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The programmer cannot write a program without any bug. A large numbers of bugs are deposited into the bug 
tracking system through bug reports. To find the root cause of a bug, a meaningful and huge conversation happens 
between the developer and reporter.  The developer (triager) reads the whole bug report and then classified 
according to severity. The previous researchers observed that the bug report summaries provide the more 
resourcefully investigate information in the bug repository to the developer as part of the severity classification task. 
To further investigate the relationship between bug report summary and bug severity classification. A novel 
approach is proposed by using swarm intelligence and machine learning approaches. Firstly the n-gram technique is 
used to extract the semantic features score. These features are fed into the Summary Subset Selection Phase to select 
the optimal summary subset. The selected subset features are fed into the feature scoring phase to provide a relative 
score to each feature. These optimized features are used to train the proposed model. At last Naive Bayes approach 
is used to classify the multiclass severity classification. The results are analyzed by using 10-fold cross-validation on 
three benchmark datasets showed better performance in terms of Precision, Recall and F-measure. It is observed that 
the performance depend on the bug report contents. If the bug report has larger data for summarization than the 
summarization increase the classification accuracy otherwise decrease. 
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1. Introduction 

The bug resolution is the important challenge of the software maintenance process. A vast number of bugs are 
deposited into the bug tracking system in the form of bug reports. Numerous software companies fork out a 
substantial amount in finding and fixing the bugs [1]. The National Institute of Standards and Technology (NIST) 
spend $60 billion on bug detection, and the investigators found that the finding and fixing the bugs save more than 
$22 billion per year [2].  So, the gap between saving and expenditure related to bugs identification and reporting that 
enhances the reliability and quality of software. The whole bug resolution process is shown in Figure 1. In standard 
practice, the end user experiences a bug, while dealing with the system and reports the bug into the bug tracking 
system (BTS) by entering the severity, description, product, platform and component fields. To find the root cause 
of a bug, a meaningful and huge conversation happens between the developer and reporter by bug reports.  So the 
bug reports have reported conversation in the form of messages from multiple people, and these messages might 
contain few lines or multiple passages. To resolve the bug, the developer (triager) has to analyze all the comments in 
bug reports [3]. After that, the developer summarized the bug report, and other developers use this summary for 
duplicate bug report detection and bug triaging process. The bug triaging process includes bug severity classification 
and bud assignment process. In the bug triaging process firstly the bugs are classified according to bug severity and 
according to its severity these bugs are assigned to the appropriate developer. In literature, it is proven that the 
manual method of bug resolution is complicated to use in practice because it demands excessive human effort. 
Therefore, there is need for automatic bug resolution process [4, 5]. 
 
Nevertheless, previous researchers [6,7] described that the automatic generated bug report summaries provides the 
more resourcefully investigate information in the bug repository to the developer as part of the severity classification 
task. Perhaps optimally, after the bug is resolved, the summary of a bug report is written by its author save the other 
developer time who later accesses the bug report. 
 
In this paper, the work is focused on the relationship between the bug report summary and bug severity 
classification. Further, whether the bug report summary helps in finding the appropriate severity of bug or not is 
investigated. The bug reports are varying in length. Some are lengthy that include user and many developer 
conversations. Others are short and consist of only a few words. The severity classification depends on the text of 
the bug reports. The manual process of summarization and classification is very time consuming, tedious and needs 
a lot of human efforts. So there is a need for automatic bug report summarization and multiclass severity 
classification system.  The main objective of this work is to implement the unsupervised bug report summarization 
system and supervised severity classification system. A novel approach is proposed by using swarm intelligence and 
machine learning approaches. Firstly the text of the bug report is pre-processed. Further, the n-gram technique is 
used to extract the semantic features score. These features are fed into the Summary Subset Selection Phase to select 
the optimal summary subset by using Particle Swarm optimization (PSO). The selected subset features are fed into 
the feature scoring phase to provide a relative score to each feature by using Ant colony optimization (ACO). These 
optimized features are used to train the proposed model. At last, the Naive Bayes machine learning algorithm is used 
to classify the severity of the bug report. The results are analyzed by using 10-fold cross-validation on three 
benchmark datasets and showed better performance in terms of Precision, Recall and F-measure. 
 
The following paper is categorized into six sections. Section 2 presents the related work; Section 3 the detailed part 
of the proposed methodology; the experiments and results show in section 4; Section V discusses the conclusion and 
future work.  

2. Related Work 

Mostly researchers have worked on either bug report summarization or bug severity classification process. Very less 
work is done on the combination of both processes.  Firstly, Murphy et.al [6] proposed a supervised summarization 
model by using three classifiers in 2010. The classifier is trained with Email dataset, Email and meeting dataset and 
bug report dataset. The generated summaries are validated by using human-generated summaries of 36 bug reports 
from various open sources projects. The classifier which is trained with bug reports, showed more than 62% 
precision rather than two classifiers.  In the extended version [7], Murphy et al. checked 
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Figure 1: The Bug Resolution Process 

 
whether the system generated summaries assist in identifying the duplicate bug reports. The task-based validation 
is performed, and the results showed that the generated summaries save the developer time in the duplicates bug 
without decreasing the accuracy. In 2018, Kukkar et al. [8] proposed a summarization model by using ant colony 
optimization algorithm (ACO). The feature extraction techniques (TF-IDF, N-gram) are used to extract the 
features after the pre-processing. Based on the user summary percentage, all subsets are generated. Later the 
optimal subset is selected by using ACO. The proposed model showed better results as compared to state art 
approaches [6,7]. In 2016 Zhou et al. [9] proposed a hybrid approach to automate the prediction process by 
combining both data and text mining techniques. Initially, the bug report's summary was extracted by using text 
mining techniques and divided them into three levels. Then in the second stage, the other structured and features 
were extracted and provided to the machine learner. The various data grafting techniques were utilized to 
combine two stages. The performance showed the best result by increasing the f-measure from 79.8% to 85.9% 
for OpenFOAM, 84.6% to 93.7% for JBoss, 78.3% to 81.7% for Mozilla, 76.7% to 80.2% for Eclipse 72.8% to 
79.5% for Firefox. In 2017, Pandey et al. [10] applied the different machine learning algorithms (NB, LDA, 
SVM, Random Forest (RF) and K-NN) to classify the bugs into sever and non- sever category. The author 
observed that the performance of the classifier depends on the dataset. The proposed approach achieved accuracy 
from 75% to 83%. In 2018, Katerina et al. [11] implemented a supervised and unsupervised approaches to 
classify security and non-security bugs of   NASA dataset. The author used TF-IDF, Term Frequency (TF) and 
Bag of word frequency feature vector methods for both approaches, further multiple classifiers like NBM, SVM, 
K-NN, NB and BN for supervised approach and anomaly detection method for the unsupervised approach.  The 
results showed that the supervised approach performed better than the unsupervised approach.  Zhang et al. [12] 
modified the REP and K-NN methods to find the bug report, which was similar to the historical bug report in 
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2016. Next, the features are extracted to classify the bug reports into Blocker; Trivial, Critical, Minor and Major 
classes of Eclipse, GCC and Mozilla datasets. The author observed that the similarity measure improved the 
severity prediction and fixer recommendation process.  Further, Sharmin et al. [13] drafted a bug feature selection 
(BFS) technique by using Pareto optimality to classify the bugs into Blocker, Trivial, Critical, Minor and Major 
classes by searing informative features in 2017. The performance was carried on three open source projects, i.e. 
Eclipse, GCC and Mozilla and results showed that the BFS technique performed better than existing technique 
[9]. In 2019, Kukkar et al. [14] proposed a deep learning severity classification model. The Convolutional Neural 
Network was used to extract the features and Random forest with Boosting was used as classifier. The proposed 
model showed better results as compared to state art approach [9]. 
 
From the related work, it can be seen that only Murphy et al. observed the effect of system generated summaries 
on another process of bug resolution. The rest researches do not observe whether the generated summaries are 
helpful in bug resolution process or not. Therefore in this work, we checked whether the generated summaries are 
helpful in bug severity classification task. 
 
3.  Proposed Summarization and Severity Classification  System 
 
The overall proposed approach is elaborated in this section. This model automatically generates the summary of bug 
reports and after that the bug reports classifies according to its severity. The proposed model is described in the 
Figure 2.   

3.1. Proposed Model 

The problem of automatic bug report summarization is described as unsupervised algorithm whereas severity 
classification is illustrated as the supervised classification algorithm. The essential steps are explained as follows:   

3.2. Pre-processing  

The bug reports have various attributes like title, description, product, component, code snippets, stacktraces, 
priority, severity. But in this work severity, description and title attributes are taken as an input. After that text goes 
into the pre-processing phase. The pre-processing step aims to remove the unnecessary words from the content of 
the bug report [15]. It includes three necessary steps first is tokenization, second is stop-word removal and then 
stemming. Initially, the stream of text is broken into words, numbers, punctuations, and so forth called tokens. 
Further, all the punctuations are replaced with the blank spaces, non-printable escape characters are removed, and 
the words are converted into lowercase. After that, the stop words like verbs, nouns, articles, pronouns, adverbs, 
prepositions, and so forth, which are provided in the Natural Language Toolkit, are expelled. Finally, the most 
essential step is performed called stemming. In this, the common stem of the words is replaced and saved as a 
selected feature. For example, the word "move", "moves", "moved", and "moving" are replaced with "move" — the 
words which are gained after pre-processing called features.  

3.3. Sentence Scoring  

The output features of pre-processing phase are fed into the sentence scoring phase. The n-gram technique [16] is 
used to represent a vector of feature (word) counts. The unigram, bi-gram and trigram features are extracted to 
preserve the semantics of bug summary which reduced the sparsity of the text and calculates the probability (score) 
of each feature order. After that, these feature scores are combined to gain the sentence score. 

3.4. Summary Percentage and Summary Subsets 

 According to the user input as a summary percentage, the subsets of the summary are generated by combining the 
sentences. The relative subset score is calculated for each summary subset.  

3.5. Summary Subset Selection by PSO 

After the formation of all possible subsets, these subsets are acted as the particles and their score as the initial 
position for the PSO algorithm [17] in summary subset selection phase. Assume that initially the particle position is 
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set to the rest and the particle velocity is revised at every iteration until the condition is not met by using Equation 1 
and 2. 

𝑃𝑃𝑃𝑃𝑑𝑑
(𝑡𝑡+1) = 𝑠𝑠(𝑡𝑡)𝑃𝑃𝑉𝑉𝑑𝑑

𝑡𝑡 + 𝑟𝑟𝑝𝑝1(𝑡𝑡)(𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑(𝑡𝑡)) + 𝑟𝑟𝑝𝑝2(𝑡𝑡)(𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑(𝑡𝑡))                                           (1) 
 

 
 

 

Figure 2 : The Proposed Model for Bug Report summarization and Bug Severity Classification Process 
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3.6. Feature Scoring  with ACO 

These features and their severity label are the input for the ACO [18] based feature scoring phase. The ACO is used 
to optimize the feature scores of each bug report. Initially, the random scores (weights) are assigned to each feature 
and number of ants are initialized. These ants are associated with each features column data so that every ant starts 
with random feature score. After that, the different combinations of scored features are created to trace the 
pheromone by using transition probability function, as shown in Equation 3. 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴(𝑇𝑇) = (𝜏𝜏𝐴𝐴(𝑇𝑇))𝛼𝛼.𝜂𝜂𝐴𝐴
𝛽𝛽

∑ (𝜏𝜏𝐴𝐴(𝑇𝑇))𝛼𝛼.𝜂𝜂𝐴𝐴
𝛽𝛽

𝐴𝐴
                                                                 (3) 

In formula where ηβ describe the background information of features to improve the results,  τA(T) is pheromone 
amount for the Ath feature in time T, α and β  are the control parameters that provide the pheromone and 
background information, and ProA(T) is the Transition probability.  
 
The feature which has high pheromone amount gets the higher score. The ants travel the features score 
probabilistically from these initial values until the stopping evaluation criteria of transverse is not satisfied. The 
scores of features are used to extract correlation information by updating the pheromones using Equation 4.  

𝜏𝜏𝐴𝐴(𝑇𝑇 + 1) = 𝜌𝜌𝜏𝜏𝐴𝐴(𝑇𝑇) + ∆𝜏𝜏𝐴𝐴(𝑇𝑇)                                                                           (4) 
In this formula where, ρ defines as evaporation rate of pheromone trail and lies between [0, 1]. ∆τA(T) is the 
pheromone trail amount added to Ath feature between time ∆ and ∆T .  In this work the, formula of updating 
pheromone trail was reformulated to calculate the  ∆τA ; where μ(τA) is the mean of all pheromones trail amount 
added to Ath feature, 1

σ(EA) is the standard deviation of accuracy.  

                                                        ∆𝜏𝜏𝐴𝐴 = 𝜇𝜇(𝜏𝜏𝐴𝐴) + 1
𝜎𝜎(𝐸𝐸𝐴𝐴)                                                                                           (5) 

The resulting features scores are evaluated, and if features scores are not converged, and no changes are possible, 
then process leads to the termination. Afterwards, every optimized feature weight is used for learning. If weights 
are not unique, then the standard deviation for base prediction is calculated for relative weights of each feature 
and later fed to the machine learning classifier for training the model.  

3.7. Machine Learning Classifier   

The Naive Bayes [19] is used to classify the severity of the bug reports. The probability for each severity label is 
computed by using Equation 6. The probability distribution over the set of features is calculated by using 
Equation 7. At last the bug reports are classified, and the performance is evaluated. 

                                                       P(xn
d) = P(yi)P(yj)

∑ P(yi)P(yj)c
i=1

, j=1,2……..c                                                                 (6) 

Where, P(yi)is the yi prior probability and  P(yj)is the conditional class probability density function 

                                                              P(x) = ∏ P(ci)P(xn
d

ci⁄ )k
i=1                                                                          (7) 

Where k is the number of classes, ci is the ith class, and xnd  is the observed attribute values to certain class label c. 
 
4. Experiment and Result 
 
The evaluation metrics like Recall (R), Precision (P) and F-measure (F) [20] are used on the benchmark dataset of 
three open source projects [9] that are Mozilla, Firefox and Eclipse.  The Mozilla and Firefox dataset has seven 
classes and Eclipse has five classes as shown in Table 2-5.  The dataset is cut across into the testing and training 
dataset based on the 10-cross-validation mechanism. The different values are tested for PSO and ACO 
parameters. The result demonstrates that the best execution is accomplished by setting the parameters to values 
appeared in (Table 1). 
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Table 1:  ACO and PSO parameters setting 
 

Parameter Value 
Ants 100 

Iterations 500 
Initial Background Information 1 

Initial Pheromone 1 
𝝆𝝆 0.5 
𝜶𝜶 0.7-1 
𝜷𝜷 2-5 

Particles 100 
Iterations 500 
𝒔𝒔(𝒕𝒕) 0.4-0.9 
𝒓𝒓𝒑𝒑𝟏𝟏(𝒕𝒕) 1.9 
𝒓𝒓𝒑𝒑𝟐𝟐(𝒕𝒕) 1.9 

 
The performance of the proposed model is compared with the severity classification performance on the same 
dataset. For severity classification performance, the bug report text and its severity labels are the input,   and then 
the text of bug report is pre-processed after that n-gram is used to extract the unigram and bigram. These n-grams 
are fed into the ACO feature weighting phase, and the output of this phase is fed into Naive Bayes classier to 
classify the severity of bug reports. The summary subset selected by PSO was more effective because PSO worked 
on semantic relation by using n-grams. Further the relative features weights are assigned to represent the relative 
feature learning. Take an example, the weight of a feature is 0.25, therefore, this feature learns only 1 4⁄ times as 
compared to other feature and this feature has only 1 4⁄  role in decision making for any severity class.  
Table 2-4 represent the comparison of results by using generated summaries for the severity classification process 
and bug report severity classification without using the summaries of bug reports.  It can be seen that the 
performance of bug severity classification process with bug report summarization process is decreased in some 
cases and increased in some cases. The performance of the classifier is totally depended on the data of the bug 
reports. The bug reports which has a larger amount of comments and description of the bug, in that case, the 
performance of the classifier is increased. This is because the bug report summary can hold the vital information of 
the bug reports and also reduce the words (features) which can produce the noise for severity classification learning 
by the classifier.  On the other hand, the bug reports which has less amount of description and comments, in that 
case, the important words (information) are lost, which are useful in the classification process. 

Table 2 : Result analysis on Mozilla open source Project   

Mozilla Classes Bug severity classification with the 
summarization of Bug Reports 

Bug severity classification without 
summarization of Bug Reports 

P (%) R (%) F (%) P (%) R (%) F (%) 
Blocker 76.18 75.98 76.57 76.50 79.28 78.37 
Critical 79.65 78.10 79.37 79.25 77.16 78.69 

Enhancement 79.74 78.79 79.76 76.50 75.22 76.36 
Major 78.26 76.33 77.78 79.50 78.22 79.36 

Normal 78.59 76.31 77.94 79.50 79.22 79.86 
Minor 78.77 75.47 77.59 79.50 75.22 77.81 
Trivial 81.74 79.45. 81.07 80.50 78.22 79.84 

Table 3: : Result analysis on Firefox open source Project 

Firefox Classes 
Bug severity classification with the 

summarization of Bug Reports 
Bug severity classification without 

summarization of Bug Reports 
P (%) R (%) F (%) P (%) R (%) F (%) 

Blocker 76.67 75.025 76.34 78.50 75.28 77.36 
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Critical 76.17 76.495 76.84 77.25 77.17 77.71 
Enhancement 75.80 77.52 77.15 77.50 78.22 78.36 

Major 77.70 80.42 79.54 76.50 79.22 78.34 
Normal 75.30 76.02 76.15 76.50 79.22 78.34 
Minor 75.30 74.52 75.41 76.50 75.22 76.36 
Trivial 75.30 75.02 75.66 76.50 76.22 76.86 

Table 4: : Result analysis on Eclipse open source Project 

Eclipse Classes Bug severity classification with the 
summarization of Bug Reports 

Bug severity classification without 
summarization of Bug Reports 

P (%) R (%) F (%) P (%) R (%) F (%) 
Blocker 79.58 75.39 77.93 79.50 77.28 78.88 
Critical 81.58 77.70 80.03 81.25 76.16 79.13 

Enhancement 80.00 76.37 78.64 82.50 77.22 80.27 
Major 79.50 76.72 78.58 79.50 78.22 79.35 

Normal 83.00 78.72 81.31 82.50 78.22 80.81 
 

5. Conclusion  

In this paper, to investigate the relationship between bug report summary and multiclass bug severity classification, 
a bug report summarization and bug severity classification model is proposed by using swarm intelligence and 
machine learning approaches.  The proposed approach used the n-gram technique to extract the semantics features 
score. These features are fed into the Summary Subset Selection Phase to select the optimal summary subset by 
using Particle Swarm optimization. The selected subset features are fed into the feature scoring phase to provide a 
relative score to each feature by using Ant colony optimization. These optimized features are used to train the 
proposed model. At last, the Naive Bayes machine learning algorithm is used to classify the severity of bug report. 
The results are analyzed by using 10-fold cross-validation on three benchmark datasets and showed better 
performance in terms of Precision, Recall and F-measure. It was concluded from the results that summarization of 
bug reports some time help in the severity classification. . The performance is depended on the bug report contents. 
If, the bug report has more extensive data for summarization, than the summarization process increased the 
classification performance, else decreased. This is because relevant information is lost during the summarization 
process because the bug reports do not contain large data. In future, we investigate the relationship between 
summarization, severity classification and bug assignment. 
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