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Abstract Medical ultrasound images are used in clinical diagnosis and generally degraded by
speckle noise. This makes difficulty in automatic interpretation of diseases in ultrasound images.
This paper presents a speckle removal algorithm by modeling the wavelet coefficients. A Bayesian
approach is implemented to find the noise free coefficients. Cauchy prior and Gaussian Probability
Density Function (PDF) are used to model the true wavelet coefficients and noisy coefficients
respectively. A Maximum a Posteriori (MAP) estimator is used to estimate the noise free wavelet
coefficients. AMedian Absolute Deviation (MAD) estimator is used to find the variance of affected
wavelet coefficients in finest scale. The proposed method is compared with existing denoising
methods. The experimental results show that the method offer up to 21.48% enhancement in Peak
Signal to Noise Ratio (PSNR), 1.82% enhancement in Structural Similarity Index (SSIM), 1%
enhancement in Correlation coefficient (ρ) and 7.68% enhancement in Edge Preserving Index (EPI)
than best existing wavelet modeling method. The results indicate that the proposed method
outperforms over existing methods, both in noise reduction and edge preservation.
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1 Introduction

Ultrasound image, a real time imaging system plays an important role in medical
diagnosis. Among several medical imaging modalities, ultrasound imaging modality is
a powerful imaging technique and has been widely used due to its safe, economic and
portable nature. It provides useful information about different parts of human body.
High frequency sound waves are used to image internal body organs like kidney,
liver, joints, vessels and musculoskeletal. Speckle noise degrades the image quality of
ultrasound image [17, 25]. Speckle noise is a multiplicative noise and it is generated
due to imaging system. Fundamental structure of ultrasound image is too small.
Ultrasound imaging system uses transducer, which produces ultrasonic waves. These
ultrasonic waves are passed through the internal organs of human body. The trans-
ducer is vibrated by the returned sound waves and converts them into electrical
pulses. An ultrasonic scanner is used to convert electrical pulses into digital images,
known as ultrasound image. The air gap between the human body and probe of the
transducer may produce noise in the image. Ultrasound images are acquired using
narrow band detection systems which results speckle, an undesirable granular
structure.

Despeckling is an important preprocessing step used in medical science for anal-
ysis, extraction and recognition of features from imagery measurements. Several
despeckling methods have been proposed, those can be classified as algorithmic
approached and transform domain approached filters. Algorithmic approached filters
can be classified as spatially domain filters and frequency domain filters. Different
spatially domain filters (median filter, adaptive weighted filters, average filter, wiener
filter) and frequency domain filters are efficient to suppress additive noise, However,
these filters are fail to suppress the multiplicative noise. Spatial adaptive filters like
Kuan filter, Lee filter and Frost filter are widely used to reduce speckle noise. The
algorithms used to de-noise the additive noise are ineffective to preserve the infor-
mation. Diffusion filters [35], non-local mean filter [37] and bilateral filters [28] are
proposed in literature to recover the noise free ultrasound image corrupted by speckle
noise. Recently, transform domain techniques are the important tool to recover signal
from noisy data. Application of wavelet transform and contourlet transform to the
noisy data, it is possible to reduce the speckle noise more effectively than the spatial
and frequency domain filters. Wavelet transform domain filtering techniques based on
thresholding have been proposed to suppress the speckle noise [14–16, 22]. It is
proved that wavelet based methods recover signals from noisy data more accurately
than the spatially and frequency domain filters [20, 21] because of its multiresolution
approach. Wavelet transform decompose the image into multiscale details and wavelet
based filters use both frequency and location information to suppress noise. Denoising
using Bayesian estimator can perform better in denoising than the wavelet
thresholding techniques [6, 18]. Wavelet based methods are not accurately suppress
the noise because it depends on the correct choice of threshold. So wavelet shrinkage
techniques are now the area of interest. Wavelet shrinkage techniques apply wavelet
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transform that converts the affected image (data) into wavelet coefficients. Estimators
are used to shrink the generated wavelet coefficients and the denoised signal is
recovered by applying inverse wavelet transform. All the above methods work effi-
ciently in case of additive noise. Homomorphic approach is used to convert multipli-
cative noise (speckle noise) into additive noise [4]. The unwanted random signal
which gets multiplied with the original signal is called multiplicative noise and which
gets added and independent to the original signal, is called additive noise. In case of
speckle noise the noisy signal can be represented as the multiplication of input signal
and noisy signal, where as in case of additive noise the noisy signal can be
represented as the addition of original signal and noisy signal. Homomorphic ap-
proach uses the concept of logarithmic transformation to convert speckle noise into
additive noise [1] and then additive noise suppression techniques are implemented to
recover the data. Wavelet methods in homomorphic environment provide better sup-
pression of speckle noise than other spatial domain filters [7]. It has been shown in
[3, 9, 27, 38] that wavelet methods in Bayesian environment work more accurately
than the thresholding methods. Several techniques have been proposed in literature,
those make use of Bayesian estimators. The noise free wavelet coefficients are
extracted by choosing a suitable estimator. An appropriate PDF is required to model
statistical behavior of wavelet coefficients both for true and noisy data. Type of PDF
and estimator has a great impact on the denoising performance.

Rabbani et al. [33] propose MAP and minimum mean square error (MMSE)
estimator for Gaussian mixture prior and Laplacian Mixture prior, assuming Rayleigh
distribution and Gaussian distribution for noise. Achim et al. [2] present a MMSE
estimator for alpha-stable distribution. Sadreazami et al. [36] propose Cauchy prior to
model contourlet coefficients and MAP estimator to denoise the speckle noise from
ultrasound image. MMSE estimator utilizing the normal inverse Gaussian prior is
proposed by Bhuiyan et al. [8]. Ranjani et al. [13] propose a Levy distribution for
denoising ultrasound image. Bhuiyan et al. [7] propose a Minimum Mean Absolute
Error (MMAE) estimator for Cauchy prior. Lu et al. [29] developed a despeckling
technique using Laplace mixture prior and MAP estimator. The authors applied the
prior, for modeling directionlet transform coefficients. Biban and Amindavar [10]
designed a mixture prior using Cauchy and Rayleigh distribution and applied to
mixture ratio estimator. Jafari and Ghofrani [24] approached Levy model and MAP
estimator to recover the non subsampled shearlet transform coefficients from ultra-
sound image. Chang et al. [11] proposed a denoising method that works in Bayesian
framework. The authors proposed a generalized Gaussian prior and used it on wavelet
coefficients.

The denoising efficiency depends on the distribution prior and estimator. In this
paper, to suppress the multiplicative noise homomorphic approach is implemented. A
new spatially adaptive wavelet based despeckling method that uses Bayesian approach
with Cauchy prior is presented. MAP estimator is applied to estimate true wavelet
coefficients. Noisy coefficients are modeled using Gaussian PDF. The rest of the
paper is organized as follows. Section 2 contains a brief preliminary on statistical
modeling of wavelet coefficient, Maximum a Posteriori (MAP) Estimator and Estima-
tion of noise variances. The proposed method is presented in Section 3. The results
and analysis of the work is discussed in Section 4. Section 5 presents the conclusions
of the proposed research.
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2 Preliminaries

2.1 Modeling of wavelet coefficients

The application of wavelet transform converts the logarithmic image in to sub-bands.
Wavelet decomposition to m level results sub-bands LLm, LHn, HLn and HHn for n = 1,
2… m [30]. Low frequency portion, LLm sub-band is taken as approximation. This sub-
band restores all the information. Rest of the sub-bands, LHn, HLn and HHn gives the
horizontal feature, vertical feature and diagonal feature of the input image respectively.
Wavelet decomposition has the property of orthogonality. This preserves the statistical
properties of spatial domain in frequency domain [26]. The distribution of wavelet
coefficients is non-Gaussian in nature. Figure 1 shows the distribution of wavelet
coefficients in ultrasound image. The distributed coefficients are conditionally indepen-
dent. They are of zero mean with heavy tails [30]. Within sub-bands, the wavelet
coefficients are dependent and are locally stationary [12]. The modeling of wavelet
coefficients with suitable PDF is critical in the issue. The distributions of the wavelet
coefficients are not normal. Figure 2 shows the normal probability plot for horizontal
sub-band for first level decomposition of ultrasound image. This plot verifies that the
data distribution is not normal. The circles show the empirical data versus probability
value. The straight line in the plot is the Gaussian line and the circles do not follow it.
Figure 3 shows the distribution fit of the vertical wavelet coefficients for both Cauchy
and normal PDFs. It is seen from the plot that Cauchy PDF models the data more
accurately than normal PDF.

The denoising issue is to recover the noise free wavelet coefficients from the observed
wavelet coefficients. Assuming dependency between these wavelet coefficients, give
better performance rather than the assumption of independency [19]. It is assumed that,
the wavelet coefficients are random variables, distributed with suitable PDF, given their
variances. Assumption of accurate distribution retrieves the noise free coefficients accu-
rately. The employed PDF for noise free data and noise plays a significant role in the
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Fig. 1 Distribution of wavelet coefficients of ultrasound image
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performance of the noise reduction process. Achim et al. [2] attempted alpha-stable PDF to
model wavelet coefficients. However, it is not suitable to estimate due to non-existence of
closed form expression of alpha-stable PDF. Bhuiyan et al. [8] worked with symmetric
normal inverse Gaussian PDF. Gaussian and Cauchy PDFs have the closed-form expres-
sions which makes it possible to be evaluated through finite number of operations. Cauchy
PDF has symmetric and unimodal property that makes it suitable for noise free parameter
estimation. Cauchy PDF is a stable distribution, as it is a linear combination of location
parameter and scale parameter, so it can be expressed analytically. Bayesian estimator with
Cauchy prior in wavelet domain has been shown a successful removal of speckle noise in
Synthetic Aperture Radar (SAR) images [5]. Logarithmic transform converts multiplica-
tive noise in to zero mean additive white Gaussian noise. The standard deviation of the

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.0001
0.0005

0.001

0.005
0.01

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99
0.995

0.999
0.9995
0.9999

Data

Pr
ob

ab
ilit

y
LH1(:,1) data
normal

Fig. 2 Probability versus data curve for original ultrasound image
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Fig. 3 Modeling of the ultrasound image wavelet coefficients with Cauchy and normal density function
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wavelet transferred additive Gaussian noise is same as logarithmic transferred additive
Gaussian noise due to the orthogonal property. Orthogonal wavelets have a decorrelation
property. For orthonormal wavelet transform, the wavelet transform of the white noise is
also white noise of same amplitude. White noise is spread out equally over all coefficients.
The PDF of the wavelet transferred white Gaussian noise is given by

Pη ηð Þ ¼ e
− η2

2σ2ηffiffiffiffiffiffiffiffiffiffi
2πσ2η

q ð1Þ

Where, σ2
η >0, is the variance of Gaussian PDF. η ∈ℝ and mean of the distribution is

assumed to be zero.
The Cauchy PDF is given by

Ps sð Þ ¼ 1

π

� �
γ

s2 þ γ2

� �
ð2Þ

Where γ >0 (real), the scaling parameter, specifies half width at half maximum. s ∈ (−∞, +
∞). Location parameter is assumed as zero.

Cauchy PDF is a continuous probability distribution. The basic properties of Cauchy PDF
include stability and heavy-tail feature. At lower scale parameters, Cauchy PDF shows highly
impulsive behavior. The graph of Cauchy PDF for different values of scaling parameter is
shown in the Fig. 4.

In the first step of the proposedmethod, the input speckled image is log transformed to convert
speckle noise to additive noise. The generated image is then decomposed using discrete wavelet
transform (DWT), which results wavelet coefficients. Wavelet decomposition is to decompose
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the input image into four low resolution sub-bands namely, LL, LH, HL and HH. Two low-pass
filters are used to find the coefficients in LL sub-band and known as approximation coefficients.
LH sub-band contains horizontal coefficients and can be found out by using low-pass filter and
then high-pass filter. HL sub-band contains vertical coefficients and can be found out by using
high-pass filter and then low-pass filter. Two high-pass filters are used to find the coefficients in
HH sub-band and known as diagonal coefficients. Most of the noisy coefficients are available in
HH sub-band. The complete process can be defined as follows:

If

Ix , y = noisy ultrasound image
Sx , y = a noisy free image.
ƞx , y = multiplicative noise (speckle noise) component.

The noisy ultrasound image can be defined as, whereas, ignoring the additive noise in the
image

I x;y ¼ Sx;y � ηx;y ð3Þ

Applying logarithmic function to eq. (3)

logIx;y ¼ logSx;y þ logηx;y ð4Þ

Wavelet transform is linear in nature. By applying the wavelet transform to the eq. (2) a set
of wavelet coefficients can be generated as eq. (5)

I km;n ¼ Skm;n þ ηkm;n n ¼ 0…2iþm−1 ð5Þ

where, m is the decomposition level and −1< m <− i and k =1,2 mention the spatial
orientations.

Figure 5 shows the three scale decomposition of the ultrasound image. The upper left
portion of the image is the approximation sub-band at third level. Upper right portion of
the image is the vertical sub-band at level one. Lower left shows the horizontal sub-band
at level one and lower right shows the diagonal sub-band at level one.

2.2 Maximum a posteriori (MAP) estimator

The maximum a posteriori (MAP) estimator is used to retrieve the noise free coefficients,
assuming the coefficients are distributed by a suitable prior. This estimator is applied to
the generated wavelet coefficients to filter out the noisy coefficients. Bayesian theory has
the requirement of a suitable prior distribution that accurately estimates the noise
variance and signal parameters from the wavelet coefficients. By applying homomorphic
approach to the image corrupted by speckle noise, the authors are able to convert the
multiplicative noise in to additive noise. logηx,y and logIx , y are independent identical
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distributions. The problem is to retrieve the noise free coefficients from the log trans-

formed image. Let the estimation of logSx , y is ^logSx;y. The problem is to minimize the
Mean Squared Error (MSE) given by

MSE clog Sx;y
� �

; log SX ;Y
� �� �

¼ 1

M 2
clog Sx;y
� �

−log Sx;y
� �			 			2

¼ 1

M2 ∑
M
x;y¼1

clog Sx;y
� �

−log Sx;y
� �� �2

ð6Þ

Where M is the size of the image. Due to the orthogonality property of DWT, the log
transformed speckle noise can be approximated by Gaussian distribution with mean = 0
and variance σ2

η. A suitable prior is added to the Maximum Likelihood (ML) estimate

which results MAP estimator. MAP is defined as Likelihood multiplied by a prior. The
problem is to find the Bayesian estimate of the noise free true wavelet coefficients. The
Bayesian MAP estimate of the noise free coefficients are given by

Ŝ̂ Ið Þ ¼ arg max
S

P
I jS

I jSð ÞPS Sð Þ

 �

ð7Þ

Ŝ̂ Ið Þ ¼ argmax
S

Pη I−Sð ÞPS Sð Þ ð8Þ

Where I, S and η are assumed as random variables referring to eq. (5). PS(S) is the prior of
the noise free wavelet coefficients and defined by Cauchy distribution and defined by eq. (2).

Fig. 5 Three level wavelet decomposition of ultrasound image
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PI∣S(I| S) is the Likelihood function. Pη(I − S) = Pη(η) is assumed as Gaussian distribution and
defined as eq. (1).

The solution of eq. (8) can be simplified by applying shrinkage approach [23]

Ŝ Ið Þ ¼ sign Ið Þmax 0; Ij j−σ2
η

2I
γ2 þ I2

���� ����� �
ð9Þ

The scaling parameter γ can be found out by minimizing [5]

∫þ∞
−∞ ϕ̂I ωð Þ− ϕS ωð Þϕη ωð Þ� ���� ���e −ωð Þ2dω ð10Þ

Where ϕ̂I ωð Þ is the empirical characteristics function corresponding to random variable I.
ϕS ωð Þ and ϕη ωð Þ are characteristics function of random variables S and η respectively and

defined as ϕS ωð Þ ¼ e −γ ωj jð Þ and ϕη ωð Þ ¼ e − σ2η=2ð Þ ωj j2:ð Þ
Equation (10) can be solved by applying Hermite Gauss quadrature rule [32] as

∫þ∞
−∞ f ωð Þe −ωð Þ2dω≈∑L

r¼1Cr f ωrð Þ ð11Þ

Where f ωð Þ ¼ ϕ̂I ωð Þ− ϕS ωð Þϕη ωð Þ� �
ωr are the roots of the polynomial of order L and Cr are the weights of the Hermite

quadrature polynomial.

2.3 Estimation of noise variances

The estimation of noise variance is the most important step in the de-noising technique, based
on wavelet coefficients. MAP estimator depends upon the quality of the noise variance

estimator. The estimation of true wavelet coefficients need information of σ̂2
η. To estimate

the Gaussian noise variance σ̂2
η, a Median Absolute Deviation (MAD) estimator is used [34].

σ̂̂2η ¼
median lij jð Þ
0:6745

� �2

ð12Þ

Where li € subband HH in finest scale.

3 Proposed method

In this method, a heavy tailed Cauchy prior is used to approximate the noise free coefficients
using MAP estimator. Gaussian model is used to approximate the noisy wavelet coefficients
following the orthogonal property of wavelet transform. The noisy wavelet coefficients are
approximated in HH sub-band using MAD estimator. The detail of the proposed method is
presented in Fig. 6. Further, algorithm steps for removing speckle noise from ultrasound image
by the proposed method are follows:
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STEP 1: Wavelet decomposition of logarithmic transformed ultrasound image.
STEP 2: Modeling of wavelet coefficients in Cauchy PDF.
STEP 3: Estimate the scaling parameter γ using eq. (10).

STEP 4: Estimate the variance σ̂2η using median estimator using eq. (12).

STEP 5: Using equation (9) and the values of γ and σ̂2η, find the Bayesian MAP estimates

of the true coefficients.
STEP 6: Perform the Inverse Discrete Wavelet Transform (IDWT) to recover the de-
noised image.
STEP 7: Finding exponential transformation of the data obtained in STEP 6.

4 Simulation results and performance analysis

The proposed method is tested on ultrasound image and phantom image of size
(538 × 340) [31] and (256 × 256) respectively, both qualitatively and quantitatively.
MATLAB R2015a has been used to simulate the proposed method. Daubechies 8
(db8) wavelet of third level is applied for simulation. Figures 7 and 8 shows the
qualitative comparison of the proposed despeckling method with various existing
methods like median, wiener and wavelet thresholding (Hard & Soft) and state-of-
the-art methods [11, 13]. The parameters of the standard filters, Levy shrink [13] and
Bayes shrink [11] are assumed using trial and error methods to get optimum efficien-
cy. Performance parameters are used to make the quantitative comparison of the
proposed method with various methods. The performance parameters are Peak Signal
to Noise Ratio (PSNR) and Signal to Mean Squared Error (S/mse) ratio. S/mse ratio
is a good measure of noise suppression in case of multiplicative noise [20] and
defined as the ratio of signal power to the mean squared error. A high value of
PSNR and S/mse ratio is required for a good quality image. The performance
parameters are defined as follows.

PSNR ¼ 20 log10
255ffiffiffiffiffiffiffiffiffiffi
MSE

p ð13Þ

Fig. 6 Block diagram of the proposed method. (LOG: Logarithmic transformation and EXP: Exponential
transformation)
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MSE is the Mean Squared Error and defined as

MSE ¼ 1

m� n
∑m�n

i¼1 Î x;y−Ix;y
� �2

ð14Þ

Where Ix , y and Î x;y are original and despeckled image respectively. m × n is the image size.

S=mse ¼ 10log10 ∑m�n
i¼1 I2x;y=∑

m�n
i¼1 Î x:y−Ix;y
� �2� �

ð15Þ

Tables 1 and 2 show the PSNR and S/mse values obtained from various denoising
methods for phantom image at different multiplicative noise variances (σ2

ɳ ). This table

indicates that the PSNR value of the proposed method is higher than existing
methods. With reference to this table, PSNR value is obtained by the method is
approximately 36 dB (σɳ =0.1). It is observed that the method offer 21.48%, 22.24%
and 24.68% enhancement in PSNR than the Levy shrink [13], Bayes shrink [11] and
Hard Thresholding methods, respectively. Further, in Table 2, it is noticed that S/mse

Fig. 7 De-noising performance on phantom image. (a) Original image (b) noisy image with standard devia-
tion = 0.3 (c) denoising result with median filter (d) denoising result with wiener filter (e) denoising result with
hard thresholding (f) denoising with soft thresholding (g) denoising result with Bayes shrink method (h)
denoising with levy shrink method (i) denoising result with proposed method
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is highly dependent on signal content and noise level. Optimal S/mse is obtained for
proposed method is approximately 23.55 dB (σɳ =0.1), which is better than the others
compared methods.

It is observed that the proposed despeckling method performs better than the
existing methods. As proposed in [33], three quality parameters are implemented,
which will increase the effectiveness of the proposed method. The three parameters
are (i) Correlation coefficient (ρ), (ii) Structural Similarity Index (SSIM) and (iii)
Edge Preserving Index (EPI). These concepts are defined as follows:

(i) Correlation coefficient (ρ) determines the interdependence between the true image and
denoised image. Unity value is required for perfect correlation. It is defined as

ρ ¼
cov Ix;y; Î x;y
� �
σI x;yσÎ̂x;y

ð16Þ

Where σI x;y and σÎ x;y are the standard deviation of noise free image and expected image

respectively. cov is the covariance operation and defined as

Fig. 8 De-noising performance on ultrasound image. a original ultrasound image. b Image denoising using
median filter. c Image denoising using wiener filter. d image denoising using hard thresholding. e image
denoising using soft thresholding. f image denoising using Bayes shrink method. g image denoising using Levy
shrink method. h image denoising using proposed method
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cov Ix;y; Î x;y
� � ¼ E Ix;y−E Ix;y

 �� �
Î x;y−E Îx;y

 �� � �
Where, E [.] is the expectation operation.

(ii) Structural similarity index (SSIM) is an index for image quality assessment. It is a
measurement of similarity between true image and despeckled image. It is defined as

SSIM ¼ 2Ix;yÎ x;y þ 2:55
� �

2σIx;y Î x;y þ 7:65
� �

= I x;y
2
þ Î x;y

2

þ 2:55

� �
σ2
Ix;y þ σ2

Î x;y
þ 7:65

 !
ð17Þ

Where I x;y and Î x;y are the expectation of observed image and recovered image respectively.
σI x;y Î x;y is the covariance between observed image and recovered image.

σ2
I x;y and σ2

Î x;y
are the variance of observed image and recovered image respectively.

For good visual quality, SSIM is required to be unity.

(iii) Edge Preserving Index (EPI) is a quantitative measure of edge preservation. In medical
science it is interested in despeckling while preserving the edges. For perfect edge
preservation, EPI is required to be unity. Mathematically EPI is defined as

Table 1 PSNR (dB) Performance of the proposed method for phantom image

(σɳ) Noisy
image

Median Wiener Hard
Thresholding

Soft
Thresholding

Levy
shrink
[13]

Bayes
shrink [11]

Proposed
Method

0.1 24.105485 26.057011 26.752311 27.108571 27.106715 28.263541 27.986614 35.995504
0.15 22.393041 24.353460 24.629063 25.398711 25.397173 26.935563 25.759335 34.178600
0.2 21.169219 23.055253 23.588899 24.041090 24.039745 26.011550 25.204379 32.956857
0.25 20.203715 21.676319 22.190628 23.188276 23.187032 25.589818 24.185837 31.736766
0.3 19.374075 21.267044 21.340280 22.444001 22.433250 24.603888 23.629846 31.131972
0.35 18.762251 20.724664 20.837599 21.863495 21.852856 23.702070 22.599344 30.668393
0.4 18.216625 20.615691 20.384248 21.185182 21.175583 22.641816 21.457412 30.006933
0.45 17.776322 19.603381 20.082733 20.584332 20.575548 22.203715 21.881681 29.250734
0.5 17.615885 19.704335 19.476300 20.150477 20.141891 21.154709 20.450637 28.851272

Table 2 S/MSE (dB) Performance of the proposed method for phantom image

(σɳ) Noisy
image

Median Wiener Hard
Thresholding

Soft
Thresholding

Levy
shrink
[13]

Bayes
shrink [11]

Proposed
Method

0.1 11.933051 13.100757 14.579878 14.936137 14.934282 17.510869 15.992145 23.547758
0.15 10.220608 11.275696 12.456629 13.226277 13.224740 16.819521 14.310755 21.664908
0.2 8.996786 9.881744 11.416466 11.852151 11.838726 15.990594 13.250734 20.399815
0.25 8.031282 8.228322 10.018194 10.961550 10.949369 14.212181 11.905424 19.113298
0.3 7.201641 7.811625 9.167846 10.271567 10.260817 13.385672 11.169219 18.403863
0.35 6.589818 7.327466 8.665165 9.691063 9.680423 13.141104 10.823969 18.020860
0.4 6.044192 7.223052 8.211815 9.012748 9.003149 12.450637 10.487036 17.310755
0.45 5.603888 6.197862 7.910300 8.411899 8.403115 11.918195 9.453521 16.482528
0.5 5.443452 5.616688 7.303866 7.978043 7.969458 11.166126 8.319766 16.095916
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EPI ¼ ∑ ΔIx;y−ΔIx;y
� �

ΔÎ x;y−ΔÎ x;y
� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ ΔIx;y−ΔI x;y
� �2

∑ ΔÎ x;y−ΔÎ x;y
� �2r

ð18Þ

Where ΔIx , y is the filtered (high pass) output of Ix , y using 3 × 3 pixel approximation of
discrete Laplacian operator.

The performance comparison of the proposed algorithm in terms of SSIM and ρ for a phantom
image is tabulated in Tables 3 and 4. It can be observed that proposed method yields SSIM and ρ,
that are more closer to one than other existing methods. The best value of SSIM is 0.989 and the
best value of ρ is 0.997 for σɳ =0.1. The proposed method offers 1.82%, 2.06% and2.25%
enhancement in SSIM and 1%, 1.07% and 1.09% enhancement in correlation coefficient than the
Levy shrink [13], Bayes shrink [11] and Hard threshold methods, respectively.

The efficiency of the proposed method is evaluated by simulating on ultrasound image at
noise levels 0.4 and 0.5. The authors obtained quality parameters, SSIM, ρ and EPI from
ultrasound image, which are tabulated in Table 5. It can be seen that the proposed method has
achieved better result at higher noise levels. SSIM of the proposed method is 0.791 and 0.717
for σɳ =0.4 and σɳ =0.5 respectively. Correlation Coefficient of the proposed method is 0.978
and 0.976 for σɳ =0.4 and σɳ =0.5 respectively. EPI of the proposed method is 0.814 and 0.772
for σɳ =0.4 and σɳ =0.5 respectively. For a noise level σɳ =0.4, the proposed method offers
4.05%, 6.04% and 8.78% enhancement in SSIM index, 0.89%, 1.14% and 1.22% enhance-
ment in correlation coefficient index and 7.68%, 10.24% and 11.47% enhancement in EPI
index than the Levy shrink [13], Bayes shrink [11] and Hard threshold methods, respectively.
It is noticed that, in Table 5, the soft thresholding filter results better in EPI parameter than hard

Table 3 Performance analysis of phantom image based on SSIM

(σɳ) Noisy
image

Median Wiener Hard
Thresholding

Soft
Thresholding

Levy shrink
[13]

Bayes
shrink [11]

Proposed
Method

0.1 0.722503 0.832235 0.894371 0.966921 0.966900 0.971101 0.968796 0.989169
0.15 0.702070 0.794392 0.857520 0.955507 0.955474 0.965563 0.957273 0.975665
0.2 0.685542 0.766769 0.827964 0.942387 0.942033 0.953232 0.947523 0.963282
0.25 0.673119 0.740701 0.800952 0.931260 0.930880 0.947599 0.938628 0.950850
0.3 0.662635 0.726563 0.778803 0.921642 0.921239 0.931132 0.928718 0.941741
0.35 0.653195 0.708756 0.759335 0.911374 0.910417 0.924252 0.917282 0.934097
0.4 0.646487 0.703063 0.746607 0.908548 0.908056 0.911187 0.908956 0.925424
0.45 0.641816 0.683824 0.732328 0.894369 0.893839 0.909972 0.900345 0.916737
0.5 0.638712 0.679668 0.719400 0.883886 0.883314 0.892176 0.889696 0.909890

Table 4 Performance analysis of phantom image based on correlation coefficient (ρ)

(σɳ) Noisy
image

Median Wiener Hard
Thresholding

Soft
Thresholding

Levy shrink
[13]

Bayes
shrink [11]

Proposed
Method

0.1 0.857389 0.975682 0.978695 0.986921 0.984469 0.987817 0.987138 0.997862
0.15 0.835346 0.962406 0.965681 0.968980 0.968901 0.978196 0.972130 0.996722
0.2 0.813160 0.947581 0.954528 0.956545 0.956519 0.971860 0.962921 0.995572
0.25 0.790888 0.927305 0.935563 0.946081 0.946035 0.962274 0.952044 0.994139
0.3 0.767274 0.918732 0.919820 0.936037 0.935960 0.958856 0.943385 0.993140
0.35 0.747767 0.905316 0.908023 0.926554 0.926455 0.948093 0.931376 0.992145
0.4 0.727354 0.902618 0.896396 0.913552 0.912654 0.932605 0.918974 0.990872
0.45 0.709555 0.874948 0.888000 0.900079 0.899926 0.922300 0.912588 0.989279
0.5 0.632670 0.817031 0.829666 0.871043 0.863188 0.909829 0.883495 0.980279
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thresholding filter. For a noise level σɳ =0.5, the method offers 1.16%, 1.75% and 1.99%
enhancement in SSIM index, 0.62%, 0.65% and 0.89% enhancement in correlation coefficient
index and 1.74%, 2.67% and 3.78% enhancement in EPI index than the Levy shrink [13],
Bayes shrink [11] and Hard threshold methods, respectively.

5 Conclusion

A new speckle reduction algorithm for ultrasound image is proposed in this paper. Homomor-
phic approach is used to convert the signal noise into signal independent noise. Orthogonalty
property of wavelet is used to find the variance of this noise. By modeling the wavelet
coefficients using Cauchy prior and estimating the true coefficient using Bayesian MAP
estimator, it has proved that the proposed method removes speckle noise in ultrasound images
effectively. Effectiveness of the proposed method is proved by comparing with existing
methods through various performance and quality parameters. Statistical modeling of wavelet
coefficients plays a vital role in the suppression of speckle noise. Suppression result may be
improved by complex prior that correctly model the wavelet coefficients and noise. In future
the proposed method may be applied to Optical Coherence Tomography (OCT) image. OCT is
a digital retinal image which is affected by speckle noise and plays an important role in the
detection of retinal diseases.
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