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Abstract In this paper, an azimuthally periodic wedge-shaped circular aperture fre-

quency selective surface (FSS) is discussed, which provides the dual polarized and angular

stable frequency response with significantly more fractional bandwidth (FBW) up to 50�
angle-of-incidence (AOI) at S-band, Ku-band and Ka-band. In addition to this, the

equivalent circuit (EC) parameters of proposed bandpass FSS structure are obtained using

the transmission-line approach, which are further utilized to compute the geometrical

parameters of the proposed bandpass FSS structure at 3, 15 and 25 GHz. The numerical

results computed by transmission-line approach are supported with the simulation results,

which have been obtained using commercially available simulators such as CST Micro-

wave Studio (finite integral technique) and Ansoft HFSS (finite element method) at each

frequency of interest.
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1 Introduction

Frequency selective surface structures have a potential to impart the bandstop and band-

pass spatial filtering characteristics, which ideally provides the total reflection and trans-

mission response at the resonance frequency, respectively [1]. These spatial filters in one or

the other form provide various applications in space/satellite communication, antenna

systems [reducing the radar cross-section (RCS)], electromagnetic shielding, frequency-

selective windows and waveguide filters [2–8]. The bandstop FSS structures allow the

propagation of direct current signals through it, which is not suitable for various appli-

cations as discussed in [1]. Therefore, recently the demand of designing the bandpass FSS

structures has been increased, which are very useful for the modification of electromag-

netic architecture of buildings to accommodate the advanced and imminent wireless

technologies [9–11]. There are various reported numerical techniques to obtain the reso-

nance behaviour of FSS structures such as three-dimensional full-wave finite element

method (FEM) [12], finite difference time domain (FDTD) codes [13], method-of-moment

(MoM) [14, 15] and EC [16, 17]. Moreover, the numerical techniques discussed in [12–15]

provide the extensive computations. Therefore, in order to obtain an immediate knowledge

of the electromagnetic properties of FSS structures such as scattering, reflection and

transmission, an EC analysis, which is based on the approximation of FSS structure as a

lumped circuit parameters, is adopted [16, 17]. In addition to this, the EC approach also

provides significant insight into the physical and design properties of the periodic structure

as compared to that of the full-wave numerical techniques [18–21].

However, there are various FSS structures, which have been discussed in the existing

literatures such as square loop [22–26], circular ring [27, 28], tunable FSSs [29] and

different novel FSS structures [30–33]. It has been discussed in [22–28] that the con-

ventional square loop and circular ring FSS offer significant angular stability over a wide

range of AOIs and different polarizations due to their symmetrical nature. In [30], the

active circular ring, which is loaded with the varactor diode, has been discussed. In [31],

the effect of the perpendicular and parallel polarized wave incidence up to 60� AOI has
been discussed on the FSS structure, which has four spiral rectangles connected to a cross-

line element in the middle. In [32], the angular (up to 60�) and polarization sensitivity of

the FSS structure, which has four symmetrical spiral patterns of metallic meander line

printed on FR4 dielectric substrate, has been discussed. Yan et al. [33] have discussed the

FSS structure, which has four symmetrical spiral patterns of metallic meander line printed

on F4B-2 dielectric substrate for perpendicular and parallel wave incident up to 60�. In
[34], the frequency response of a thick screen four legged loaded FSS structure has been

discussed for perpendicular and parallel polarized wave incidence up to 60� AOI.
It has been discussed that the conventional circular ring FSS provides significant FBW

as compared to that of the square loop FSS and outperforms the square loop FSS structure

[1]. Recently, we have reported an azimuthally periodic wedge-shaped metal vane loaded

circular ring FSS structure for bandstop filtering characteristics in Ku-band [34], which

provides significantly better angular stability and FBW as compared to that of the con-

ventional circular ring FSS structure. Therefore, we have extended this work [34] for the

bandpass filtering characteristics in S/Ka and Ku-band of the electromagnetic spectrum.

The proposed bandpass FSS structure provides significantly better angular/polarization

stability as compared to that of the conventional geometrical shapes such as square loop

[22–26], circular ring [27], active circular ring (loaded with varactor diode) [29] as well as

recently reported novel FSS structures [30–33]. Moreover, the proposed bandpass FSS has
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a very thin overall thickness of 0.007k (at 3 GHz), where k is the smallest wavelength in

the operating wavelength range, which prevents the generation of surface waves especially

at the large incidence angles and provide significances in the shielding applications.

The resonance behaviour of the proposed bandpass FSS structure is discussed by

considering it as the two port network, which has randomly selected input/output port

along the circumference of the proposed bandpass structure, and a transmission-line model

is used to extract the equivalent lumped circuit elements such as inductance (L) and

capacitance (C). The port analysis of the proposed bandpass FSS structure provides a

parallel RLC circuit, which has resistance (R), capacitance (C) and an equivalent induc-

tance (L ¼ L1 k L2), where L1 and L2 is the inductance due to the conducting portion,

which is shown in Fig. 1a. For the lossless FSS structure, the value of R vanishes. The

remainder of the paper is organized as follows. Section 2 discusses the theory of operation,

which includes the EC realization and the synthesis of the geometrical parameters of the

proposed bandpass FSS structure. Section 3 discusses the resonance behaviour of the

proposed FSS structure at 3, 15 and 25 GHz for the perpendicular and parallel polarized

waves, which have been incidence up to 50� AOI. Finally, Sect. 4 concludes the work.

2 Theory of Operation

2.1 Equivalent Circuit Realization

In this paper, we have discussed the resonance behaviour of an azimuthally periodic wedge-

shaped circular ring bandpass FSS structure, which is shown in Fig. 1a with its geometrical

parameters such as periodicity (p), outer radius of the circular aperture (r3), inner radius of

the circular aperture (r2), inner radius of wedge-shaped aperture (r1), width of the circular

aperture (w1), which results from the (r3–r2) and width of the wedge shaped aperture (w2),

which results from the (r2–r1). The periphery of circular aperture must be equal or integer

multiple of resonance frequency, which provides the equivalent inductance and width of

aperture corresponds to the capacitance of the proposed FSS structure [35, 36]. As discussed

in [16], if the width of circular ring is narrow (in the microwave regime), then circular ring

resonator exhibits same dispersion characteristics as that of the transmission-line resonator,

therefore the ring resonator has been analyzed using the transmission-line model. Similarly,

Fig. 1 The azimuthally periodic wedge-shaped circular ring bandpass FSS (a) unit-cell configuration, and
(b) its equivalent circuit
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the electrical equivalent behaviour of the proposed bandpass FSS structure has been ana-

lyzed using the two-port network based on the transmission-line model [16].

The proposed bandpass FSS structure has been represented in terms of the parallel RLC

circuit using the EC approach as shown in Fig. 1b. However, the input impedance of the

proposed bandpass FSS structure in terms of the parallel RLC circuit is given as [37]:

Zi ¼
R

1þ 2jDxCR
ð1Þ

where, Zi, R and C are the input impedance, resistance in X and capacitance of the

proposed bandpass FSS structure, respectively. In addition to this, the transmission-line

model is used to obtain the input impedance of the proposed bandpass FSS structure. For

the transmission-line model, the input impedance in terms of the Y-parameters, which have

been achieved through the ABCD matrix, is given as [16]:

Zic ¼
Zoxr

alxr þ 2jDxp
ð2Þ

where, Zic, Zo, a, l, xr and Dx are the input impedance, characteristic impedance, atten-

uation constant, length which represents the mean circumference, resonance angular fre-

quency and small deviation in the angular frequency of the transmission-line model,

respectively of the transmission-line model. However, with the comparison of Eqs. (1) and

(2), we have achieved the resistance and capacitance as follows.

R ¼ Zo

al
and C ¼ p

Zoxr

ð3Þ

In the proposed bandpass FSS structure, the equivalent inductance (L) is equal to L1||L2.

Here, L1 is given as [38]:

L1 nHð Þ ¼ 1:257� 10�3a ln
a

w1 þ t

� �
þ 0:078

� �
�Kg ð4Þ

where, a, w1, t and Kg are the mean radius a = ((r3 ? r2)/2), width of the circular aperture,

thickness of the conductor and correction factor, respectively. In general, Eq. (4) is used to

find the value of the microstrip inductance above the grounded substrate. However, in the

case of FSS structure, the ground plane beneath the substrate is not used. Therefore, the

correction factor Kg which provides the effect of electric field between the microstrip

structure and ground plane, which is set equal to the unity as discussed in detail in [38]. In

addition to this, L2 is obtained as:

L2 nHð Þ ¼ 2n� 10�4ro ln
ro

w2 þ t

� �
þ 1:193þ w2 þ t

3ro

� �� �
�Kg� sin h ð5Þ

Table 1 The geometrical parameters of the proposed bandpass FSS structure at 3, 15 and 25 GHz

Operating Frequency (GHz) r1 (mm) r2 (mm) r3 (mm)

3 8.0 12 18

15 2.0 2.4 3.0
83

25 0.5 1.1 1.9
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and

L ¼ L1 k L2 ð6Þ

where n, ro, w2 and h are the number of vanes, length of the arc of vanes, width of the

wedge-shaped aperture and AOI, respectively. All the dimensions have been chosen in

micrometer (lm). Therefore, the resonance frequency of the proposed bandpass FSS

structure is given as: fr ¼ 1

2p
ffiffiffiffiffi
LC

p .

Fig. 2 The frequency response of proposed bandpass FSS structure for perpendicular polarized wave at
different AOI in S-band using (a) CST Microwave Studio and (b) Ansoft HFSS
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2.2 Parametric Synthesis

The mean radius of proposed bandpass FSS structure is given as [1]: 2pr ¼ ko=
ffiffiffiffiffiffi
eeff

p
,

where, r, ko and eeff are the mean radius, operating wavelength and effective dielectric

permittivity, respectively. Further, we have computed the value of C for each operating

frequency using Eq. (3) and value of L1 using Eq. (4). In addition to this, we have tuned

the value of L2 by varying the associated geometrical parameters in order to achieve the

appropriate value of L, which provides the desired/intended resonance frequency. We have

computed the values of L and C, which represent the unit-cell of proposed bandpass FSS

structure at normal wave incidence for 3, 15 and 25 GHz. Using the theory discussed in

Fig. 3 The frequency response of proposed bandpass FSS structure for parallel polarized wave at different
AOIs using in S-band (a) CST Microwave Studio and (b) Ansoft HFSS
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this Section, the geometrical parameters computed at each frequency of interest such as at

3, 15 and 25 GHz are shown in Table 1.

3 Design and Simulation

In this section, the proposed bandpass FSS structure is designed at 3, 15 and 25 GHz using

the commercial simulators such as CST Microwave Studio and Ansoft HFSS. To design

the unit-cell of proposed bandpass FSS structure, Arlon AD 320 is used as dielectric

substrate (dielectric permittivity, er = 3.2, tand = 0.0028 and thickness 0.762 mm) and

copper is used as a conductive sheet (electrical conductivity, r = 5.8 9 107 S/m and

thickness, t = 0.02 mm). In this section, the angular stability, 3-dB reflection/transmission

bandwidth and FBW of the proposed bandpass FSS structure for perpendicular and parallel

polarized wave, which has been incidence up to 50� AOI at 3, 15 and 25 GHz, are

presented. In addition to this, we have also explored the electric field distribution of the

proposed bandpass FSS at each frequency of interest for the normal wave-incidence.

3.1 Angular/Polarization stability

The values of r1, r2 and r3 at fr = 3 GHz are as demonstrated in the first row of Table 1. In

addition to this, the characteristic impedance, Zo = 377 X, mean radius, a = 15 mm,

w1 = 6 mm, w2 = 4 mm and ro = 6.280 mm. The value of capacitance C is computed

using Eq. (3) that is 0.442 pF. Further, the value of inductance L1 [using Eq. (4)] and L2
[using Eq. (5)] are computed as 18.68 and 9.30 nH, respectively. Moreover, the value of L

(nH) is computed using Eq. (6), which is 18.68 nH k9.30 nH and results the 6.20 nH. The

proposed FSS structure resonates at 3.1 GHz for normal wave incidence, which has

equivalent circuit parameters such as C and L are 0.442 pF and 6.20 nH, respectively.

Table 2 discusses the effect of perpendicular and parallel polarized wave incidence up to

50� AOI on the resonance frequency, 3-dB bandwidth and FBW of the proposed bandpass

FSS structure. For the perpendicular and parallel polarized wave incidence up to 50� AOI
on the proposed bandpass FSS, the FBW of approximately 59 and 65 % have been

achieved as illustrated in Table 2, respectively. For the perpendicular polarized wave

incidence up to 50� AOI, the resonance frequency of the proposed bandpass FSS structure

downshifts up to 0.77 % with reference to the normal wave incidence which is computed

by using CST Microwave Studio as shown in Fig. 2a. However, this downshift is order of

Table 3 Angular stability and
3-dB reflection/transmission
bandwidth of the proposed
bandpass FSS structure through
CST Microwave Studio and
Ansoft HFSS in Ku-band for
perpendicular and parallel polar-
ized wave

AOI Perpendicular polarization Parallel polarization

CST MWS Ansoft HFSS CST MWS Ansoft HFSS
fr (GHz)
3-dB BW

fr GHz)
3-dB BW

fr GHz)
3-dB BW

fr GHz)
3-dB BW

0� 15.144 15.15
2.60

15.174
2.5988

15.20
2.50

10� 15.144 15.15
2.50

15.168
2.56

15.20
2.50

30� 15.142 15.12
2.30

15.156
2.0398

15.20
2.40

50� 15.142 15.03
2.20

15.144
2.0229

15.20
2.40

1418 G. Bharti et al.

123



0. 56 % when the simulation is performed using Ansoft HFSS as shown in Fig. 2b. Fig-

ure 3a, b demonstrate 0.65 and 0.59 % downshift in the resonance frequency with refer-

ence to the normal wave incidence using CST Microwave Studio and Ansoft HFSS,

respectively, for the parallel polarized wave incidence up to 50�.
On the similar way, the Eqs. (3) and (6) have been used to compute the value of C and

L at 15 GHz, which are 0.884 fF and 1.29 nH, respectively, and results the resonance

frequency of 14.98 GHz at normal wave incidence. Table 3 illustrates the effect of the

perpendicular and parallel polarized wave incidence up to 50� AOI on the resonance

frequency and 3-dB bandwidth of the proposed bandpass FSS structure. Figure 4a, b

demonstrate 0.013 and 0.79 % downshift in the resonance frequency with reference to the

Fig. 4 The frequency response of proposed bandpass FSS structure for perpendicular polarized wave at
different AOI in Ku-band using (a) CST Microwave Studio and (b) Ansoft HFSS
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normal incidence using CST Microwave Studio and Ansoft HFSS, for perpendicular

polarized wave up to 50� AOI, respectively. Figure 5a demonstrates 0.198 % downshift in

the resonance frequency with reference to the normal wave incidence for the parallel

polarized wave incidence up to 50� using CST Microwave Studio. However, Fig. 5b shows

not any significant shift in the resonance frequency when the simulation is performed using

Ansoft HFSS. In addition to this, Figs. 4 and 5 demonstrate that the proposed bandpass

FSS structure provide wide-band characteristics in Ku-band.

For 25 GHz intended frequency, the value of C and L is 0.53 fF and 0.768 nH,

respectively, which provides the resonance frequency 24.98 GHz for the normal wave

incidence. Table 4 discusses the effect of the perpendicular and parallel polarized wave

Fig. 5 The frequency response of proposed bandpass FSS structure for parallel polarized wave at different
AOI in Ku-band using (a) CST Microwave Studio and (b) Ansoft HFSS
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incidence up to 50� AOI on the resonance frequency, 3-dB bandwidth and FBW of the

proposed bandpass FSS structure. For the perpendicular polarized wave incidence up to

50� AOI, the resonance frequency of the proposed bandpass FSS structure downshift up to

0.055 % with reference to the normal incidence when the simulation has been performed

by using CST Microwave Studio as shown in Fig. 6a. However, Fig. 6b shows no any

significant shift in the resonance frequency when the simulation is performed using Ansoft

HFSS. Figure 7a demonstrates 0.05 % downshift in the resonance frequency with refer-

ence to the normal wave incidence for the parallel polarized wave incidence up to 50�

Fig. 6 The frequency response of proposed bandpass FSS structure for perpendicular polarized wave at
different AOI in Ka-band using (a) CST Microwave Studio and (b) Ansoft HFSS
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using CST Microwave Studio. However, Fig. 7b shows no any significant shift in the

resonance frequency when the simulation is performed using Ansoft HFSS. In addition to

this, for the perpendicular and polarized wave incidence up to 50� AOI on the proposed

bandpass FSS, the FBW of approximately 8.2 and 8 %, respectively is achieved, as pre-

sented in Table 4. Moreover, at each frequency of interest (i.e., 3, 15 and 25 GHz), the

resonance frequency achieved theoretically, using CST Microwave Studio and Ansoft

HFSS experiences a little deviation, which is due to the following reasons. (1) Use of

different numerical techniques [i.e., equivalent circuit technique/transmission-line method

is used to theoretically compute the resonance frequency (simpler and computationally in-

Fig. 7 The frequency response of proposed bandpass FSS structure for parallel polarized wave at different
AOI in Ka-band using (a) CST Microwave Studio and (b) Ansoft HFSS
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extensive), CST microwave Studio is based on finite integral technique [39] and Ansoft

HFSS [40] is based on finite element technique], (2) The CST Microwave Studio and

Ansoft HFSS take into account the effect of dielectric permittivity, loss tangent and metal

conductivity to compute the resonance response, however, the theoretical computation of

the resonance frequency (using equivalent circuit technique/transmission-line method)

consider only the effect of dielectric permittivity but not the loss tangent and metal con-

ductivity, and (3) Due to the different mesh types used in CST Microwave Studio and

Ansoft HFSS.

3.2 Electric Field Distribution

The proposed bandpass FSS structure is designed at each frequency of interest (3, 15 and

25 GHz) using the geometrical parameters, which are shown in Table 1. The structure

provides the resonance pole transmission at 3.360, 15.174 and 25.2 GHz for the normal

wave incidence.

Fig. 8 The electric field distribution of the proposed bandpass FSS structure at b 3.360, b 15.174 and
c 25.2 GHz

Table 5 Comparison of angular/polarization stability of the proposed bandpass FSS structure with other
reported FSS literatures

AOI (in degree) FSS structure % Deviation of fr

45 FSS structure in [22] 7 (TE and TM incidence)

45 FSS structure in [23] 16.6

45 FSS structure in [24] 7.60

45 FSS structure in [25] 5.45

45 FSS structure in [26] 5.00

45 FSS structure in [27] 5.95

45 FSS structure in [29] 3 (TE incidence) and10 (TM incidence)

60 FSS structure in [30] 0.52 (TE incidence) and 2.1 (TM incidence)

60 FSS structure in [31] *1 (TE and TM incidence)

60 FSS structure in [32] *5 (TE and TM incidence)

60 FSS structure in [33] *0.1 (TE incidence) and * 1.0 (TE-incidence)

50 Proposed FSS structure 0.65 (TE incidence) and 0.59 (TM incidence) (at 3 GHz)
0.013(TE incidence) and 0 (TM incidence) (at 15 GHz)
0 (TE incidence) and 0 (TM incidence) (at 25 GHz)
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However, the electric field distribution diagram has the potential to justify the physical

mechanism of the bandpass/bandstop filtering characteristics of the FSS structure [41],

therefore, we have simulated the electric field distribution at 3.360, 15.174 and 25.2 GHz

for the normal wave incidence. With the electric field distribution, we have observed that

the electric field resonance occur in the aperture (proposed FSS structure) at 3.360, 15.174

and 25.2 GHz as shown in Fig. 8a, b and c, respectively. Moreover, the passband arises

due to the enhanced transmission assisted by aperture resonance and outside the circular

aperture, the electric field values are significantly weak.

Moreover, the comparison of angular and polarization stability of the proposed band-

pass FSS with the other reported FSS structures are listed in Table 5, which demonstrates

that the proposed structure provides significantly better angular and polarization stability

up to 50� of AOI.

4 Conclusion

In this paper, an azimuthally periodic wedge-shaped circular ring bandpass FSS structure,

which provides the angular/polarization stable frequency response with significant FBW in

S-band, Ka-band and Ku-band, is discussed. The transmission-line method is used to obtain

the lumped circuit elements of the proposed bandpass FSS structure, which offers less

computation complexity as compared to that of the other numerical techniques. The pro-

posed bandpass FSS structure provides approximately 59 % FBW in S-band and wide-

band frequency characteristics in Ku-band, which is useful for the satellite communication.

In addition to this, the proposed bandpass FSS is a single layer and low profile structure,

which is very economic from practical perspectives.
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