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ABSTRACT

The digitization of human body, especially for treatment of diseases can generate a large volume of 
data. This generated medical data has a large resolution and bit depth. In the field of medical diagnosis, 
lossless compression techniques are widely adopted for the efficient archiving and transmission 
of medical images. This article presents an efficient coding solution based on a predictive coding 
technique. The proposed technique consists of Resolution Independent Gradient Edge Predictor16 
(RIGED16) and Block Based Arithmetic Encoding (BAAE). The objective of this technique is to 
find universal threshold values for prediction and provide an optimum block size for encoding. The 
validity of the proposed technique is tested on some real images as well as standard images. The 
simulation results of the proposed technique are compared with some well-known and existing 
compression techniques. It is revealed that proposed technique gives a higher coding efficiency rate 
compared to other techniques.
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1. INTRODUCTION

In current health care practices, standard medical imaging systems are used for medical diagnosis. 
With the advancement in digital and scanning technologies, these medical imaging systems have 
become an important part of the diagnostic systems. These systems produce accurate images of high 
quality with high resolution and bit depths. Such improvement in imaging systems produces large 
amount of medical data to be processed, archived and transmitted. During past few decades, enormous 
amount of digital imaging data was generated, especially in biomedical field. The volumetric scanning 
technologies, such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) generate 
large number of image frames and require huge amount of space for storage. These image frames 
consume more bandwidth for transmission. It is a complex task to handle transmission, archiving and 
manage the data produced during radiological process (Ravishankar & Bresler, 2011; Bhardwaj, 2017). 
These facts motivate the research in the area of efficient compression techniques for high resolution 
and higher bit depth images. The aim of image compression is to remove redundant or irrelevant data 
from the image such that it could be stored, transmit and processed effectively (Williams, 1991; Bell 
et al., 1990). Further, the compression techniques are broadly divided into two categories i.e. lossless 
and lossy. But in the field of medical diagnosis, lossless techniques are widely adopted because the 
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data is not lost during recovery process. On the other hand, lossy technique doesn’t provide accurate 
recovery at the receiver side and may lead to wrong diagnosis (Al-Khafaji, 2013; Al-Khafaji & 
Ghanim, 2017; Kabir & Mondal, 2018).

In literature, different compression techniques have been reported for medical diagnosis such 
as dictionary encoding, transformation encoding and predictive encoding techniques. It is noted the 
transform-based standards cannot provide higher compression rate (Al-Khafaji & Ghanim, 2017). 
These standards contain Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) 
for compression. Other side, predictive based compression techniques perform well and provide 
higher compression rate with low complexity (Gupta et al., 2013). The joint photographic experts 
group- lossless (JPEG-LS) (DIS, 1991; Pennebaker & Mitchell, 1992; Weinberger et al., 2000) and 
context-based, adaptive, lossless image coding (CALIC) are standard predictive coding techniques 
for lossless compression of medical images (Wu & Memon, 1997). The JPEG-LS is based on low 
complexity lossless compression (LOCO-I) algorithm using standard median edge detector (MED) 
and golomb code (Weinberger et al., 2000; Matsuda et al., 2000). While, CALIC technique consists of 
two mechanisms, one is used for prediction and other is applied for image encoding. The prediction is 
done through gradient adjust predictor (GAP) and image encoding is performed by using arithmetic 
encoding. It is noticed that GAP predictor is more efficient than MED, but, is computationally 
extensive (Avramovic & Savic, 2011). So, the CALIC is more efficient than JPEG-LS in terms of 
Bits per Pixel (BPP). Many researchers have worked on predictive coding techniques and adopted 
lossless compression for medical images.

Many researchers have worked on predictive coding techniques and adopted lossless compression 
for medical images. Avramovic and Savic developed a predictive algorithm based on edge detection 
and local gradients (Avramovic and Savic, 2011). In this work, the strengths of 2D standard predictors 
are analyzed. The analysis showed that the GAP predictor performs well for medical images. Al-
Mahmood & Al-Rubaye adopted a compression method that is based on a combination between 
predictive coding and bit plane slicing for compression of medical and natural image samples (Al-
Mahmood & Al-Rubaye, 2014). This compression technique discards the lowest order bits and exploits 
only higher order bits in which most significant bit used predictive coding. Anitha proposed a hybrid 
technique that combines integer wavelet transforms (IWT) and predictive coding technique to improve 
the performance of lossless compression (Anitha, 2015). IWT is applied to input image samples 
and predictive coding was applied to the output of IWT. Entropy and compression ratio are used to 
evaluate the compression performance. Gupta et al. highlighted the prediction-based compression 
and combined this predictive coding with IWT for achieving better compression ratio (Gupta et al., 
2013). Performance results of proposed technique in terms of Bits per Pixel (BPP) and Peak Signal 
to Noise Ratio (PSNR) is better achieved by proposed technique as compare to existing JPEG 2000.

In current scenario, advanced scanning techniques (MRI and CT) are applied for medical 
diagnosis. These techniques have higher bit depth images with improved image quality. This 
research work presents an efficient coding solution based on predictive coding technique for lossless 
compression of higher bit depth volumetric medical images. The proposed approach is the combination 
of Resolution Independent Gradient Edge Detector16 (RIGED16) and the Block Adaptive Arithmetic 
Encoding (BAAE). The proposed algorithm selects an optimum universal threshold for prediction 
and an optimal block size of residual image for encoding purpose. The experimental results show that 
the proposed algorithm achieves higher compression performance as compared to standard lossless 
compression approaches. Rest of the paper is arranged as follows. Section 2 describes the dataset 
explored for this work and general overview of predictive coding techniques. In section 3, RIGED16 
and BAAE are proposed for lossless compression of 3D sets of medical images of different modalities 
and resolutions. Section 4 presents different performance parameters used for evaluation of proposed 
technique. The experimental results are demonstrated and discussed in section 5. The conclusion of 
this work is given in section 6.
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2. MATERIALS AND METHODS

2.1 Dataset
A set of medical images (MRI and CT-scan) are collected from three different sources for testing 
and comparative analysis of the proposed algorithm. All collected images are of 16 bit depth. The 
MRI and CT images are usually 12 to 16 bits deep to cover the maximum depth, but researchers have 
utilized all 16 bit deep images. The lossless compression algorithm for MR and CT is designed to work 
with data that is natively of 16 bit depth. Test set I is a standard database contains 16 bit images of 
different image modalities (CT or MR) and resolutions of 256×256 and 512×512 presented in Table 
1. The medical images presented in Table 1 belong to Cancer Imaging Archive (The Cancer Imaging 
Archive, 2017; Clark et al, 2013). Table 2 presents Test set-II. This test set is collected from different 
local hospitals including MR and CT images of different resolutions. Image slice-1 of volumetric 
MRI_1 and CT set collected from hospitals are also depicted (Figure 1).

2.2 General Overview of Predictive Coding Technique
The correlation between adjacent pixels in 2D image is a measure of spatial (interpixel) redundancy. 
While, correlation of pixels in adjacent image slices of 3D image is temporal (interframe) redundancy. 
In predictive compression technique, spatial redundancy is removed by 2D predictors and statistical 
redundancy is removed by entropy encoders (Al-Khafaji & Al-Mahmood, 2016). Prediction and 
entropy encoding are two major steps of predictive coding for lossless compression of an image 
(Shridevi & Vijaykumar, 2012) as shown in Figure 2.

In predictive coding technique, every pixel of an image is predicted individually from the context 
in raster scan format. After prediction, residual image is obtained by taking difference of original 
image and predicted image as shown in Figure 2. Residual image has less entropy; hence fewer 
numbers of bits are used to encode the residual image. Entropy encoder is applied to encode residual 
image to compress image losslessly. Efficiency of predictor depends on how well it predicts the image 

Table 1. Test Set-I: standard dataset composed of CT and MR images of different resolutions

Sequence Resolution Slices Bits

CT_Lung_R13 (Grove et al, 2015) 512×512 67 17563648

CT_Lung_R4 (Grove et al, 2015) 512×512 68 17825792

MR_Neuro (Barboriak, 2015) 256×256 176 11534336

MR_Breast (Meyer, 2015) 288×288 60 3932160

Table 2. Test Set-II: collected from local hospitals composed of CT and MR images of different resolutions

Sequence Resolution Slices Bits

MR_1 512×512 12 3145728

MR_2 512×512 20 5242880

MR_3 256×512 11 720896

MR_4 512×512 20 5242880

MR_5 512×512 20 5242880

MR_6 256×256 40 2621440

MR_7 256×256 20 1310720

CT 512×512 63 16515072
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resulting in reduced entropy of residual image, lesser the entropy better will be the predictor. Entropy 
encoder’s efficiency depends upon its ability to reduce code length.

2.2.1 2D Predictors
2D predictor removes the interpixel redundancy from the 2D images and also for 3D compression 
process of volumetric image, operating in frame by frame basis. Common scheme for labeling of 
causal neighbors in 2D predictors is shown in Figure 3.

Pixels in causal template are denoted as:

Figure 1. a) 1st slice of MRI_1; b) 1st slice of CT
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MED and GAP are two benchmark algorithms used to minimize the entropy of images. JPEG-LS 
consists MED predictor which selects the median value among neighboring pixels N, W and W+N-
NW is simple to implement. GAP is based on the gradient estimation and form a part of CALIC. GAP 
is fixed threshold-based predictor and adapts itself to the intensity gradients of immediate neighbors 
of predicted pixel. The GED predictor is the combination of MED and GAP and takes the advantage 
of both the standard predictors. It uses local gradient estimation based on threshold (T) value as that 
of GAP and like MED, it selects median value between neighboring pixels (Shridevi & Vijaykumar, 
2012). It is also threshold based that is user defined (Avramovic & Savicl, 2011).

The entropy encoder is a predictive coding technique that converts the residual image into a bit 
stream of low entropy. The number of bits required for encoding the information depends on entropy. 
The smaller value of entropy leads to less numbers of bits required for encoding and in turn get higher 
compression ratio. The different encoding schemes like Huffman, Run-length, Dictionary, Arithmetic 
and Bit-plane coding are also presented in literature (Anitha, 2015).

Figure 2. Basic diagram of predictive coding technique

Figure 3. Common scheme of causal template for labeling neighbors
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3. PROPOSED METHODOLOGY

3.1 Block Adaptive Arithmetic Encoding (BAAE) Employing RIGED16 Predictor
The 2D predictor contains a user defined threshold which makes its simple and efficient. The prediction 
of an image through GED predictor is based on threshold value. The choice of optimal threshold is very 
important for efficient prediction. In literature, no specific value for threshold is defined; the different 
values are used as threshold. This work focuses on the selection of an optimal threshold value that 
doesn’t depend upon the nature of image. Moreover, it is applicable for all modality and resolution of 
medical images. The RIGED16 is an extension of GED predictor and it is designed to make existing 
GED resolution and modality independent. The RIGED16 specifies the optimal threshold value for 
prediction of 16 bit depth images with minimum entropy for residual image. The threshold level for 
higher bit depth medical images can be up to 216. The algorithm of this model is given as:

Z NW W NN N
V
= − + − 	 (2)

Z WW W NW N
H
= − + − 	

if Z Z thenP W
V H X
− > =T, 	

else if Z Z T P N
V H X
− <− =� �,� 	

else P N W NW
X
= + − 	

where T Threshold and Z and Z are Vertical and Horizonta
V H

= ll Gradients 	

T Common threshold for every modality and resolution o= 768 ff medical image( ) 	
T specifically for resolution= ( ) ×2 512 256 2569 	

T specifically for resolution= ( ) ×2 1024 512 51210 	

After RIGED16 prediction, the residual images are divided into different blocks of varying sizes 
and having error probabilities in different image regions. The whole image is divided into block 
size ranging from 4×4 to 128×128. On the basis of average absolute error, blocks are grouped and 
encoded separately through arithmetic encoder. Further, the weighted average of BPP is calculated 
for every block size. The block size with minimum BPP value is selected. To decompress the images, 
overhead information is computed which gives the side information of blocks. This information is 
also considered for BPP calculation of encoded residual image. The block diagram of proposed 
approach is shown in Figure 4. The working of proposed approach is as follows. An image slice is 
taken from the image data set and the image resolution is identified. The pixel prediction is done in 
raster scan order from causal template of an image. The RIGED16 is applied to the image slice that 
produces predicted image Z (x, y). After prediction, residual image or a prediction error image E 
(x, y) is obtained by subtracting Z (x, y) from original image Y (x, y). The residual image is further 
divided into optimal size blocks and blocks are grouped on the basis of the average absolute error. 
Each segmented group of residual image is entropy encoded and it is done through arithmetic encoder. 
To achieve the lossless compression of images, the abovementioned procedure is repeated for each 
frame of image and resulted in efficient compression in terms of BPP.
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4. PERFORMANCE PARAMETERS

The efficiency of pixel value predictor is inversely related to the entropy of the prediction error image. 
The entropy describes the number of bits used to represent the information of an image (Shridevi & 
Vijaykumar, 2012). The number of slices in image sequence is taken into consideration to calculate the 
weighted average of entropy. The entropy of an image and weighted average of entropy for complete 
data-set is calculated as:

H X p x p x
x Y

( ) =− ( ) ( )∑� log
ε

	 (3)

Entropy weighted Average = 
N

M m n S H X

m n S=
∑

× × ( )





× ×1

� � �

� �
	 (4)

Where, p x( )  is probability of a symbol X.

M = Total number of datasets to be tested.	
m, n = Image resolution.	
S = Number of image slices in each data sequence.	

The data size of compressed image depends on the BPP along with resolution of an image. 
Compression Ratio (CR) and BPP are inversely related to each other (Avudaiappan et al., 2017; 
Puthooran et al., 2013).

BPP = Bit depth of image
CR

	 (5)

BPP weighted Average = 
N

M m n S BPP

m n S=
∑

× × 





× ×1
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� �
	 (6)

5. RESULTS AND DISCUSSION

This section demonstrates simulation results of proposed approach using two test set problems. The 
performance of the proposed technique is evaluated using image datasets Test Set-1 and Test Set-2. 
The description of these image datasets is given in Tables 1-2. MATLAB simulation environment 
is used to implement the proposed approach. The proposed algorithm is also work with the same 
performance for 12 bit deep images. The simulation results of proposed approach are compared 
with CALIC, JPEG-LS and other lossless compression techniques (Lucas et al., 2017; 3D-Calic 
implementation, 2017; JPEG 2000 codec, 2017).
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5.1 Performance Evaluation in RIGED16 Algorithm of Proposed Technique
In this subsection, proposed algorithm is analyzed for compression performance of volumetric images 
having different modalities and resolutions. The proposed approach works well for grayscale images 
of every type of modality. Initially, the coloured images can be converted into greyscale images before 
prediction. An appropriate threshold value is selected for prediction that can provide the minimum 
entropy value for all residual images. Our proposed algorithm RIGED16 is designed to make the 

Figure 4. Proposed BAAE employing RIGED16 for lossless compression
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GED algorithm independent of modality and resolution. The GED is tested for different thresholds 
on the scale of 2n. For 16 bit depth images, value of ‘n’ can be up to 16. The entropy values obtained 
for residual images are predicted at different thresholds and these values are mentioned in Table 3. 
The weighted average is evaluated for complete dataset on the basis of number of slices.

From results, it is observed that there is a significant variation on entropy value for different 
threshold levels on the basis of 2n. The change in entropy value is quantified as 6.71 to 6.33 when T- 
level ranges from 23 to 29. Whereas, there is minor variation in the value of entropy when threshold 
value ranging from 29 to 210. After 210, entropy again starts increasing as shown in Figure 5. The 
T-level can be up to 216 for 16 bit depth image dataset, entropy value is calculated up to 216, but it 
keeps on increasing after 210. Hence, T-level 210 can be considered as an optimal value providing 
minimum entropy.

As the minimum entropy is obtained between the range of T-levels 29 to 210. Further, the range 
of T-levels are checked between 29 and 210 with the difference of 128 (i.e., 640, 768, 896) for optimal 
universal T-level as shown in Figure 6. There is significant variation in entropy when threshold value 
changing from 512 to 768 and after 768, entropy again starts increasing. Hence, 768 threshold value 
is considered as a threshold value that can provide minimum entropy value for 16 bit depth images. 
For lower and higher thresholds, the entropy value is high but for mid threshold values like 512 to 
1024, entropy value should be minimized. After analysis of threshold value for minimum entropy, it 
is noted that threshold value (768) provides less entropy value i.e. 6.323.

The weighted average entropy evaluation is done at specific resolution of 256×256 and 512×512. 
The different threshold values are considered to obtain optimal results. The results of this parameter 
are given in Figure 7. The images with resolution of 256×256, the minimum value of entropy is 
obtained at 29. For higher resolution images i.e. images of 512×512, 210 represent minimum entropy. 
There is slight variation in entropy value from 6.42 to 6.24 when T-levels vary from 29 to 210 but 
significant change is observed for higher T-levels i.e. 210.

Table 3. Entropy obtained by GED predictor at different threshold values on the basis of 2n

Medical 
Image 

Database

Original 
Entropy

Entropy Values Obtained at 2n Threshold Levels of 2D GED

8 16 32 48 64 128 256 512 1024 2048

MR_1 8.33 5.86 5.80 5.72 5.67 5.64 5.59 5.58 5.55 5.54 5.59

MR_2 6.99 5.09 5.06 5.02 4.99 4.98 4.95 4.94 4.93 4.92 4.95

MR_3 8.22 6.74 6.75 6.74 6.73 6.72 6.69 6.68 6.67 6.68 6.68

MR_4 7.59 5.36 5.33 5.28 5.25 5.23 5.21 5.20 5.20 5.20 5.20

MR_5 7.63 4.80 4.73 4.64 4.59 4.56 4.48 4.46 4.44 4.43 4.46

MR_6 7.50 6.15 6.15 6.13 6.12 6.11 6.07 6.05 6.03 6.04 6.05

MR_7 8.11 6.98 6.97 6.96 6.95 6.94 6.93 6.92 6.91 6.93 6.95

CT 8.20 7.64 7.53 7.46 7.42 7.37 7.22 7.20 7.17 7.14 7.29

CT_Lung_
R13 9.12 6.45 6.32 6.26 6.21 6.17 6.12 6.10 6.09 6.08 6.09

CT-Lung_
R4 7.96 7.51 7.43 7.24 7.20 7.18 7.06 7.04 7.03 7.01 7.04

MR_Neuro 7.11 6.86 6.73 6.68 6.58 6.53 6.46 6.45 6.44 6.45 6.46

MR_Breast 8.76 7.67 7.59 7.57 7.34 7.26 7.23 7.21 7.17 7.16 7.18

Weighted 
Average 8.49 6.71 6.62 6.54 6.48 6.45 6.39 6.36 6.33 6.32 6.36
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5.2 Performance Evaluation of BAAE
The grouping of blocks is done before Arithmetic encoding and BPP values are calculated for different 
block sizes. The weighted average of BPP is calculated for different block sizes presented in Table 4. 
The overhead depends on the block size, BPP values of overhead is also tabulated. It is revealed that 
the compression performance has a significant variation for different number of block sizes. After 
experimental analysis on different block sizes, the best block size is selected which finally provides 
the minimum BPP value. The BPP value with overhead for compressed image is 5.60 at the block size 
4×4. After 4×4, the BPP value starts decreasing and reaches to 5.07 for a block size of 8×8. Again, 
BPP values starts increasing after 8×8 because overhead decreases with increasing number of block 
sizes and the code length of compressed image is increases. It is found that when code length of the 
compressed residual image and overhead information of the block is combined then the lowest BPP 
value is obtained for a block size of 8×8. The image datasets include CT-Lung, MR-Neuro, MR-
Breast and other human parts of different modalities and resolution. But, proposed approach provides 
same results for BPP. Hence, it is stated that proposed BAAE approach with RIGED16 gives optimal 
performance in terms of BPP.

A comparison with and without overhead in terms of BPP is shown in Figure 8. It is seen that 
the minimum value of BPP is obtained for the smallest block size i.e. 4×4, when BPP overhead is 
not taken into consideration. The BPP value increases for higher blocks (more than 4×4) due to 
increase in code-length of residual image. The overhead BPP is maximized for smaller block size i.e. 
4×4, and it decreases with higher number of block sizes (more than 4×4) as shown in Figure 8. To 

Figure 5. Entropy obtained by 2D predictor at 2n t-levels

Figure 6. Entropy obtained by 2D predictor at different threshold values in difference of 128
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take overhead (including code-length) into consideration, minimum BPP value is obtained for block 
size 8×8. The block size more than 8×8, code length increases and overhead decreases, resulting in 
minimum value of BPP that can be obtained for the block size 8×8.

It is clear that there is significant difference between BPP values at 4×4, with and without 
overhead. After 8×8, BPP values obtained with and without overhead are nearly equal and for higher 

Figure 7. Entropy obtained by GED at 2n threshold values for 256×256 and 512×512 resolution

Table 4. Compression results (in BPP) of proposed technique for varying number of block size with overhead

Testset BPP values for different Block Size (BPP overhead)

4×4 8×8 16×16 32×32 64×64 128×128

MR_1 4.22 (0.2343) 4.08 (0.2343) 4.10 (0.0548) 4.21 (0.0126) 4.36 (0.0029) 4.60 (0.0006)

MR_2 5.13 (0.2343) 5.05 (0.2343) 5.06 (0.0546) 5.14 (0.0126) 5.25 (0.0029) 5.40 (0.0006)

MR_3 5.97 (0.2343) 6.09 (0.2343) 6.12 (0.0546) 6.27 (0.0126) 6.41 (0.0029) 6.67 (0.0006)

MR_4 4.76 (0.2343) 4.68 (0.2343) 4.72 (0.0546) 4.77 (0.0126) 4.86 (0.0029) 4.97 (0.0006)

MR_5 4.24 (0.2343) 4.16 (0.2343) 4.18 (0.0546) 4.26 (0.0126) 4.39 (0.0029) 4.54 (0.0006)

MR_6 4.90 (0.2343) 4.50 (0.2343) 4.68 (0.0546) 4.76 (0.0126) 4.80 (0.0029) 4.98 (0.0006)

MR_7 4.48 (0.2343) 4.46 (0.2343) 4.47 (0.0546) 4.51 (0.0126) 4.54 (0.0029) 4.67 (0.0006)

CT 4.84 (0.2343) 4.82 (0.2343) 4.94 (0.0546) 4.96 (0.0126) 4.98 (0.0029) 5.39 (0.0006)

CT_Lung_
R13

6.10 (0.6837) 5.40 (0.1555) 5.42 (0.0335) 5.95 (0.0074) 6.00 (0.0016) 6.05 (0.0003)

CT-Lung_
R4

6.55 (0.9411) 5.63 (0.2343) 5.63 (0.0546) 6.27 (0.0126) 6.37 (0.0029) 6.55 (0.0006)

MR_Neuro 5.61 (0.5980) 5.08 (0.1346) 5.10 (0.0300) 5.52 (0.0067) 5.75 (0.0016) 5.93 (0.0003)

MR_Breast 4.77 (0.9880) 3.90 (0.2343) 3.93 (0.0546) 4.14 (0.0126) 4.36 (0.0029) 4.58 (0.0006)

Weighted 
Average

5.60 (0.5956) 5.07 (0.2012) 5.11 (0.0461) 5.47 (0.0105) 5.57 (0.0024) 5.77 (0.0005)
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block size after 16×16, BPP values are equal for both cases, because the overhead is very less resulting 
in no effect of overhead.

5.3 Comparison of the Proposed Technique with the Lossless 
Compression Standards CALIC and JPEG-LS
Table 5 presents the comparative analysis of compression performance in terms of BPP for the 
compressed images. BPP values obtained from proposed technique are compared with simple 
RIGED16 + Arithmetic encoding (without block segmentation). This comparison is made to 
demonstrate the importance of optimal threshold selection for prediction and the choice of optimal 
block size for 2D block partitioning of residual images before encoding. From experimentation results, 
it is observed that the proposed technique performs better in terms of compression ratio compared 
to RIGED16 + Arithmetic Encoding. The weighted average of BPP using RIGED16 + Arithmetic 
is 5.93, whereas, the proposed approach obtains BPP values 5.02. When, residual image is directly 
encoded by Arithmetic encoder (without block partitioning), then a larger value of BPP is obtained 
as compared to block partitioning image. The proposed approach outperforms than simple RIGED16 
+ Arithmetic encoding (without blocking) by 17.48% in terms of BPP values.

Table 6 presents the comparative results of proposed approach and other existing technique 
like CALIC, JPEG-LS, JPEG-2000. Further, 3D signal, 3D extension of JPEG 2000 (JP3D) (JPEG 
2000 codec, 2017), M-CALIC, 3D CALIC (3D-Calic implementation, 2017) and High Efficiency 
Video Coding (HEVC) (ITU-T and ISO/IEC, 2013) are also used for comparison. It is observed that 
proposed approach provides more efficient results as compared to other techniques. However, the 
results are validated by the results obtained on the benchmark dataset.

The proposed RIGED16+BAAE approach achieves 5.29 BPP value, whereas 2D-CALIC and 
JPEG-LS approaches achieve 5.39 and 5.49 BPP values respectively. The BPP values obtain by other 
lossless image coding techniques like JPEG 2000, JP3D, M-CALIC, 3D-CALIC and HEVC are 5.55, 
5.51, 5.75, 5.58, 5.48 and 5.36 respectively. Hence, the proposed approach obtains minimum BPP 
value among all other approaches. The proposed approach is also compared with most recent and 
highly efficient 3D-MRP algorithm. It is observed that 2D compression process of proposed approach 
is simple and efficient and gives comparable results as compared to 3D-MRP-13. The percentage 
improvement of proposed approach over other lossless coding techniques is given in Table 7.

The proposed method achieves better compression performance and outperforms than standard 
CALIC and JPEG-LS by 1.90% and 3.65% respectively in terms of BPP value. The average 

Figure 8. BPP obtained by proposed technique for different block sizes, with and without overhead
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compression gain of 4.99% and 4.18% is achieved over JPEG 2000 and over its 3D extension (JP3D). 
On comparing with remaining coding techniques M–CALIC, 3D-CALIC and HEVC, percentage 
improvement of proposed RIGED16+BAAE technique is 8.64%, 5.52% and 3.47% respectively. 
When compared with 3D-MRP then the percentage difference of proposed RIGED16+BAAE and 
3D-MRP is 1.65%. The improvement in compression performance is due to the selection of optimal 
threshold prediction value for higher inter-pixel redundancy removal and optimal block size selection 
for removing coding redundancy in the proposed technique.

Table 5. Compression performance results (in BPP) using proposed technique and simple RIGED16+arithmetic encoding for 
both the test sets given in Section 2

Testset Compressed Image Size (BPP) %Improvement of 
Proposed Method

RIGED16+ Arithmetic Encoding 
(Without Blocking)

Proposed Approach Over 
RIGED16+Arithmetic 

Encoding

MR_1 5.04 4.08 23.45

MR_2 5.60 5.05 10.92

MR_3 6.72 6.09 10.29

MR_4 5.22 4.68 11.60

MR_5 4.76 4.16 14.27

MR_6 4.73 4.50 5.13

MR_7 4.79 4.46 7.21

CT 5.41 4.82 3.91

CT_Lung 6.17 5.40 14.20

CT-Lung 6.93 5.63 23.16

MR_Neuro 6.36 5.08 25.31

MR_Breast 6.62 3.90 69.53

Weighted Average 5.93 5.02 17.48

Table 6. Comparison of compression performance (in BPP) using proposed technique and existing compression methods for 
Test Set I

Test-set Compressed Image Size (BPP)

CALIC JPEG-LS JPEG 
2000

JP3D M-CALIC 3D 
CALIC

HEVC 3D-MRP Proposed 
Approach

CT_Lung_13 5.43 5.65 5.53 5.62 6.09 5.72 5.83 5.31 5.40

CT_Lung_4 5.81 5.80 6.01 5.96 5.96 5.89 5.74 5.99 5.63

MR_Neuro 5.11 5.29 5.36 5.16 5.38 5.34 5.06 5.04 5.08

MR_Breast 4.11 3.93 4.16 4.07 4.28 4.22 3.94 4.00 3.90

Weighted 
Average

5.39 5.49 5.55 5.51 5.75 5.58 5.48 5.36 5.29
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6. CONCLUSION

This paper presents a new image compression algorithm based on threshold selection for prediction and 
choice of optimal block size of residual image for encoding. The proposed approach is developed for 
efficient lossless compression of volumetric images using RIGED16. Further, block based arithmetic 
encoding is also used to process volumetric image data independently. The effectiveness of proposed 
approach is verified using standard test-set and dataset collected from local hospitals. This approach 
provides higher compression efficiency as compared to standard CALIC and JPEG-LS techniques. 
The proposed approach achieves percentage improvement of 1.90%, 3.65%, 3.47% and 1.65% over 
CALIC, JPEG-LS, HEVC and 3D-MRP techniques respectively.

Table 7. Percentage improvement by proposed technique over existing compression methods for Test Set I

Test-set %Improvement of Proposed Approach

2D-CALIC JPEG-
LS

JPEG 
2000

JP3D M-CALIC 3D 
-CALIC

HEVC 3D-MRP

CT_Lung_13 0.59 4.63 2.44 4.05 12.84 6.01 8.01 -1.72

CT_Lung_4 3.2 2.98 6.74 5.98 6 4.7 1.98 6.37

MR_Neuro 0.73 4.19 5.62 1.59 5.94 5.11 -0.29 -0.78

MR_Breast 5.24 0.65 6.57 4.19 9.77 8.21 0.97 2.53

Weighted 
Average

1.90 3.65 4.99 4.18 8.64 5.52 3.47 1.65
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