
medical image that can be easily accessible. Clinical imaging records are significantly high as a typical 
hospital generates terabytes of information per year (Ravishankar & Breler, 2011). Clinical imaging data is 
certainly excessive and needs more storage space thus medical image compression is essential. Compres-
sion is a proficient solution for illustrating compact and robust data representation to facilitate efficient 
transmission and storage. File size is reduced, less bandwidth is utilized and the transmission speed is 
accelerated using compression techniques. Predominant goal of compression is to lessen the redundant 
and irrelevant bits of data for efficient data storage and transmission. Compression may be extensively 
categorised into two classes, Lossy and Lossless Compression. Lossy compression is appropriate for 
the applications where a slight loss of information is permissible like for natural pictures, text images, 
etc. For lossy compression techniques, compression ratio is high but the image quality is low. In case 
of lossless compression, the reconstructed image is the exact replica of the actual image as there is no 
data loss in lossless compression technique. Compression ratio achieved for this approach is not always 
high but the recovered image is of better-quality as compared to that of the lossy compression approach.

Data loss is not tolerable in scientific field like biomedical image processing as it can lead to wrong 
diagnosis. Many hospitals have small clinics situated in the far flung regions where distance is a vital 
issue to deliver the health care facilities. Patient residing in remote, rural and semi-urban areas find tough 
time to travel to far away hospitals particularly for diagnostic functions. For the convenience of patients 
suffering from severe diseases, the hospitals make use of telemedicine practices to provide health care 
facilitates in such areas. These tele-radiology applications allow the technician at the remote centres to 
capture a series of medical image data (MRI or CT scan) and transmit it to the principal health centre 
situated at the city where the diagnostic radiologist can examine the image and send back the diagnostic 
information to the clinical prognosis and the patients (Vijaykuymar, & Anuja, 2012).

In conventional image capturing systems, sampling is primarily based on Nyquist criteria wherein 
the original signal is sampled at a rate more than or equal to two times the maximum frequency of the 
signal. This sampling rate is too high for certain applications thereby increasing the complications in 
terms of complexity during compression. The increased rate of sampling adds directly to the complexity 
of the sensing hardware and this leads to wastage of power resources (Zhao, et al., 2017; Wiegand, et 
al., 2003). So, to facilitate the need of image compression for contemporary applications it is required 
to have a system with decreased acquisition complexity and flexible process for decoding. Compressive 
Sensing (CS) technique emerges as a new idea for signal acquisition, compression and reconstruction 
which has become main focus of researcher’s interest. It is a far unique technique employing sub-Nyquist 
sampling criteria overcoming the drawbacks of the conventional strategies (Donoho, 2006; Candes, et 
al., 2008; Romberg, et al., 2006). CS utilizes the sparse signal recovery using fewer linear measurements 
and convex optimization approach for approximate recovery relative to standard schemes utilizing the 
complete ensemble of signal space (Candes & Romberg, 2007).
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The concept of CS was at first introduced by Emmanuel Candes, collectively with Justin Romberg 
and Terry Tao (Donoho, 2006; Candes, et al., 2008; Romberg, et al., 2006; Candes, et al., 2007). Signals 
fulfilling the requirement of sparsity in any domain can be recovered using CS approach, may it be an 
audio, image or a video signal. In (Nahar & Kolte, 2014) it was seen that CS was a progressive approach 
for signal acquisition and restoration. The key advantages of CS are faster data acquisition from very 
few sparse samples, reduced computational complexity, low power transmission, small traffic extent, 
etc. X. Zhang, et al. have used Orthogonal Matching Pursuit (OMP) reconstruction algorithm in (Zhang, 
Wen, Han, & Villasenor, 2011) applying the set of rules to recover an image. It was found that OMP has 
negligible additional complexity however enabling overall performance improvement in the reconstruc-
tion. Combined sparsifying transforms were used in (Qu, Cuo, Guo, Hu, & Chen, 2010) to achieve CS 
for MRI imaging by enforcing the sparsity of image using Total Variation (TV), wavelet approach, etc. It 
was seen that smooth L0 norm method have NP hard problem which was then replaced by Basic Pursuit 
(L1) norm minimization. Predefined information was used in (Liang & Ying, 2010) for CS reconstruction 
that utilises partially known spatial and temporal frequency domains from motion patterns of MR images. 
Reconstruction was done using L1 norm minimization technique which was the best approach for image 
sample recovery. A real time MRI recovery technique was proposed in (Majumdar, Ward, & Aboulnasr, 
2012) and the residual (the difference image between the previous and the current image) was taken. 
M.M Sevak, et al. (Sevak, Thakkar, Kher, & Modi, 2012) have implemented wavelet transform for the 
generation of a set of sparse components and CS approach for compression and later they combined the 
two techniques. Various Non- Linear Mapping Techniques are compared with OMP technique in (Zhang 
& Wen, 2012). As compared to the other convex optimization approaches, OMP was less complex ap-
proach providing faster running speed, lower power consumption and optimal reconstruction. Guaranteed 
reconstruction was however provided by convex optimization based recovery algorithms. Scan time for 
MR image acquisition was improved by T.D.Tran et al. (Tran, Duc, & Bui, 2010). In this paper authors 
combines CS approach along with the wireless transmission mechanism which was based on 802.11 
providing bit rate requirement at 11Mbps. An improvised L1 norm reconstruction method for CS-MRI 
was proposed in (Chang & Ji, 2010) investigating the previously developed approaches like SMASH and 
SENSE recovery algorithms. A better recovery algorithm; L1 norm minimization approach was used in 
this paper to provide precise details, sharp edges and accurate recovery for MRI image reconstruction. 
This approach yields lower Normalised Mean Square Error (NMSE) producing a better quality recov-
ered image with less computation complexity. A new set of parameters consisting of different auxiliary 
measurements, low pass filter coefficients, ordering index, etc. are proposed in (Lakshminarayana & 
Sarvagya, 2016) for improving the performance of CS algorithm. Authors (Lakshminarayana & Sar-
vagya, 2016) show that L1 reconstruction approach was used to recover the signal using the concept of 
sparsity. A better performance was achieved maintaining the trade-off between compression ratio and 
medical image quality as compared to the existing literature in this field. Some of the other state of the 
art literatures are summarized in Table 1.

The main motivation of this chapter is reduction in file size using CS approach for biomedical image 
compression so as to minimize the storage and bandwidth requirements. The main goal of this chapter 
is to find an efficient method for reconstruction of images and evaluate recovery algorithms to maintain 
the balance between image quality and compression ratio. A modified approach for better acquisition, 
compression and reconstruction using CS technique provides better reconstruction and least distorted 
compressed image.



55

Implementation and Performance Assessment of Biomedical Image Compression
﻿

COMPRESSIVE SENSING

CS plays a significant role in numerous fields like biomedical, scientific imaging and satellite imaging 
to reconstruct the signal using fewer samples (Foucart, et al., 2013; Madhukumar, et al., 2015). CS 
techniques produces better results in terms of high imaging speed, high Compression Ratio (CR) and 
better quality image (Wang, Bresler, & Ntziachristos, 2011). This technique exploits the samples of 
sparse signal of interest rather than collecting the entire ensemble of signal samples (Baraniuk, 2007). 
CS approach intend to acquire sensing and compression in a single step by converting the sensing para-
digm (Madhukumar & Baiju, 2015). Figure 1 shows the block diagram of CS technique which is the 
combination of sensing and compression.

Table 1. Literature review of CS techniques

S. No. Authors Utilized Techniques Implication Drawn and 
Estimated Parameters Demerits

1. (Shiqian M., et.al., 
2008)

L1- norm minimization, Total Variation 
approach and Wavelets

Error of image and Signal-to-
Noise-Ratio

Requirement of better image quality 
and storage space.

2. (Nagesh P., Baoxin L., 
2009) Compressed sensing Technique (CS) Recognition rate and 

percentage of storage space Multiple views of scenes are used.

3. (Wright J., et.al., 
2009)

L1- minimization technique for sparse 
representation

Sparsity Concentration Index 
(SCI) Detection of object is also required.

4. (Sen P., Darabi S., 
2011)

Compressive rendering for finding pixel 
values

MSE is evaluated. Scheme 
gives better quality 
reconstruction.

Sampling densities employed are very 
less.

5. (Jing C., Wang Y., & 
Hanxiao W., 2012)

Real time video surveillance CS 
tracking and motion detection algorithm

Better recovery at high 
resolution for fast tracking 
utilizing less storage space.

Outcomes are not evaluated on 
benchmark datasets.

6. (Hemalatha R., et.al., 
2013)

BinDCT and Noiselet based CS 
approach is utilized for Energy 
consumption analysis

Compression ratio, PSNR and 
reduced bit rate

More energy consumption reduction 
is required.

7. (Yipeng L., et.al., 
2013)

Biomedical signal recovery using L1-
Total Variation approach and Nuclear 
norm minimization

Technique employed provide 
accurate signal recovery and 
Mean L1 error is evaluated

Outcomes are not evaluated on 
benchmark datasets.

8. (Tremoulheac B., 
et.al., 2014)

L1 norm minimization with Fourier 
transform in temporal direction and 
Alternating Direction Methods of 
Multipliers (ADMM)

Normalized MSE for intensity 
and motion

Method is not optimized and run-time 
elapsed is more.

9. (Xie S., Guan C., & 
Lu Z., 2015) ADMM with variable splitting strategy MSE is calculated Datasets are not standardized and 

approach is computationally complex

10. (Zhang Q., et.al., 
2016)

CS theory is applied from down-
sampled l-space data and a wavelet tree-
based recovery algorithm is proposed

SNR is calculated for MR 
images

Can be extended for recovery of 
dynamic MR sequences

11. (Bilala M., et.al., 
2017) L1 norm approximations are employed

SSIM, Gaussian noise level 
in MR images, RMSE of 
recovered MR images

Complex architecture

12. (Shrividya G. & 
Bharathi S.H., 2018)

CS-MRI technique is used along with 
Total Variation algorithm

MSE, PSNR, SSIM and 
Sampling percentage of MR 
images

SSIM value can be improved more to 
get quality
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Sensing and Sampling

Sensors are used to sample and analyse the signal by taking a linear measurement of signal space. The 
whole ensemble of this signal space is not exploited for CS recovery but the CS technique works on 
alternating present vectors using already known vector space. This sampling consists of measurement 
samples having decreased dimensions than the original signal. Let the highest frequency component f 
(in hertz) is maximum for an analog signal then according to Nyquist, the sampling criteria should be at 
least 2×fmax, or twice the highest frequency component. If the sampling criteria is not fulfilled or if the 
sampling rate is less than the twice of maximum frequency component then highest frequency compo-
nents does not provide the correct representation of an analog input signal.

The sub-Nyquist sampling has involved a lot of concentration in both fields of mathematics and 
computer science. Sub-Nyquist sampling, also known as compressed sensing refers to the problem of 
recovering the signal by its samples. It can also recover the signal from the fewer samples than required 
by Nyquist sampling criteria. Recovery principles involved in Compressed Sensing approach to recover 
the signals are briefed in the next section.

Principles of Compressive Sensing Reconstruction

The two recovery principles involved in CS recovery are Sparsity and Incoherence. To implement CS 
theory, signal of interest is represented by sparsity and an isometric property of incoherence which limits 
the sensing modality.

Sparsity

Sparsity expresses an idea, that a continuous time signal has the rate of information much lower than 
expressed by the signal bandwidth. Similarly for a discrete signal to be sparse, the degree of freedom 
should be much lower than the finite length of the signal. Sparse signals have many zero coefficients 
and few non-zero coefficients. Fewer non-zero coefficients consist of majority of signal information 
and the other coefficients are not exactly zero however having very less value. Signal estimation for a 
sparse signal is done by considering only the larger coefficients consisting of majority information and 
other least significant coefficients are ignored during computation (Park & Wakin, 2009). A signal can 
be sparse or compressible having a concise representation in a proper sparsifying (Ψ) basis. Threshold-

Figure 1. Block diagram of Compressive sensing
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ing algorithms also depend on sparsity to estimate the signal. For systems of linear equations, sparse 
approximation theory deals with sparse solutions. Several variations for sparse approximation problem 
are structured sparsity and collaborative sparse coding.

1. 	 Structured Sparsity: In the original version of sparsity, any of the coefficients of the problem 
domain can be selected but in case of structured sparsity model, group of coefficients are chosen 
instead of picking individual coefficients (Eldar, Kuppinger, & Bolcskei, 2010).

2. 	 Collaborative or Joint Sparse Coding: Original version of the problem is defined only for single 
signal but in collaborative sparse coding a set of signal is available and each of them is converged 
from the same set of coefficients (Tropp, Gilbert, & Strauss, 2006).

Incoherence

The duality between time and frequency domain is expressed by incoherence which basically presents 
the idea that the signal having sparse representation in sparsifying domain (Ψ) and must be spread out in 
the sampling domain in which they are acquired. Incoherence for sparse signals is implemented through 
isometric property. Coherence basically evaluates the maximum correlation between any two elements 
of entirely two different matrices. Incoherence refers to the property which signifies that there must be 
minimum correlation between the elements of two different matrices. Considering two different domains, 
a signal is considered to be compressible if it has high sparsity in Ψ domain and is incoherent in sampling 
domain (Baig, Lai, & Punchihewa, 2012). Low correlation enables the signal reconstruction of sparse 
signal with few samples whereas it is impossible for high correlation samples regardless of signal sparsity.

Imaging Modality

A particular imaging technique or a system in the area of Computed Tomography Scan (CT-Scan), 
nuclear medicine, ultrasound, projection radiography and Magnetic Resonance Imaging (MRI) is termed 
as imaging modality. Modalities like CT-Scan, projection radiography and nuclear medicine make use of 
ionization to visualize the interior human body structure. High frequency sound signals are fired into the 
human body for ultrasound imaging and the echoes are received from the structures within the body. High 
strength magnetic field and radio waves are combined to acquire MRI images and it exploits the property 
of nuclear magnetic resonance. The main tool used in biomedical imaging field for acquiring the interior 
structure of human body is MRI. Notable visualization of human body and its contrast mechanism is 
employed to obtain the body structure using MRI scan (Ravishankar & Breler, 2011). MRI is different 
from CT-Scan as this process does not use radiations and CT-Scan uses ionizing radiations which can 
harm the human body. MRI provides the detailed view of human body which is not indicated in X-Ray, 
CT-Scan or ultrasound images. Magnetic resonance imaging approach provides better contrasted image 
and clear diagnostic quality than other imaging modalities like X-Ray and CT- Scans.

MRI Scan

MRI imaging utilizes magnetic resonance scanners exhibiting the properties of Nuclear Magnetic Reso-
nance (NMR). The nucleus of the hydrogen atom tends to align itself in the presence of strong magnetic 



58

Implementation and Performance Assessment of Biomedical Image Compression
﻿

field. As the vast numbers of hydrogen atoms are present in the human body, it leads to net magnetization 
of the human body structure. Selective excitation of different regions within the body is also possible 
by inclining the group of these magnets away from the magnetic field direction. General categories of 
MR-Scanners are functional MRI (fMRI) and Magnetic Resonance Spectroscopic Imaging.

1. 	 Functional MRI (fMRI): This scanner, images the blood oxygenation of the human brain by using 
oxygenation sensitive pulse sequence. fMRI employing an advance MRI in such a way that blood 
flow is increased to activate regions of brain. Standard MRI-Scanners do not actually detect blood 
flow as fMRI.

2. 	 Magnetic Resonance Spectroscopic Imaging: It is termed as a non-invasive imaging technique 
as it gives spectroscopic information along with the image. Besides imaging the hydrogen atom, 
other nuclei are used for magnetic resonance spectroscopic imaging. This can be used to infer the 
cellular activity information from the human body. Different MRI scan images (leg, foot and brain) 
are shown in Figure 2.

CT-Scan

CT-Scans make use of X-Rays which are collimated (restricted in their geometrical spread) to travel in 
a 2D ‘fan-beam’ approximation. Tissues in the 2D cross-section of the human body create the X-Ray 
beam which is detected by a number of small detectors. The projections of X-Ray beam are collected 
from varying angular orientations of the detectors and the X-Ray tube as they rotate around a stationary 
subject (patient). Different CT-Scan modalities are helical CT and multi-slice CT which are currently 
being used for 3D imaging.

1. 	 Helical CT: This CT-Scan modality is named as helical CT because the X-Ray tube slices out a 
helix. The detectors and the X-Ray tubes rotate around a circle and the patient is also continuously 
moving through the circle’s center. It can acquire 3D Scan of the whole body very rapidly (in less 
than a minute).

Figure 2. Different MRI images (a) Leg MRI, (b) Foot MRI, (c) Brain MRI
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2. 	 Multi-Slice CT: It consists of several rows of detectors to speedily gather a cone of X-Ray data 
which comprises of 2D projection of patients. The quick rotation of X-Ray source and the detec-
tors helps to produce 3D images using CT-Scanners. The different types (leg, foot and brain) of 
CT scan images are shown in Figure 3.

Compressive Sensing for Medical Images

Biomedical technology is progressing and clinics need to store huge volume of medical data in the form 
of images and signals to diagnose the current condition of the patients. A standard 12 bit X-ray of size 
2048×2560 pixels interpreting 10,485,760 bytes of file size is very huge (ME, et al., 2012). Storage and 
transmission problem of higher quantity of data can get a breakthrough if the biomedical images are 
compressed in such a way that not only better quality image is obtained but also less transmission time 
is required without utilizing high bandwidth.

CS shows the considerable development in the field of biomedical engineering. As an improved 
framework for sampling and recovery, it is implemented on sparse signal of interest (Liu, Liang, Liu, & 
Zhang, 2012). In widespread mechanism, radiological images are captured from coupled devices which 
differentiate it from other information capturing mechanism. Because of presence of external artifacts, 
massive quantity of noisy data is also present within the informative data which is not required for 
diagnostic process. As the data is subjected to compression, medical information is compressed along 
with the undesirable noisy data, but in case of CS, only the desired information is decomposed (Wang, 
et al., 2011). Medical images like MRI and CT scan takes a long scanning time and these scans are in-
dicative of patient’s coronary heart rate, breathing pattern and position which may change time to time 
leading to degraded diagnosis quality. CS might also reduce poor effects of heart rate variation, pattern 
of respiration and also reduces the imaging time providing appreciated involvement in medical imaging 
field (Sevak, et al., 2012).

After applying CS for compression the original medical image is also needed to be recovered and its 
quality is to be assessed so that these images can be utilized for diagnosis purpose. For this reason dif-
ferent recovery algorithms are implemented and their performance is assessed based on image quality 
parameters and compression ratio.

Figure 3. Different CT-scan images (a) Leg_CT Scan, (b) Foot_CT Scan and (c) Brain_CT Scan
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Recovery Algorithms

For optimal reconstruction of signal certain key requirement which should be satisfied are stability, speed, 
uniform guaranteed reconstruction and efficient performance. Convex optimization technique has gained 
the popularity due to its better efficiency, highly accurate reconstruction and guarantees the successful 
reconstruction (Liu, De Vos, Gligorijevic, Matic, Li, & Van Huffel, 2013). Numerous reconstruction 
strategies are available in the literature and they are detailed below.

Minimum L0 Norm Reconstruction

The exact solution of linear equations for minimum L0 norm minimization is guaranteed by defining a 
set of rules. For a signal which is sparse in spasifying domain, the precise recovery is possible by using 
2m random measurements. Every combination in m-sparse vector space is checked to find the exact solu-
tion in an N- dimensional space to satisfy the linear system of equations. This reconstruction technique 
is complex to implement and leads to NP-hard problem (Satyan, 2013).

min x
0
subject to y x= ×Φ 	 (1)

here x is the original signal, y is the measurement vector which is obtained by multiplying measurement 
matrix Φ with the original signal x.

Basic Pursuit (L1 Minimization)

It is a convex optimization technique which is also termed L1 minimization and it provides guaranteed 
recovery over sparse domain. L1 minimization technique is not a speedy technique as massive numbers 
of iterations are involved in this method but it provides robustness for approximating the sparse signal. 
This technique is not optimally rapid but conversely it is a favourable approach as it gives better quality 
of reconstruction (Bhatt & Bamniya, 2015). As per the definition of the norm, L1-norm of signal x is 
defined as,

x x
i

i1
=∑ 	 (2)

L2 Norm Minimization

L2 norm minimization reconstruction algorithm finds the minimum energy solution for minimizing the 
system of equations. This approach is easier to implement as compared to any other recovery algorithm 
but the solution provided by this approach is not accurate. Pseudo inverse is calculated to find the solu-
tion of L2 norm but the calculated solution is far away than the optimally correct solution producing the 
undesired aliasing effect (Candes, et al., 2006; Blumensath, et al., 2009). L2-norm is also well known as 
Euclidean norm, which is used to measure a vector difference and its equation is given by,
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x x
i

i2

2= ∑ 	 (3)

Minimum Total Variation Reconstruction

Total Variation (TV) minimization is a modification in L1 minimization technique that is especially 
successful in case of imaging applications. It is considered that the image is sparse in its gradient and 
therefore the image has very few variations in intensity.

min s
TV , subject to Φs y− ≤∈

2
	 (4)

Eq. (4) defines the TV-minimization reconstruction approach for recovering the gradient sparse 
signal and here s  denotes the transform vector containing k non-zero coefficients, Φ  is the measurement 
matrix, y is the measurement vector and ϵ denotes the upper bound of tolerance for reconstruction error 
energy (Candes, et al., 2006).

Greedy Method

Compressive sample matching pursuit, orthogonal matching pursuit and stage-wise orthogonal matching, 
etc. falls into the category of greedy algorithms. Greedy technique presents more rapid reconstruction 
than simple basic pursuit method but delivers least recoverable sparsity as compared to other recon-
struction algorithms like L1 norm minimization. Greedy pursuit often provides uniform guarantee and 
stability but on the cost of quality. One of the most commonly used greedy algorithms for the recovery of 
nearly sparse signal is Orthogonal Matching Pursuit (OMP). For each of the new iteration, OMP works 
iteratively by initially choosing a column with the maximum projection onto the residual signal and 
then adding it to the already chosen columns. Once choosing a replacement column vector, representa-
tion coefficients with respect to the column vectors are chosen and observed through the least square 
optimization method. This method is not optimally stable but is a speedy reconstruction algorithm as 
compared to the other recovery approaches (Tropp, 2004).

For performance assessment of these recovery algorithms on medical images, various evaluation 
parameters are used and they are detailed in the next section.

Performance Evaluation Parameters

There are various performance assessment parameters. In this chapter we are using Mean Square Error 
(MSE), Peak Signal to Noise Ratio (PSNR), Compression Ratio (CR) and Structural Similarity Index 
(SSIM) for evaluation of CS recovery algorithms. PSNR is an image quality parameter calculated us-
ing MSE and these are inversely related to each other. Higher PSNR value indicates the higher quality 
of image. SSIM is based on arithmetical values of image and it is based on mean and variance and its 
value lies in between 0 to 1. The recovered image is structurally similar to the original image if its value 
leads toward 1. Ratio of compressed bits to the original image bits gives CR of an image (Bhardwaj, et 
al., 2017; Ji, et al., 2017).
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Compressive Sensing: Scope and Its Applications

This section briefs about the various fields and applications where CS technique can be optimally used.

Biomedical Imaging

The technique of creating a visual perception or representation of internal body organs or tissues for 
medical evaluation and clinical intervention is referred as biomedical imaging. Clinical imaging seeks 
to reveal the inner body system detailing the pores, skin and bones which are used to diagnose and deal 
with the diseased body parts. Medical imaging additionally establishes a database of ordinary anatomy 
and body structure to make it viable to discover abnormalities. Thus better image compression is needed 
for screening and better diagnosis for biomedical imaging.

Telemedicine

Telemedicine practices allow the clinical services to be used from a distance by the means of modern 
telecommunication and information technology facilities. Electronic medical information is transferred 
over a distance to the main diagnostic centre where the information is processed and diagnosed.

Patients residing in the rural areas can take the benefit of medical care facilities without visiting 
the far away situated hospitals and this helps in removing the distance barriers. Therefore better image 
compression is required to serve this purpose of telemedicine facility without using much bandwidth 
and transmission time providing prompt clinical healthcare services.

Multimedia

Multimedia makes use of a combination of variety of contents like audio, video, images, text, animations, 
etc to make the multimedia applications more interactive. It is different from normal media applications, 
which makes use of basic conventional computer display like text-only, printed or hand-written material. 
Multimedia can be recorded, played, displayed, interacted with or accessed via facts content material 
processing gadgets, which includes automatic and digitally computerized gadgets, but also can be used 
as a part of live performances. Subsequently arising the need for better image compression to facilitate 
the multimedia applications to provide an ease to access various facilities.

Virtual Imaging or Digital Photography

An arrangement of electronic photo-detectors is used to capture images in virtual imaging or digital 
photography. This electronic photo detector is focused by a lens and is exposed on a photographic film 
to capture a digital photograph. The captured Images are digitized and stored as a computer file equipped 
with further digital processing, viewing, virtual publishing or printing equipments. Thus there is a need 
for higher image compression to aid virtual photography.
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ALGORITHMS AND IMPLEMENTATION

In this chapter, CS technique is proposed for efficient compression, storage and transmission of MRI 
and CT-scan medical images. Dataset of MRI and CT-scan benchmark images is acquired from www.
physionet.org to test the effectiveness of CS algorithm. For better image recovery different reconstruction 
algorithms are used and a comparative analysis is done. The following section gives a brief overview 
of CS algorithm and different recovery algorithms. Implementation and critical performance validation 
is also done in this section.

CS Algorithm

For the implementation of CS algorithm, consider an input image (x) of dimensions n × 1 and a randomly 
generated measurement matrix (Φ) of dimensions m × n. If Φ matrix is generated randomly, some useful 
information might become disoriented so Gaussian distribution is used for random variable generation 
having mean (µ) as 0 and variance (σ) as 1. Later x and Φ are multiplied to obtain the compressed sized 
measurement vector y having dimensions m × 1. Steps followed for CS reconstruction are depicted in 
Figure 4.

Measurement vector y represents the CS sampling procedure and is computed by multiplying the 
measurement matrix Φ with the original image x.

y= Φ × x	 (5)

The two main conditions which must be satisfied to recover an image using CS theory are illustrated 
below. Sampling process structure of CS matrices is depicted in Figure 5 and Figure 6 shows the com-
plete arrangement of CS matrices.

Figure 4. Different steps for Compressive Sensing reconstruction
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First Condition: Input image (x) should be sparse in some domain for the accurate image reconstruction 
utilizing few samples. For accurate recovery of an original image, x should fulfil the condition of 
sparsity i.e., it should be sparse in some domain. Let us consider a sparsifying matrix domain Ψ 
with dimensions (n× n) and a transform vector s having k significant non-zero coefficients (k<<n). 
The equation of sparisty is given by,

x=Ψ×s	 (6)

where, Ψ is the sparsifying matrix (n× n) and s is the transform vector containing k non-zero coefficients 
and k<<n.

Second Condition: The isometric property of incoherence should be satisfied by measurement matrix 
(Φ) and sparsifying matrix (Ψ) for CS recovery. Signal is more compressible if Ψ is incoherent 
to Φ and it is stated by the isometric property of incoherence [27]. Incoherence enables a sparse 
signal to be recovered using less number of samples. The condition of incoherence is denoted by 
θ in Eq. (7).

θ = Φ×Ψ	 (7)

The overall process of sampling is represented by θ’ and it becomes,

θ’ = Φ×Ψ×s	 (8)

here, Φ is the measurement matrix, Ψ is sparsifying marix and s is transform vector.
Signal recovery for CS technique is achieved using minimization norm equation. By solving the Eq. 

(9), x can be recovered using sparse transform vector s,

x s
p

= ×−�min Ψ 1 	 (9)

where, Ψ is sparsifying matrix, s is the sparse transform vector and p is the signal sparsity.

Figure 5. Sampling process structure of CS matrices
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The above equation is reduced to L0 norm minimization if p= 0 but it leads to NP hard problem. To 
resolve this problem, L1 norm minimization technique is used for reconstruction.

Before analyzing two dimensional (2D) signals, CS is applied on one dimensional (1D) signal to 
validate the CS algorithm. Consider a 1D signal generated on MATLAB 2013. CS technique is applied 
on 1D signal having total number of samples (n) = 256 and number of peaks (P) = 6 are considered 
in the original signal. Keeping n and P constant, measurement samples (m) are varied to recover the 
original signal using fewer samples than the total number of samples (m<<n). Measurement Samples 
(m) are varied from 16 to 64 to analyze the accurate reconstruction and maintain a trade-off between 
the sampling rate and accuracy recovery.

Waveforms of 1D signal when CS recovery is applied are shown in Figure 7 to Figure 9 for measure-
ment samples of 16, 32 and 64 respectively. In Figure 7 to Figure 9, x-axis denotes number of samples 
and y-axis denotes the amplitude of the signal. Three subplots in Figure 7 to Figure 9 represents the 
original signal, measurement samples considered and recovered signal respectively.

Signal reconstruction for varying number of measurement samples m is shown in Figure7 to Figure 
9. It can be seen from Figure 7 that signal is reconstructed with visible distortions if m is considered as 
16. On increasing the number of samples, accurate recovery is observed for m as 32 which can be seen 
in Figure 8. For the value of m ranging from 32 to 64, signal recovery is same as that of original signal. 
For better signal recover, m should be adjusted in such a way that there is balance between signal quality 
and sampling rate.

After analysis of CS technique on 1D signal it is applied on medical image samples (2D signal) and 
the images are recovered using three reconstruction algorithms (L2 norm minimization, OMP technique 
and L1 norm minimization). A detailed discussion of different reconstruction algorithms along with the 
results obtained are illustrated in the following sections.

CS Recovery Using Least Square Method (L2 Norm Minimization)

The commonly used method to solve the equation (y = Φx) and to find the minimum energy solution 
is L2 norm minimization. The main advantage of this scheme is its simple implementation but it has a 
drawback that it does not provide the accurate solution producing the image with “aliasing-effect” [32, 

Figure 6. Complete arrangement of CS matrices
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33]. This norm method works on the pseudo inverse based principle. L2 norm minimization steps are 
detailed below;

1. 	 Consider y = Φx as the system of underdetermined linear equation where y is the measurement 
vector, x is the original signal, Φ is measurement matrix and ΦЄRm × n here (m<n).

2. 	 One particular solution for L2 norm is given by the following equation ;

Figure 7. Waveforms for m=16

Figure 8. Waveforms for m=32
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�x T T= ( )−Φ ΦΦ
1

	 (10)

here ΦΦT is invertible since Φ is a full rank matrix.
�x  is the solution of y = Φ × x that minimizes x  and provides the solution of optimization problem.
Figure 10 (a) depicts the original foot MRI image and Figure 10 (b) depicts the reconstructed image 

obtained using Least Square method (L2 norm minimization). Figure 10 (c) and Figure 10 (d) shows 
the respective histograms of original and reconstructed images respectively. In the Figure 10 (a), (b) 
and Figure 11 (a), (b) x axis and y axis shows horizontal and vertical dimensions of the image. Figure 
10 (c), (d) and Figure 11 (c), (d) x axis shows dynamic range of grey scale ranging from 0 to 255 and y 
axis represents intensity value. Similarly, the original foot CT-Scan image and recovered image using L2 
norm minimization is depicted in Figure 11 (a) and Figure 11 (b) respectively. Figure 11 (c) and Figure 
11 (d) shows histograms of original and reconstructed CT-Scan image respectively. It is clear from the 

Figure 10. (a) Original image of foot MRI-scan, (b) reconstructed image obtained from Least Square 
(L2) and (c) histogram of original image and (d) histogram of reconstructed image

Figure 9. Waveforms for m=64
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visual representation that the image recovered by L2 norm minimization is not of better quality and this 
is further validated after calculating different performance assessment parameters obtained in Table 2. 
For evaluation purpose we have used 5 images of MRI and 5 images of CT-Scan.

RMSE calculated for L2 reconstruction method gives a high RMSE value which in turn provides a 
lower value of PSNR in dB indicating poor image quality. SSIM index is human vision perception based 
structural similarity index and its value for L2 norm method is more near 0 indicating less structural 
similarity to that of the original image.

CS Recovery Using Orthogonal Matching Pursuit (OMP)

Algorithms of matching pursuit like CS Matching Pursuit, Regularization Orthogonal Matching Pursuit 
and stage-wise Orthogonal Matching Pursuit all falls into the category of greedy algorithms. An esti-
mated signal is obtained by finding the correlation between the columns of Φ measurement matrix and 

Figure 11. (a) Original image of foot CT-scan, (b) reconstructed image obtained from Least Square (L2) 
and (c) histogram of original image and (d) histogram of reconstructed image

Table 2. Different performance parameters obtained for L2 recovery algorithm

Image Samples RMSE PSNR (dB) SSIM

Img1_MR 55.82 12.62 0.43

Img2_MR 52.15 13.33 0.27

Img3_MR 89.79 10.89 0.20

Img4_MR 50.69 13.23 0.44

Img5_MR 46.33 14.65 0.31

Img1_CT 81.16 9.75 0.19

Img2_CT 43.60 14.40 0.21

Img3_CT 39.33 15.91 0.17

Img4_CT 90.12 8.87 0.20

Img5_CT 93.27 7.08 0.17
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the measurement residual (r). The new estimated signal (x
k

) is highly correlated with the residual [34, 
35]. The steps of OMP algorithm are detailed as follows;

1. 	 First of all the residual is initialize, r0 = y and Column C0 is set as Φ for iteration count k=1.
2. 	 Column vector Φ

ck
 of Φ is obtained using approximation a

c
 i.e., highly correlated with the residual 

and the equation is given by;

Φ
ck c k c

r a c n= ∈ 

−max , ,

1
	 (11)

3. 	 Least square problem is solved by:

x y x
k ck
= − ×Φ �

2 	 (12)

4. 	 To remove the contribution of ac (approximation), the residual is updated by

r y
k ck
= −Φ 	 (13)

5. 	 Increase the iteration count k, and repeat steps 2-4 until stopping criterion is met.

Figure 12 (a) depicts the original foot MRI image and Figure 12 (b) depicts the reconstructed im-
age obtained using Matching Pursuit method (OMP). Similarly, the original foot CT-Scan image and 
recovered image using OMP is depicted in Figure 13 (a) and Figure 13 (b) respectively. It is clear from 
the visual representation that the image recovered by OMP reconstruction method gives better recovered 
image as compared to the L2 norm minimization and this is further validated after calculating different 
performance assessment parameters for OMP reconstruction algorithm obtained in Table 3.

Figure 12. (a) Original image of foot MRI-Scan, (b) reconstructed image obtained from Matching Pursuit 
(OMP) and (c) histogram of original image and (d) histogram of reconstructed image
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RMSE calculated for OMP was less than L2 reconstruction method thus OMP recovery method 
provides greater value of PSNR in dB indicating better image quality. Structural similarity index is also 
near to 0.5 which shows that the recovered image is 50% similar to that of the original medical image. 
Image recovered using OMP reconstruction method gives better results as compared to L2 norm mini-
mization method in terms of image quality indicative by image pixel values and also in terms of visual 
perception based similarity parameter.

CS Recovery Using Basic Pursuit (L1 Norm Minimization)

The best established reconstruction technique is Re-weighted L1 norm minimization that is used for CS 
image recovery in contrary to the other reconstruction technique. Uniform guaranteed recovery and sta-
bility is provided by L1 norm minimization approach [32]. There is no linear bound on run time for this 

Figure 13. (a) Original image of foot CT-Scan, (b) reconstructed image obtained from Matching Pursuit 
(OMP) and (c) histogram of original image and (d) histogram of reconstructed image

Table 3. Different performance parameters obtained for OMP recovery algorithm

Image Samples RMSE PSNR (dB) SSIM

Img1_MR 39.19 15.84 0.51

Img2_MR 30.16 18.00 0.53

Img3_MR 41.32 15.42 0.49

Img4_MR 36.32 16.48 0.64

Img5_MR 31.26 17.53 0.46

Img1_CT 31.01 17.13 0.48

Img2_CT 14.39 22.32 0.51

Img3_CT 15.31 26.71 0.40

Img4_CT 37.74 16.17 0.44

Img5_CT 53.45 13.26 0.49
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technique and it provides better recovery but it is optimally slow. On solving the following minimization 
problem, x is recovered by solving the equation,

x s
p

= ×−�min Ψ 1 	 (14)

where, Ψ is sparsifying matrix, x is the original signal and p is the signal sparsity.
L1 norm minimization recovery steps are as follows:

1. 	 Weight (w) is initially given by w
i

0
1( ) = , for i = 1… n. w

i

0( )  is the weights on pixels, the iterative 
count is set to 0.

2. 	 By using equation (12), the weighted L
1
 minimization problem is solved.

minW s×
1
, s.t., y x= ×Φ 	 (15)

where Ws are the total number of weights in transform domain s.

3. 	 Weights are then updated for i=1… N,

w
s

i

j

i

j

+( )
( )

=
+ ∈

1 1

�
	 (16)

Here, s is the sparse transform vector. ϵ is a positive number and use to prevent zero-valued denomi-
nator and j refers to number of iterations.

4. 	 After that a specific maximum number of iteration jmax is attained by j and convergence terminates; 
otherwise increase j and repeat step 2-3.

Figure 14 (a) depicts the original foot MRI image and Figure 14 (b) depicts the reconstructed image 
obtained using Basic Square method that is L1 norm minimization. Similarly, the original foot CT-Scan 
image and recovered image using L1 norm minimization is depicted in Figure 15 (a) and Figure 15 (b) 
respectively. This is further validated after analysing the different performance assessment parameters 
for L1 reconstruction algorithm obtained in Table 4.

Analysis of performance metrics like RMSE, PSNR and SSIM is done in Table 4 for different 
medical image samples recovered using L1 recovery algorithm. L1 recovery algorithm gives high value 
of PSNR and lower RMSE value as compared to the previously evaluated recovery methods; L2 and 
OMP recovery techniques. Higher value of SSIM is obtained from the L1 recovery technique out of 
three evaluated techniques. It is estimated that recovered image is much similar to the original image 
when L1 recovery method is used and higher values of performance parameters are also obtained for L1 
reconstruction technique.
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Figure 14. (a) Original image of foot MRI-Scan, (b) reconstructed image obtained from Basic Pursuit 
(L1) and (c) histogram of original image and (d) histogram of reconstructed image

Figure 15. (a) Original image of foot CT-Scan, (b) reconstructed image obtained from Basic Pursuit (L1) 
and (c) histogram of original image and (d) histogram of reconstructed image

Table 4. Different performance parameters obtained for L1 recovery algorithm

Image Samples RMSE PSNR (dB) SSIM

Img1_MR 23.38 20.06 0.69

Img2_MR 19.61 21.87 0.65

Img3_MR 22.34 20.22 0.71

Img4_MR 20.15 21.17 0.72

Img5_MR 18.62 22.91 0.66

Img1_CT 21.34 20.05 0.61

Img2_CT 11.83 25.92 0.64

Img3_CT 9.03 28.87 0.60

Img4_CT 22.50 19.93 0.61

Img5_CT 36.31 17.49 0.64
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Compression Ratio (CR) is calculated when CS is applied on image samples and it is obtained by 
taking the ratio of original image bits to the recovered image bits. There should be a trade-off between 
CR and image quality of an image. CR should be maintained in such a way that there is no degradation 
of reconstructed image quality. Space saving and CR for different compressed MRI images are graphi-
cally represented in Figure 16, graphical representation for different CT images is shown in Figure 17.

Effect of Measurement Samples on Different Image Samples

Foot MRI testing and recovery at varying measurement samples (m) employing L1, L2 and OMP recon-
struction techniques is shown in Figure 18 to Figure 20 and it shows significant change in recovered 
images at different m samples. Previously, the effect of m measurement samples are verified for 1D 
signal and here in this section effect of varying m samples are verified for 2D signal (image). For an 
image, value of m measurement samples is considered less than the total number of pixels in an image. 

Figure 16. Compression ratio and space saving from Compressive Sensing technique for different MRI 
images

Figure 17. Compression ratio and space saving from Compressive Sensing technique for different CT 
images
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For e.g., for an image having dimension 80×80, n number of samples are 6400 and m can be any value 
less than 6400. To verify the effect of varying m measurement samples for better image recovery, m is 
considered 1000, 2000 and 4000 for an image of resolution 80×80. Only single brain MRI image analy-
sis for varying measurement samples is shown in the following figures however the analysis is done for 
different image modalities.

It is clear from the above figures from Figure 20 to Figure 22 that quality of recovered image is im-
proved when number of m samples is increased. In Figure 20, number of m samples is less i.e., 1000 so 
the recovered images from all three recovery techniques are of low quality. When number of samples 
(m) is increased from 1000 to 4000 as shown in Figure 21 and Figure 22, quality of recovered image 

Figure 18. (a) Original MRI image of foot, reconstructed image using (b) Least Square (L2), (c) Match-
ing Pursuit (OMP) and (d) Basic Pursuit (L1) reconstruction methods at measurement samples m=1000 
samples over original image samples n=6400

Figure 19. (a) Original MRI image of foot, reconstructed image using (b) Least Square (L2), (c) Match-
ing Pursuit (OMP) and (d) Basic Pursuit (L1)reconstruction methods at measurement samples m=2000 
samples over original image samples n=6400
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is improved. So number of samples (m) should be adjusted in such a way that there is balance between 
quality of recovered image (PSNR) and compression performance (CR).

The effect of performance metrics PSNR and RMSE is seen with variation in measurement samples. 
At different measurement samples for MRI of brain, PSNR and RMSE are calculated. For all three re-
covery algorithms, PSNR is obtained at m = 1000, 2000 and then at 4000 when total number of samples 
(n) are 6400 (resolution of foot MRI) and m can be any number less than n. It is estimated that value of 
PSNR increase when number of measurement samples increases. Hence m should be selected such that 
the recovered image is of high quality with higher value of CR.

When m =1000, it is seen that PSNR value is around 9 to 15 dB and when it is varied from 1000 
to 4000 then PSNR value increases with increase in m. Change in PSNR value for recovered images 
obtained using L1, L2 and OMP algorithms is shown in Figure 21 for varying number of samples from 
1000 to 4000.

RMSE should be minimized to obtain better image quality. At m=1000, higher value of RMSE is 
obtained for all three recovery algorithms and when m is increased from 1000 to 4000, RMSE starts 

Figure 21. Measurement samples v/s PSNR for brain MRI

Figure 20. (a) Original MRI image of foot, reconstructed image using (b) Least Square (L2), (c) Match-
ing Pursuit (OMP) and (d) Basic Pursuit (L1) reconstruction methods at measurement samples m=4000 
samples over original image samples n=6400.
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decreasing. RMSE values obtained for L1, L2 and OMP recovered images are graphically shown in Figure 
22. Out of these three recovery algorithms, the image recovered using L1 technique provides minimum 
RMSE value which indicates that the quality of image recovered by L1 is better than other two algorithms.

CONCLUSION

CS performance is estimate for 1D signal and different medical image samples of MRI and CT- Scan. 
It is observed that the value of samples should be taken in such a way that there is appropriate balance 
between the recovered image quality and sampling rate. Quality metrics are obtained for L1, L2 and 
OMP algorithms for different image samples and it is estimated that L1 technique is better than other 
reconstruction algorithms in terms of PSNR, RMSE, SSIM and CR. Perfect image recovery is possible 
by L1 technique as it resembles more to the original image in comparison to L2 and OMP reconstruction 
methods. It is concluded that all quality metrics are better obtained by L1 and this is the best recovery 
technique among other implemented algorithms. Thus for a CS based system, L1 recovery algorithm is 
considered as a good compression technique that enables a compromise between compression perfor-
mance and recovered image quality. It is also concluded that the algorithm performance is also altered by 
the number of measurement samples taken for reconstruction. Value of PSNR increases with increase in 
number of measurement samples and RMSE value decreases. CS based recovery algorithms can also be 
implemented for various other medical samples of varying resolution and modality to obtain improved 
quality image by achieving higher value of PSNR. Compressed sensing concept can also be applied to 
video signals and the future scope in this field will focus on attaining maximum value of CR along with 
accurate reconstruction.
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