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Abstract
Cloud-based computing, in spite of its enormous benefits has ill effects on the environment 
also. The release of greenhouse gases and energy consumed by cloud data centers is the 
most important issue that needs serious attention. Virtual machine (VM) consolidation is a 
prominent method for energy efficient and optimal utilization of resources. However, exist-
ing VM consolidation approaches aggressively reduce energy consumption without consid-
ering quality of service (QoS) factors. In this paper, QoS-aware VM consolidation frame-
work is presented which reduces energy consumption and tries to minimize Service Level 
Agreement violations at the same time. Unlike existing solutions, the framework is generic 
as it works for both CPU and input/output intensive tasks. The effectiveness of proposed 
framework is illustrated by using real dataset of Planet lab and CloudSim platform. The 
proposed solution can be used in cloud data centers to enable energy efficient computing.

Keywords  Energy efficiency · Cloud computing · VM consolidation · Quality of service

1  Introduction

Cloud computing enables on demand, ubiquitous, shared access to resources without much 
service provider interaction. Infrastructure-as-a-service (IaaS), Platform-as-a-service 
(PaaS) and Software-as-a-service (SaaS) are provided by cloud service providers to its 
users [1, 2]. All the online users are directly/indirectly getting benefits from these services. 
There is a remarkable impact on information technology industry with the establishment 
of cloud data centers. On the other hand, these data centers need massive amount of power 
to operate and generate high levels of carbon footprints. The demand for energy in the 
data centers is increasing at an alarming rate. According to the United States (US) Data 
Center Energy Usage Report, US data centers in 2014 consumed about 1.8% of total U.S. 
electricity consumption amounting to 70 billion kWh. It increased about 4% from 2010 to 
2014 and 90% from 2000 to 2005. It is estimated that in 2020, the U.S. data centers will 
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consume about 73 billion kWh [3]. The information and technology industry is predicted 
to use about 20% of electricity in the world by 2025 and release up to 5.5% of carbon emis-
sions [4]. These numbers can witness a rapid hike unless noteworthy efforts are put to make 
energy efficient data centers. The consumption of power does not only depend on hardware 
or infrastructural arrangement. It is also affected by the level of resource utilization [2]. 
Virtual machine (VM) consolidation is an effective approach which leads to optimal utili-
zation of resources [5–7]. VM consolidation involves shifting the VMs from less utilized 
servers and over utilized servers to normally loaded servers. So, less utilized servers may 
be switched off to save power. The process includes (1) finding underutilized servers (2) 
finding over utilized servers (3) selecting the VMs to be shifted (4) finding the target hosts 
to place the selected VMs. It ensures optimum utilization of resources by switching off the 
hosts which consume power at leisure. Figure 1 shows the VM consolidation process.

Existing algorithms of VM consolidation have limited focus on QoS factors. Moreover, 
they emphasize on one of the sub modules viz. host overload or underload detection or 
selection of VMs or VM placement on new hosts. Majority of existing frameworks are not 
generic. Furthermore, mostly the VM consolidation algorithms generally keep on aggres-
sively reducing energy consumption without reducing violations in SLA.

The major contribution of this work is as follows:

•	 The novel algorithms for all the phases of VM consolidation i.e. host overload, under-
load detection, VM selection and VM placement are designed using four adaptive 
thresholds.

•	 The proposed framework is energy efficient. It reduces both consumption of energy and 
violations in SLA simultaneously.

•	 The framework also considers both input/output (I/O) intensive and CPU intensive 
tasks as the cloud environment is dynamic in nature.

•	 Two VM selection policies are proposed which consider CPU, memory and bandwidth 
at the same time.

•	 The proposed four threshold VM consolidation framework gives a clearer distinction of 
host types and shut down more number of hosts.

•	 The proposed framework is tested for Planet Lab workload trace and comparison with 
other state-of-the-art algorithms shows the efficiency of the proposed framework.

The remaining paper is framed in this manner: Sect. 2 describes the work done in the 
area of VM consolidation. Section  3 defines the proposed framework which includes 
algorithms for the four phases of VM consolidation. Section 4 presents the experimental 
parameters and data set for implementing the proposed algorithms. Section 5 discusses the 
results and Sect. 6 gives conclusive remarks on the work done.

Fig. 1   VM consolidation process
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2 � Related Literature

There is a vast amount of literature on consolidation techniques for energy efficient cloud 
computing that can be classified based on consolidation type (QoS-aware or aggressive), 
types of threshold (static or adaptive), parameters considered in the power model (CPU, 
RAM, network) and data sets (synthetic or real).

Earlier energy efficient mobile devices were introduced to improve their battery life-
time [8]. Later research on energy efficient data centers and virtual computing environ-
ment started [9]. Nathuji and Schwan [10] initiated the study and designed a framework for 
Energy Efficient Management (EEM). The limitation was that automatic management of 
resources was not specifically done for global level.

Beloglazov and Buyya [11] designed a framework for EEM of resources constrained by 
QoS for virtual cloud data centers to reduce operational cost. Authors proposed a single 
and fixed threshold (no historical data) based VM consolidation algorithms and validated 
the algorithms on random data. However, the static threshold is not suitable for dynamic 
cloud environment. The drawback is that only CPU was considered in the power model 
and it could not handle mixed workloads. Beloglazov et  al. [12] introduced an architec-
ture based on double and fixed thresholds for VM consolidation. VM selection policies 
described were—Minimum Migrations (MM), Highest Potential Growth (HPG), and 
Random Choice Policy (RC). Only CPU was considered in the power model and system 
could not handle mixed workloads. They proved that the difference of 40% between upper 
and lower threshold is the best according to statistical tests. Beloglazov and Buyya [13] 
proposed heuristics and calculated the values of thresholds using adaptive double thresh-
old based techniques using values of resource utilization. VM consolidation algorithms 
were based on double and adaptive thresholds. These algorithms are default algorithms in 
CloudSim 3.0.3. Host overload detection algorithms “[Median Absolute Deviation (MAD), 
Interquartile Range (IQR), Local Regression (LR), Robust Local Regression (LRR)], VM 
selection policies [Minimum Migration Time (MMT), Random Selection (RS), Maximum 
Correlation (MC) and Maximum Utilization (MU)], VM placement algorithm [bin packing 
heuristics like power-aware best fit decreasing (PABFD)]” were used. For underload detec-
tion, migrations of VMs were done from least utilized hosts. Planet lab dataset was used for 
validation. The proposed framework only considered CPU in power model.

Cao and Dong [6] improved the VM consolidation framework proposed by Beloglazov 
and Buyya [13]. It was based on double and adaptive thresholds. A new algorithm SLA 
violation decision algorithm (SLAVDA) was designed to check whether an overloaded host 
caused a violation in SLA. Adaptive thresholds were used based on historical values of 
resource utilization. Proposed system could handle mixed workloads. Limitation was that 
only CPU was considered in the model.

Zhou et  al. [14] presented a three threshold based energy efficient algorithm for VM 
consolidation. VM consolidation algorithms were based on triple and fixed thresholds. 
Authors proposed a minimization of migration policy based on three thresholds (MIMT) 
for VM placement algorithm. Planet lab data was used to test the validity of proposed 
model. Resource utilization thresholds were not based on analysis of historical data. Pro-
posed system could not handle mixed workloads. Various combinations of threshold values 
were made and statistical tests were done to know the finest combination and 40% interval 
between three thresholds was found to be best.

Zhou et al. [15] designed an adaptive three threshold based energy efficient algorithm 
for consolidating VMs. VM consolidation algorithms were based on triple and dynamic 
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thresholds. Authors developed two algorithms for determination of thresholds: “-Means 
Clustering Algorithm-Average-Median Absolute Deviation (KAM) and -Means Clus-
tering Algorithm-Average-Interquartile Range (KAI)” and three VM selection policies: 
“Minimum Memory Size (MMS), Lowest CPU Utilization (LCU) and Minimum Product 
of both CPU Utilization and Memory Size (MPCM)”. “Energy-aware best fit decreasing 
(EABFD)” algorithm for VM placement was used. Planet lab data was employed to test 
the validity of proposed model. Adaptive thresholds were calculated based on the values 
of resource usage. Authors focused on reducing energy consumption but not on increasing 
energy efficiency and proposed system was not generic.

Castro et al. [16] proposed two new approaches for dynamic consolidation of VMs that 
considered both CPU and RAM. VM consolidation algorithms were based on double and 
adaptive thresholds. Authors proposed a CPU, RAM energy-aware VM placement algo-
rithm and an underload detection algorithm that considered both CPU and RAM. Planet 
lab data and Google traces were used to test the validity of proposed model. Adaptive 
thresholds were calculated based on the values of resource usage and system was able to 
handle mixed workloads.

Zhou et al. [17] developed energy efficient algorithms for VM consolidation that mini-
mizes SLA violation by considering both memory and CPU utilization both during VM 
deployment. Authors used adaptive three threshold KMI algorithm to find the thresholds 
and proposed a novel algorithm for host overload detection. Two VM selection policies to 
handle both CPU bound and I/O bound tasks were developed—“Maximum ratio of CPU 
utilization to memory utilization (MRCU) and Minimum the product of a CPU utilization 
and a memory utilization (MPCU)”. Authors proposed “VM placement with maximizing 
energy efficiency (VPME)”. Planet lab data was used to evaluate the validity of the system. 
Other works on QoS and energy efficient resource management are [18–22].

As found from literature, the major drawbacks in the proposed VM consolidation frame-
works are that they are mostly not generic or they do not consider memory and bandwidth 
during VM migration. This work focuses on four adaptive thresholds. This is done to shut 
down more number of hosts to decrease energy consumption and classification of hosts is 
more distinct. This work considers reducing both SLA violations and energy consumption 
simultaneously.

3 � Proposed Framework

The framework uses four adaptive thresholds to find the category to which a host belongs. 
To find the thresholds and thus, overloaded hosts K-medoid interquartile range mid-range 
(KMIMR) algorithm is proposed. For choosing VMs from the hosts which are over-
loaded, two algorithms Maximum Ratio of CPU to Product of Memory and Bandwidth 
(MRCPMB) for CPU intensive tasks and Minimum Product of CPU, Bandwidth and 
Memory (MPCBM) for Input/output intensive tasks are designed. For VM deployment on 
new hosts, Energy efficient VM deployment (EEVD) algorithm is proposed. After that the 
whole process of VM placement is optimized by using Optimize VM Placement Algorithm 
(OVMP). Figure 2 shows the proposed framework.
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We have proposed a four threshold based flexible VM consolidation framework. The 
thresholds are decided on the basis of fuzzy values. Hosts are divided into five classes on 
the basis of four thresholds (T1, T2, T3 and T4). If utilization of a host is less than T1, it is 
classified as very less loaded host. If utilization is larger than or equal to T1 and lesser than 
T2, it is called as less utilized host. If host utilization is larger than or equal to T2 and lesser 
than T3, it is moderately utilized host. If utilization is T3 or lies between T3 and T4, the host 
is called normally utilized host and if utilization is T4 or is in between T4 and 1, then it is 
over utilized host. Figure 3 represents the category of hosts.

Let there are N number of hosts. The utilization of ith host is denoted as Uti. The work-
ing of the framework is shown in Fig. 4.

3.1 � Calculating Thresholds

The unusual fact is that resources in idle state in a data center too consume high amount 
of power at leisure. Servers housed in cloud data centers are extremely away from energy 
uniformity. Even at 20% utilization, they draw 80% peak power. This is a major cause of 
energy inefficiency. The servers sit idle frequently as their utilization is between 10 and 
50% of their peak load [14–17]. The major concern is inefficient utilization of resources 
which causes high power consumption. The over utilized resources degrade the per-
form and under-utilized resources consume high amount of power even when not in use. 

Fig. 2   Proposed framework

Fig. 3   Category of hosts
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Literature shows detection of over loaded and under loaded hosts by finding static or adap-
tive single and double thresholds. This work proposes the use of four adaptive thresholds 
so as to classify the hosts into more distinct types for shutting down more number of hosts 
resulting into lesser energy consumption. The thresholds are calculated by designing a 
novel K-medoid interquartile range mid-range algorithm.

3.1.1 � K‑Medoid Interquartile Range Mid‑range Algorithm (KMIMR)

To find the values of four thresholds, a KMIMR algorithm is designed using statistical 
analysis of resource utilization history along with some numerical computations.

Let PH = {H1, H2, H3, … Hn} be a set of n physical hosts in a cloud data center. Assume 
U = {U1, U2, U3, … Um} be a set such that Ui Ɛ U (1 ≤ i ≤ m) is CPU utilization of physical 
host

Hj Ɛ PH at time t. Algorithm 1 shows the pseudo code.

Fig. 4   Working of the framework
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Algorithm 1: KMIMR
Input: set of utilization (U), number of clusters (k), safety parameter (L)
Output: Four thresholds T1, T2, T3, T4
1: C = KMedCluster (U, k)
2: for x = 1 to C.length do
3: IQR[x-1] = TQ3 – TQ1
4:   end for
5: Iqr = (Max(IQR) + Min(IQR))/2
6:

7:

8:
9:
END

The input to the algorithm is set of utilization (U), number of clusters (k) and safety 
parameter (L). The output is the values of four thresholds. The function KMedCluster (U, 
k) in Algorithm is used to partition U into k clusters C1, C2,…. Ck such that:

•	 Cx = {UPx-1 +1, UPx-1 +2,……. UPx} Ɛ D,
•	 0 = P0 < P1 < P2 < P3……. Px = m, and
•	 Cx ∩ Cy = ɸ for 1 ≤ x, y ≤ k (the value of k can be decided using empirical approach i.e. 

observation through experiments)

For each cluster Cx, the algorithm calculates the interquartile range of each cluster 
(Eq. 1)

where (TQ3)x is the third quartile of cluster x and (TQ1)x is the first quartile of cluster x.
From the IQR array, the mid-range of interquartile range is calculated as shown in 

Eq. (2)

where Max(IQR) refers to maximum value of interquartile range in IQR array (which con-
tains interquartile range of all clusters), Min(IQR) is the minimum value in the IQR array. 
This step obtains the value of Iqr, then the fuzzy threshold values are calculated using 
Eqs. (3–6).

(1)IQR [x − 1] =
(

TQ3

)

x
−
(

TQ1

)

x
,

(2)Iqr =
Max(IQR) +Min(IQR)

2
,

(3)T1 =
1

10
(1 − L.Iqr),

(4)T2 =
11

20
(1 − L.Iqr),
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where L is the safety parameter for VM consolidation i.e. the extent of VM consolida-
tion. The higher the value of safety parameter, the higher is the energy consumption and 
lesser SLA violations and vice versa. The thresholds are calculated motivated from [12] 
using the boundary values of host utilization as 10%, 55%, 90% which distinguishes the 
hosts into distinct types. The mathematical computations in accordance with the Iqr value 
obtained from KMIMR as shown in equations above give adaptive thresholds according to 
the resource utilization history in order to comply with dynamic cloud environment.

3.2 � VM Selection Methods

VM selection methods are proposed considering both I/O and CPU intensive tasks simulta-
neously. A task which is CPU intensive will take more CPU cycles and its completion time 
depends upon the processor speed. I/O intensive tasks, on the other hand perform more of 
the I/O operations and their completion time depends upon the time for which they kept 
waiting to complete I/O operations.

3.2.1 � Maximum Ratio of CPU to Product of Memory and Bandwidth (MRCPMB)

The energy consumption by CPU is more as compared to memory and bandwidth in the 
case of tasks which are CPU intensive. So, we choose a VM whose CPU consumption is 
more, to migrate on another host to reduce consumption of energy. VMi is selected as com-
pared to VMj such that the following condition (Eq. 7) holds:

3.2.2 � Minimum Product of CPU, Bandwidth and Memory (MPCBM)

In I/O intensive tasks, the CPU, memory and bandwidth all amount for considerable energy 
consumption. So, select such a VM which consumes less CPU, memory and bandwidth as 
its migration will be easier. Therefore, in this case, we select a VMi in comparison to VMj 
such that the following condition (Eq. 8) holds:

3.3 � VM Deployment Algorithm

This subsection presents a new VM deployment algorithm i.e. Energy Efficient VM 
Deployment (EEVD) for placement of VMs on new target hosts. It considers energy effi-
ciency i.e. reducing SLA violations and energy consumption at the same time. It also con-
siders memory consumption. The pseudo code of EEVD is described in Algorithm 2.

(5)T3 =
9

10
(1 − L.Iqr),

(6)T4 = (1 − L.Iqr),

(7)
(

CPU

Memory ∗ Bandwidth

)

i

>

(

CPU

Memory ∗ Bandwidth

)

j

(8)(CPU ∗ Bandwidth ∗ Memory)i < (CPU ∗ Bandwidth ∗ Memory)j
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The input to the algorithm is listofhosts, listofvms which represents the set of hosts, set 
of VMs in the data center respectively and four adaptive thresholds T1, T2, T3, T4 calcu-
lated using KMIMR policy. The output of the algorithm is allocation of VMs on new target 
hosts maintaining energy efficiency.

Algorithm 2:  The EEVD algorithm
Input: listofhosts, listofvms, T1, T2, T3, T4
Output: VMs’ allocation
1. vmlist.arrangeByDecreasingCpuUtilization( )
2.   for each VM in the listofvms do
3. minimEnergyEff = min
4. hostAllocated = null
5. for each Host in the listofhosts do

(Host matches the VM requirements) then
7. util = getUtilAfterAlloc(Host, VM)

(util >= T2 AND util < T3) then
9. energyCons = Host.getPower( )
10. energyConsAfterAlloc = getPowAfterAlloc (Host, VM)
11. diffEnergyCons = energyConsAfterAlloc – energyCons
12. sla1before = getSlaTimePerActHost (Host)
13. sla1after = getSlaTimePerActHostAfterAlloc (Host, VM)
14. sla1 = sla1after – sla1before
15. sla2before = getSlaMetr (Host.getListOfVms ( ))
16. sla2after = getSlaMetrAfterAlloc (Host.getListOfVms ( ), VM)
17. sla2 = sla2after – sla2before
18. mem = getActualUsedMem (Host, VM) – getTotalMem (Host) 
19. sla = sla1 * sla2 
20. energyEff = 1/(diffEnergyCons * sla * mem)
21.                        if (energyEff > minimEnergyEff) then
22. minimEnergyEff = energyEff
23. hostAllocated = Host

6.                if

8.                      if

24.                        end if
25.                     end if
26.             end if
27.       end for
28.   end for
END

The first step is to arrange the VMs in the decreasing order of their CPU utilization 
(Line 1). For every available VM in listofvms, a variable ‘minimEnergyEff’ is assigned 
a minimum value and another variable ‘hostAllocated’ is given a NULL value (Lines 
2–4). For all the VMs, each host is examined one by one to find a suitable target host. 
If a host matches the requirements of a VM then the utilization of host after VM alloca-
tion is noted (Line 7). Line 8 is for hosts which are moderately utilized. Lines 9–11 is to 
calculate the difference between the energy consumption before and after allocation of 
VM to host. The difference between SVTAH (Eq. 2) before and after allocation is also 
calculated and stored in a variable “sla1” (Lines 12–14). The second SLA metric cor-
responding to performance degradation due to migration (Eq. 3) is also considered. The 
difference between second SLA violations before and after allocation is calculated and 
stored in a variable “sla2” (Lines 15–17). The difference between actual used memory 
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before and after allocation is stored in a variable “mem” (Line 18). The total SLAV 
(Eq. 4) is calculated in Line 19. Line 20 calculates the energy efficiency (Eq. 5). Lines 
21–23 is to find the host with highest energy efficiency and complete the allocation of 
VM to that host.

3.4 � Optimization of VM Placement

Optimization of VM placement is very significant to improvise the resource utilization 
in a data center leading to increased energy efficiency. Optimize VM placement algo-
rithm (OVMP) is designed to optimize the VM placement from very less loaded, less 
loaded and over loaded hosts. Algorithm 3 shows the pseudo code for optimization of 
VM placement in a data center.

It takes as input the four thresholds (T1, T2, T3, T4), listofhosts, listofvms and returns 
the mapMigration. In the first step, CPU utilization of every host is fetched (Line 2) and 
it is checked whether a host is over utilized (Line 3). The selected VMs are migrated 
from overloaded hosts to other energy efficient hosts (Lines 5–6). Lines 8–11 finds the 
less loaded hosts and selected VMs from them are migrated to another hosts with high-
est energy efficiency. In the next step (Lines 15–19), the selected VMs from very less 
loaded hosts are migrated to another energy efficient hosts. The algorithm returns the 
migration map of all migrated VMs from over loaded, less loaded and very less loaded 
hosts allocated to new target machines.

Algorithm 3: The OVMP Algorithm
Input: T1, T2, T3, T4
Output: mapMigration
1. for each Host in the listofhosts do
2. u = host.getCpuUtil ( )
3.    if (u >= T4) then
4. overLoadedHosts = getOverLoadedHosts ( )
5. VmsForMigration = getVmsForMigrationFromHosts (OverLoadedHosts)
6. mapMigration =  getNewVmPlace (VmsForMigration)
7.    end if
8.    else if (u < T2 AND u >=T1)
9. lessLoadedHosts = getLessLoadedHosts ( )
10. VmsForMigration2 = getVmsForMigrationFromLessHosts (lessLoadedHosts)
11. mapMigration2 = getNewVmPlace (VmsForMigration2)
12. end else if
13. mapMigration.addAll (mapMigration2)
14. else if (u < T1)
15. VLessLoadedHosts = getVLessLoadedHosts ( )
17. VmsForMigration3 = getVmsForMigrationFromVLessHosts(VLessLoadedHosts ( )
18. mapMigration3 = getNewVmPlace (VmsForMigration3)
19. mapMigration.addAll (mapMigration3)
20.   end else if
21. end for
22. return mapMigration
END
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4 � Experimental Parameters

The following configuration of VMs and hosts is used as shown in Table 1 and power con-
sumption is calculated as per Spec power benchmark (Table 2). The CloudSim is used for 
experimental evaluation. 

Planet lab workloads are utilized for experimental setup, which is a part of CoMon pro-
ject. CoMon was used to monitor Planet lab nodes. The workload contains traces of CPU 
utilization function of VMs. Each algorithm’s simulation run was designed and simulated 
on these workloads (Table 3).

4.1 � Parameters

The output parameters in terms of which algorithms are evaluated include energy consump-
tion, number of migrations, number of hosts shutdown, SLA violation time per active host 
(SVTAH), Performance degradation due to migration (PDM) and overall SLA violation.

Table 1   Configuration of VMs 
and hosts used in experiments

Configuration Host VMs

Types 2 4
MIPS {1860, 2660} MHz {2500, 2000, 1000, 

500} EC2 Compute 
Units

PES {2, 2} {1, 1, 1, 1}
RAM {4, 4} GB {0.85, 1.7, 1.7, 0.6} GB
BW 1 Gbit/s 100 Mbit/s

Table 2   Power consumption in Watts

Server Idle 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP Proliant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP Proliant G5 93.7 97 101 105 110 116 121 125 129 133 135

Table 3   Workload traces

Workload trace name Meaning Number of hosts Number of VMs

20110303 This data is collected on 3 March, 2011 800 1052
20110306 This data is collected on 6 March, 2011 800 898
20110309 This data is collected on 9 March, 2011 800 1061
20110322 This data is collected on 22 March, 2011 800 1516
20110325 This data is collected on 25 March, 2011 800 1078
20110403 This data is collected on 3 April, 2011 800 1463
20110409 This data is collected on 9 April, 2011 800 1358
20110411 This data is collected on 11 April, 2011 800 1233
20110412 This data is collected on 12 April, 2011 800 1054
20110420 This data is collected on 20 April, 2011 800 1033
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4.1.1 � Energy Consumption

Reducing consumption of energy by servers in data centers is crucial. It can be calculated as 
summation of power consumption during a time period (Eq. 9).

4.1.2 � SVTAH

The percentage of SLA violation time for which a host has experienced 100% utilization. 
SVTAH is defined in Eq. (10).

where n is number of physical machines; tsx is time for which host x has experienced 100% 
utilization and tax is active time of host x.

4.1.3 � PDM

Equation (11) represents performance degradation due to migrations, where m is number of 
VMs in data center; Cdy

 is predicted PDM of VM y;Cry
 is total CPU utilization requested by 

VM y during its lifetime and Cdy
 is 10% of requested CPU utilization of y during its 

migration.

4.1.4 � Overall SLA Violation

It is defined as product of SVTAH and PDM as shown in Eq. (12).

4.1.5 � Energy Efficiency

It is defined in Eq. (13).

(9)e(t) = ∫t

p(t)

(10)SVTAH =
1

n

n
∑

x=1

tsx

tax

(11)PDM =
1

m

m
∑

y=1

Cdy

Cry

(12)SLAV = SVTAH ∗ PDM

(13)
1

EnergyConsumption ∗ SLA ∗ Memory
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5 � Results and Discussion

This Section discusses the experimental results in comparison with other state of the art 
algorithms. The study presents the evaluation of VM deployment algorithm and it also 
evaluates the framework for both CPU and I/O intensive tasks.

5.1 � Evaluation and Analysis of VM Deployment Algorithm

This Section evaluates the performance of EEVD algorithm which places the selected 
VMs on new hosts taking into account both consumption of energy and violations in 
SLA at the same time. The algorithms with which the proposed algorithm is compared 
are KAM-MMS-2.0 [15] and KAI-MMS-1.0 [15]. EEVD is employed with both these 
algorithms in order to check its performance. The combination of KAM-MMS-2.0 and 
EEVD is termed as KAM-MMS-2.0-EEVD and the combination of KAI-MMS-1.0 and 
EEVD is called KAI-MMS-1.0-EEVD. The other algorithms with which the proposed 
algorithm EEVD is compared with are KAI-MMS-1.0-EE [15] and KAM-MMS-2.0-EE 
[15].

Figure  5 shows the performance of EEVD algorithm in terms of energy efficiency 
in comparison to other algorithms. Figure 6 illustrates the performance of EEVD algo-
rithm in terms of energy consumption compared with other algorithms. It is clear that 
algorithm KAI-MMS-1.0-EEVD is better as compared to other algorithms. It is because 
it saves more number of hosts by optimally utilizing the resources and considers energy, 
bandwidth, memory consumption and SLA violations at the same time during VM 
deployment.

Figures 7 and 8 compare all the algorithms in terms of SLA violations and SVTAH 
respectively.

Figures show that KAM-MMS-2.0-EEVD has better performance than KAM-
MMS-2.0 and KAM-MMS-2.0-EE. This is because KAM-MMS-2.0-EEVD reduces 
excessive migrations and at the same time reduces the number of utilized hosts, SLA 
violations, and SVTAH. Similarly, KAI-MMS-1.0-EEVD is than KAI-MMS-1.0 and 
KAI-MMS-1.0-EE.

Fig. 5   Comparison of energy efficiency of algorithms
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Fig. 6   Comparison of energy consumption of algorithms

Fig. 7   Comparison of SLA violations of all algorithms

Fig. 8   Comparison of SVTAH of all algorithms
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5.2 � Evaluation of Framework for CPU Intensive Tasks

The workload trace named “20110303” is considered to be CPU intensive trace [23]. 
So, this data set is chosen for evaluation of CPU intensive tasks. The proposed frame-
work comprising of FFT, KMIMR, MRCPMB, EEVD and safety parameter taken as 1.0 
[17] is termed as KMIMR-MRCPMB-1.0. for CPU intensive tasks.

The algorithms used for comparison are “Non Power Aware (NPA) [12], Dynamic 
Voltage Frequency Scaling (DVFS) [12], THR-MMT-1.0 [12], THR-MMT-0.8 [12], 
MAD-MMT-2.5 [12], IQR-MMT-1.5 [12], KAM-MMS-2.0 [15], KAI-MMS-1.0 [15] 
and KMI-MRCU-1.0 [17] ”.

Table  4 compares the algorithms NPA, DVFS, THR-MMT-1.0, THR- MMT-0.8, 
MAD-MMT-2.5, IQR-MMT-1.5, KAM-MMS-2.0, KAI-MMS-1.0, KMI-MRCU-1.0 
and KMIMR-MRCPMB-1.0 on the basis of energy efficiency, energy consumption, 
SLA violations, SVTAH, PDM, and number of VM migrations. NPA and DVFS both 
do not include VM migration. Thus, energy efficiency, SLA violations, SVTAH, PDM, 
and number of VM migrations do not exist for them. The more the value of energy 
efficiency of an algorithm, and the lesser the values of energy consumption, SLA viola-
tions, SVTAH, PDM, and number of VM migrations, the better the algorithm is.

It is well clear from the table that the performance of KMIMR-MPCBM-2.0 is much 
better than the rest of the algorithms in terms of energy efficiency and other factors. The 
reason behind is that NPA and DVFS do not involve migrations, THR-MMT-0.8, THR-
MMT-1.0, MAD-MMT-2.5, IQR-MMT-1.5 are based on double thresholds and only 
consider reducing energy consumption.

KAM-MMS-2.0, KAI-MMS-1.0, KMI-MRCU-1.0 are based on three thresholds 
and uses K-means clustering whereas, KMIMR-MRCPMB-1.0 is based on four flexible 
thresholds which results in saving more number of hosts. Moreover, it is also based on 
K-medoids clustering which is more robust to outliers. It also considers bandwidth in 
addition to CPU utilization and memory.

Table 4   Comparison of algorithms for CPU intensive tasks

Algorithms Energy efficiency Energy 
consumption 
(KWh)

SLA 
violations 
(10−7)

SVTAH (%) PDM (%) Number of 
VM migra-
tions

NPA – 2410.8 – – – –
DVFS – 803.91 – – – –
THR-MMT-1.0 38 99.95 2613 26.97 0.10 19852
THR-MMT-0.8 170 119.40 492 4.99 0.10 26567
MAD-MMT-2.5 169 114.27 518 5.24 0.10 25923
IQR-MMT-1.5 166 117.08 514 5.08 0.10 26420
KAM-MMS-2.0 9231 83.33 13 1.73 0.01 6808
KAI-MMS-1.0 6393 104.28 15 2.03 0.01 7519
KMI-MRCU-1.0 28484 87.77 4 0.90 0.004 2821
KMIMR-

MRCPMB-1.0
30089 78.98 1 0.76 0.025 2608
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5.3 � Analysis of Framework for I/O Intensive Tasks

To analyse I/O intensive tasks, the data set used is 20110322 [23]. For I/O intensive tasks 
the proposed framework uses FFR, KMIMR, MPCBM, EEVD and safety parameter as 2.0 
[] and is termed as KMIMR-MPCBM-2.0. The algorithms used for comparison are “NPA 
[12], DVFS [12], THR-MMT-1.0 [12], THR-MMT-0.8 [12], MAD-MMT-2.5 [12], IQR-
MMT-1.5 [12], KAM-MMS-2.0 [15], KAI-MMS-1.0 [15] and KMI-MPCU-1.0 [17]”.

Table  5 compares the algorithms NPA, DVFS, THR-MMT-1.0, THR- MMT-0.8, 
MAD-MMT-2.5, IQR-MMT-1.5, KAM-MMS-2.0, KAI-MMS-1.0, KMI-MPCU-2.0 and 
KMIMR-MPCBM-2.0 on the basis of energy efficiency, energy consumption, SLA vio-
lations, SVTAH, PDM, and number of VM migrations. As NPA and DVFS both do not 
include VM migrations, there is no count of energy efficiency, SLA violations, SVTAH, 
PDM and number of VM migrations. It is observed that the performance of KMIMR-
MPCBM-2.0 is much better than rest of the algorithms. It is because it considers SLA 
violations, energy, memory and bandwidth consumption at the same time compared with 
other methods which only consider one or two factors. It employs the use of K-medoids 
clustering which is more robust to outliers as compared to K-means clustering method. 
Moreover, the four flexible thresholds optimize the resource usage and results in saving 
more number of hosts. This concludes that the proposed framework is better than other 
state-of-the-art algorithms.

6 � Conclusion

This work proposes a flexible four threshold framework for VM consolidation which 
not only consider energy consumption but also SLA violations, memory and bandwidth 
consumption. Unlike the existing frameworks, the proposed framework is generic and 
works for both CPU intensive and I/O intensive tasks. This paper presents KMIMR 
algorithm for host overload detection, MRCPMB and MPCBM policies for VM selec-
tion, and EEVD policy for VM placement and OVMP algorithm for optimizing the 

Table 5   Comparison of algorithms for input output intensive tasks

Algorithms Energy efficiency Energy 
consumption 
(KWh)

SLA 
violations 
(10−7)

SVTAH (%) PDM (%) Number of 
VM migra-
tions

NPA – 2410.80 – – – –
DVFS – 1014.21 – – – –
THR-MMT-1.0 32 101.62 3115 27.72 0.11 25560
THR-MMT-0.8 136 120.91 609 5.49 0.11 33417
MAD-MMT-2.5 148 117.88 574 5.35 0.11 32795
IQR-MMT-1.5 134 121.11 615 5.46 0.11 33061
KAM-MMS-2.0 4922 84.65 24 2.03 0.01 8736
KAI-MMS-1.0 4612 103.26 21 1.80 0.01 8190
KMI-MPCU-2.0 5694 67.55 26 2.90 0.01 12607
KMIMR-

MPCBM-2.0
6009 59.89 23 2.60 0.002 11099
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process of VM placement. The experimental results prove the efficiency of proposed 
framework. The results also show that K-medoids algorithm is more effective than 
K-means and four thresholds result in saving more number of hosts as compared to three 
threshold. Considering other factors such as bandwidth in addition to CPU utilization is 
more effective. Future work includes implementation in real cloud environment.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of interest.

References

	 1.	 Buyya, R., Toosi, A. N., & Calheiros, R. N. (2014). Interconnected cloud computing environments: Chal-
lenges, taxonomy, and survey. ACM Computing Surveys, 47, 1–47.

	 2.	 Buyya, R. (2009). Market-oriented cloud computing: Vision, hype, and reality of delivering computing as the 
5th utility. In 9th IEEE/ACM international symposium on cluster computing and the grid.

	 3.	 Shehabi, A., & et al. (2016) United States data center energy usage report | Energy Technologies Area.
	 4.	 Adams, W. (2018). Power consumption in data centers is a global problem.
	 5.	 Cao, Z., & Dong, S. (2012). Dynamic VM consolidation for energy-aware and SLA violation reduc-

tion in cloud computing. In Parallel and distributed computing, applications and technologies, PDCAT 
proceedings.

	 6.	 Cao, Z., & Dong, S. (2014). An energy-aware heuristic framework for virtual machine consolidation in Cloud 
computing. The Journal of Supercomputing, 69, 429–451.

	 7.	 Alboaneen, D. A., Pranggono, B., & Tianfield, H. (2014). Energy-aware virtual machine consolidation 
for cloud data centers. In Proceedings of IEEE/ACM 7th international conference on utility and cloud 
computing.

	 8.	 Zeng, H., Ellis, C. S., Lebeck, A. R., & Vahdat, A. (2002). ECOSystem. ACM SIGOPS Operating Systems 
Review, 36, 123.

	 9.	 Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., & Doyle, R. P. (2001). Managing energy 
and server resources in hosting centers. In Proceedings of 18th ACM symposium on operating systems 
principles.

	10.	 Nathuji, R., & Schwan, K. (2007). Virtual power: Coordinated power management in virtualized enter-
prise systems. In Proceedings of 21st ACM SIGOPS symposium on operating systems principles.

	11.	 Beloglazov, A., & Buyya, R. (2010). Energy efficient resource management in virtualized cloud data cent-
ers. In 10th IEEE/ACM international conference on cluster, cloud and grid computing.

	12.	 Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient 
management of data centers for cloud computing. Future Generation Computing Systems, 28, 755–768.

	13.	 Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for 
energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Con-
currency and Computation: Practice and Experience, 24, 1397–1420.

	14.	 Zhou, Z., Hu, Z. G., Song, T., & Yu, J. Y. (2015). A novel virtual machine deployment algorithm with 
energy efficiency in cloud computing. Journal of Central South University, 22, 974–983.

	15.	 Zhou, Z., Hu, Z., & Li, K. (2016). Virtual machine placement algorithm for both energy-awareness and 
SLA violation reduction in cloud data centers. Scientific Programming. https​://doi.org/10.1155/2016/56120​
39.

	16.	 Castro, P. H. P., Barreto, V. L., Corrêa, S. L., Granville, L. Z., & Cardoso, K. V. (2016). A joint CPU-
RAM energy efficient and SLA-compliant approach for cloud data centers. Computer Networks, 94, 1–13.

	17.	 Zhou, Z., et al. (2018). Minimizing SLA violation and power consumption in Cloud data centers using 
adaptive energy-aware algorithms. Future Generation Computing Systems, 86, 836–850.

	18.	 Goyal, S., Bawa, S., & Singh, B. (2016). Energy optimised resource scheduling algorithm for private 
cloud computing. International Journal of Ad Hoc and Ubiquitous Computing, 23, 115.

	19.	 Kim, H. S., Shin, D. I., Yu, Y. J., Eom, H., & Yeom, H. Y. (2012). Systematic approach of using power 
save mode for cloud data processing services. International Journal of Ad Hoc and Ubiquitous Comput-
ing, 10, 63.

	20.	 Zhao, J., Tao, J., & Frlinger, K. (2014). A framework for comparative performance study on virtualised 
machines. International Journal of Ad Hoc and Ubiquitous Computing, 17, 82–99.

https://doi.org/10.1155/2016/5612039
https://doi.org/10.1155/2016/5612039


366	 N. Khattar et al.

1 3

	21.	 Xu, H., Liu, Y., Wei, W., & Xue, Y. (2019). Migration cost and energy-aware virtual machine consolida-
tion under cloud environments considering remaining runtime. International Journal of Parallel Program-
ming, 47, 481–501.

	22.	 Ramezani, F., Lu, J., & Hussain, F. K. (2014). Task-based system load balancing in cloud computing using 
particle swarm optimization. International Journal of Parallel Programming, 42, 739–754.

	23.	 Mann, Z. A., & Szabo, M. (2017). Which is the best algorithm for virtual machine placement optimiza-
tion. Concurrency and Computation: Practice and Experience, 29(10), e4083.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Miss Nagma Khattar  is currently pursuing her Ph.D. in the domain of 
cloud computing. Her research work is on energy aware scheduling in 
cloud. Her research interests include energy efficiency, green comput-
ing, designing of scheduling algorithms and internet of things.

Dr. Jaiteg Singh  holds a Ph.D. in Computer Science and Engineering 
with 12 years of experience in Research, Development, Training, Aca-
demics at Institutes of Higher Technical Education. His areas of exper-
tise are software engineering, business intelligence, data and opinion 
mining, cartography, curriculum design, pedagogical innovation and 
management. Areas of interest include sustainable software engineer-
ing, education technology, offline navigation systems and cloud 
computing.



367An Energy Efficient and Adaptive Threshold VM Consolidation…

1 3

Dr. Jagpreet Sidhu  holds a Ph.D. in Computer Science and Engineer-
ing from Panjab University, Chandigarh. He has research publications 
in international journals and conferences of repute to his credit. His 
research interests include distributed systems, distributed security 
architectures, distributed services like grid, cloud and web services, 
social network analysis, privacy and trust related issues in distributed 
environments. His teaching interests include distributed computing, 
cloud computing, data communication and computer networks. He 
also teaches certified courses like CCNA, CCVP and RHCE.


	An Energy Efficient and Adaptive Threshold VM Consolidation Framework for Cloud Environment
	Abstract
	1 Introduction
	2 Related Literature
	3 Proposed Framework
	3.1 Calculating Thresholds
	3.1.1 K-Medoid Interquartile Range Mid-range Algorithm (KMIMR)

	3.2 VM Selection Methods
	3.2.1 Maximum Ratio of CPU to Product of Memory and Bandwidth (MRCPMB)
	3.2.2 Minimum Product of CPU, Bandwidth and Memory (MPCBM)

	3.3 VM Deployment Algorithm
	3.4 Optimization of VM Placement

	4 Experimental Parameters
	4.1 Parameters
	4.1.1 Energy Consumption
	4.1.2 SVTAH
	4.1.3 PDM
	4.1.4 Overall SLA Violation
	4.1.5 Energy Efficiency


	5 Results and Discussion
	5.1 Evaluation and Analysis of VM Deployment Algorithm
	5.2 Evaluation of Framework for CPU Intensive Tasks
	5.3 Analysis of Framework for IO Intensive Tasks

	6 Conclusion
	References




