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Abstract
Background: Scalar multiplication is having the scope for gaining the computational efficiency for Elliptic Curve Cryptography 
(ECC). The security strength and effectiveness have been better reported on shorter key lengths. Methods: The Edwards 
curves are one of the form used in cryptography is showing one of advanced study for generating the more randomness 
and unpredictability behaviors. The numbers of researchers have shown the significant improvement to solve the same 
problem on two, four and eight processors and that are contributing the immense contribution in the field of security. 

Findings: The manuscript solves the Edwards Curves and twisted Edwards Curves problems on four and eight processors 

based on reduced computation cost from  to  on four processors 

and  to  on 8-processors, respectively. Our generalized computation cost  on 

8-processors for -bit scalar multiplication is reporting better than the cost  for Montgomery 

Ladder method and  for extended twisted Edwards curves on radix-8. Applications: The operation is 
performing on input scalar which multiplies with point-coordinates on curve, which has accumulated on reduced clock 
cycles with resistance to the simple side channel attack.

1. Introduction
Cryptography is a discipline of computer science and it has 
been generalized for security aspects from definition and 
concepts of computing systems. It is fulfilling the security 
requirements on systematic foundational issues. It has 
been treated as a branch of mathematics. Modern cryp-
tography is mostly focusing on security problems, perfect 
definition and light-weight evolution methodology that 
suits to short-memory devices on low computation and 
communication cost. The security mechanisms work as a 
backbone for information systems. These are preventing 
adversaries from business secrets. Recent research trends 

have observed that the security on data are influencing 
issues on various types on used processor with the prin-
ciple on sharing of resources and throughputs. These have 
been considered into the central role of information tele-
communications systems. The core tool for data security 
is public-key cryptography, which uses enhanced versions 
of algorithms on the imposition of typical functionalities 
and/or modernization kinds that are ultimately reduc-
ing the requirements of hardware and software storage 
dependent on the base point.

In public key cryptography, ECC1,2 has attracted the 
most attention from the research community in the previ-
ous three decades. ECC has gained the much popularity 
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and it is much dominating RSA/DSA systems today due 
to its higher computational on a shorter key sizes. Scalar 
multiplication is a central operation of ECC that even-
tually depends on point addition and point doubling 
operations and these two operations depends on the finite 
field’s arithmetic3. 

Discrete Logarithmic Problem (DLP) is the heart 
of cryptography which plays a crucial role in informa-
tion security on applied algorithms. The faster running 
algorithms are leading with high-speed in the growing 
field of computation and communication4. DLP-ECC is 

working on a given two elliptic points  and  on the 

curve, to find the value of  (generally secret key), such 

that , which acts like a core building blocks in 
PKC5. It computes the cryptographic function in the for-
ward direction using repeated point additions (ADDs) 
and point doublings (DBLs) operations. It is known as 
scalar multiplication. But, the adversaries try to find the 
secret key on the generated scalar multiplication values, 
which has been considered negligible to revert back for 
ECC. ECC is attracting the most attention in appropriate-
ness to the short-memory devices. Such devices may be 
smart cards, net banking, mobile banking and the various 
real-time applications for secure and efficient implemen-
tations. 

The rapid growth on memory and low cost arithme-
tic in cryptographic applications are attracting the most 
attention in the recent scenario. Edwards curves uses in 
the field of Elliptic Curve Cryptography (ECC), where 
Harold Edwards in 20076 first studied about a family of 
curves for (ECC). Thus, Edwards curves are consider-
ing as a family of elliptic curves that are often using for 
cryptographic functions. These are existing over finite 
fields arithmetic and practically applicable for security 
measures. The foundation of these curves is based on the 
mathematical formulation. Twisted Edwards curves are 
a generalization of the Edwards curves. The generalized 
curves are using in important security schemes as well 
and thus are worth studying.

Bernstein  and Lange developed various applications 
for Edwards curves in cryptography7. They pierce the 
same on numerous advantages of Edwards form in con-
trast in relation to the well-recognized Weierstrass form. 
Here we have summarized the related works to Edwards 
and twisted Edwards curves:- 

•	 Edwards follows addition law on the results 
produced from the Gauss/Euler example and 

generalized the form of elliptic curve to do the 
arithmetic on this curve in6. The general equa-
tion of Edwards curves is:

, for some scalar, where 

.           (1)
One another form for Edwards curves is also available 

with c and d parameters such as:

, where  with 

.           (2)
The reviews on addition, doubling and a dual addi-

tion-doubling law for Edwards and Twisted Edwards 
curves fulfill the criteria into the complete curves. The 
following terms such as unified refers to addition formula 
remain valid when two input points are identical and it 
can also be used for point doubling, and the term com-
plete refers the addition formula for all inputs. 

The Edwards addition law: The Edwards curves (2) 
say two elliptic points, such coordinates  and 

addition point  is based on affine coor-
dinates as: 

    (3)
To make a little variation into the suitable denomina-

tors one should to insert the Edwards addition law into 
the projective synchronization coordinates, inverted 
synchronization coordinates, extended synchronization 
coordinates, and completed synchronization coordinates.

A unified addition law for Edwards curve is strong 
enough to justify its problem on the generic doubling 
consideration and it can also be formulated. The addition 
law on point  is the neutral point, whereas the nega-
tive of any point on curve  is .

Affine Doubling Formulae (independent of d):

(4)

The dual addition law: Hisil et al. in [29] introduced 
the addition law

(5)
 

The addition law on dual production produces the 
same output as described for the Edwards addition law on 
the defined coordinates, and instead of the same on the 
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applications for exceptional cases they are diversifying its 
properties.

•	 A general version defined by Bernstein and 

Lange  or sim-

ply  together for 
computing the group operations on projective 
coordinates in7. The outcome of addition cost 

 with a=1. The rest of this 
paper includes multiplication by constant curve 
factor D.

•	 Bernstein and Lange in 2007 introduced the 
invented Edwards coordinates in8, which reduced 
the group operations on the standard point addi-
tion costs  on Edwards curves. 

•	 Bernstein et al. introduced the new form of twisted 

Edwards curves on  

and considered to be a generalization of the 
same9. Due to this reason the arithmetic speed 
was enhanced on a suitable point representation. 
This new representation is known as extended 
twisted Edwards curves which add an auxil-
iary coordinate to twisted Edwards coordinates. 
Despite of the same they developed the faster 
ways for doing the point addition and composed 
coordinates on the lower degree of arithmetic 
computation. 

•	 Jacobian Projective coordinates have generalized 
on 4-processors by Patrick Longa and Ali Miri 
the Fast and Flexible Prime Fields10. They accel-
erated the techniques on cheaper operations on 
the substitution of multiplication with square on 
the fact that a square cost is less than multiplica-
tion. The conventional approach also works for 
the same and its significance is protecting Simple 
Side-Channel Attacks (SSCA). 

•	 Huseyin Hisil et al.11 introduces a new and fast-
est technique to perform the group operations 
on twisted Edwards curves that are pushing the 
speed limits for Elliptic Curve Cryptography 
(ECC) into numerous applications on wide 
spread. The things to be notable were the con-
stant factor for selected curve uses into the new 
the new addition technique. In order to make a 
comparison for the fastest point addition tech-

nique on twisted Edwards curves states 9M+1S 
consolidated operations in the literature. They 
have further shown the new addition formula 
can also be in favorable indications for four pro-
cessors to drops its effective cost upto 2M. This 
is an indication the effective increase in speed by 
a marginal factor on the sequential case. Their 
results consent to be a faster realization on ellip-
tic curve scalar multiplication. In addition to the 
above, the point addition (new) technique can be 
used to make a natural protection against from 
the side channel attacks on the Simple Power 
Analysis technique (SPA).

•	 Bernstein et al. in12 suggested to use Elliptic 
curve method for Edwards curves that pointed 
out the improvement above the arithmetic 
level as follows: (1) on behalf of Montgomery 
curves they used Edwards curves; (2) used 
Edwards (extended) coordinates; (3) the sub-
stitutions chain on addition-subtraction for 
sliding-window; (4) window size to increase the 
batch primes; (5) small parameters on the chosen 
curves with respect to the base points; (6) a large 
torsion on the chosen curves. 

•	 Abdulrahman and Masoleh in 201513 solve the 
problem of Edwards and Twisted Edwards curves 
on 4-processors and 8-processors respectively on 
the cost of 2M+1S+1D+2A and 2M+3A. 

•	 Our paper has organized as follows. Section 
2 denotes the basic symbols used in the whole 
sections. Section 3 contains the Edwards curve 
problem on two coordinates solves on 4-proces-
sors architecture. The advantages we represent in 
the form of computation cost. Similarly we solve 
the problem of extended twisted Edwards curves 
which is based on 8-processors with its compu-
tational cost in Section 4. Finally, we summarize 
our manuscript.

2.Notation Symbols
The manuscript considers notations that represent its 
meaning in manuscript, such as, elliptic curve group ele-
ment operations as EC-Operations, point addition ADDs, 
doubling DBLs, subtraction SUB, composite addition-
doubling ADDDBL, simple side channel attack SSCA, 
multiplication M, subtraction Sub, addition A, squaring 
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S, inversion I, scalar multiplication SM, and elliptic curve 
scalar multiplication ECSM. 

3. Parallel Architecture on 
Edwards
In this section, we parallel the architecture of Edwards 
curves on 4-processors that are showing a significant 
addition operation the proposed work. This follows 
on two points coordinates of Edwards curve such as 

and  present a protected 
scalar multiplication scheme for the prime field on all 
the parallel and simple side channel attacks that have 
reported with the various proposed approaches on the fast 
Montgomery curve for Montgomery Ladder method11 
and radix-8 scalar multiplication13. 

To represent the point coordinates for addition opera-
tion on the given formula is on: 

 (6)
whereas, the coordinates of point doublings are as fol-

lows:

(7)

Figure 1. Parallel architecture for ADDDBL on 4-processors

The proposed method is solving this problem for 
ADDDBL operations on the reduced computational 
complexity from 2M+1S+1D+3A [13] to 2M+1S+1D+2A 
based on the 4-processors, as shown in Figure 1. The 

comparative study in relation to the proposed scheme is 
showing it is a significant improvement in addition. 

4. Parallel Architecture on 
Extended Twisted Edwards Curves
A finite fields operation on arithmetic cost for ADDDBL 
operation on the prime extended twisted Edwards curve 
on 8-processor implementation is generalized on the 
Edwards curve [7] with its equation:

        (8)

where,  with . To 
make an evolution for the much faster method to perform 
ADD and DBL operations in11, in this case one addi-
tional coordinate (auxiliary) was added into the extended 
twisted Edward curve coordinates. It is obvious from11 
and with a reasonable reason to make for the extended 
twisted Edwards curves is represented in the form of qua-
druple coordinate.

According to the definition of twisted Edwards 
curves say that this is based on four coordinates with two 

point’s scalar multiplication. Let , and 

, be two distinct points on , where 

 denotes the extended twisted Edwards coordinates, 

with  and , then the coordinates of the 

point addition , has given as follows11:

         (9)
and the doubling proceeds on the coordinates of, i.e.,

, is given in 11 by: 

(10)

To make a anonymous results the constant case 

, is a special case for the same. DBL needs 

 and ADD needs  opera-
tions, considers to arithmetic subtraction and addition are 
equal. The proposed composite (ADD+DBL=ADDDBL) 
operation for this curve has solved for both ADD and DBL 
operations in 5 steps on splitting the computational task 
on 8-processors in 13. This has reported to the fastest way 
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to do the scalar multiplication. According to the same, 
the effective and rationally have reduced to 

 operations on 8 processors. 
The objective of our proposed scheme is achieving the 

faster scalar multiplication result, in Figure 2. It is impor-
tant to note that on simplicity purpose that some of the 
used (registers) in the ECSM schemes are not analyzed 
or discussed. Also in the paralleling process, we imposed 
the architecture restriction on SIMD (Single Instruction 
Multiple Data) operations that are as similar to14 and10. 
According to our proposed work, we solved the same 
problem for the scalar multiplication at 4-states, which 
takes a shorter clock cycle to initiate the process in one’s 
multiplication reduction (in relation to the previously 
proposed work) and it is considering in immense con-
tribution to the overall performance improvement. The 
data dependency graph for both (9) and (10) shows com-
bining these two equations require a computational cost 
of one’s multiplicative operation saved. The ADDDBL 
operation scheme consists of eight independent process-
ing elements, i.e., process 1 to process 8. Where finite 
field arithmetic operations are represented by a circle 
and it is labeled according to the type of operations. In 

the scheme, it is explicit that the squaring ( operation 

performed in step-1 is carried out as multiplication (  
operations. The effective cost time of DBL operation of 
the prime extended twisted Edwards curves has obtained 
by one round saved computation for scalar and have been 
accomplished on effective time of . 

Figure 2. Paralleling ADDDBL operation on prime extended 
twisted Edwards curve.

The general operations for 8-processors on -bit sca-

lar multiplication requires  

for Montgomery Ladder method in15 and the extended 

twisted Edwards curves on radix-8 ECSM method 

requires  in13. Our proposed ECSM 

required operations of .

Figure 3. Comparative cost reduction of our proposed 
approach.

In Figure 3, we make a comparative study that our 
proposed solution for extended twisted Edwards curve 
is better than the existing methodologies, which has 
generalized from the formerly reported literature. The 
comparative time complexity to complete the point 
ADDs and point DBLs takes the shorter clock cycle 
to initiate the same. Finally, in Table 1, we linked the 
related parallel schemes and its required complexities 
on key sizes s={192,224,256,384,521}. The relative com-
putational time complexities presented in the respective 
literature presented for Jacobian projective coordinates 
as mentioned in16, the extended twisted Edwards curves 
for the 4-processor scheme as in11, the Montgomery curve 
on 4-processor for Montgomery Ladder method in15, the 
Montgomery curve on the 4-processor Montgomery 
Ladder method as shown in15, the 8-processor scheme 
for the extended twisted Edwards curves in13. But our 
8-processor extended twisted Edwards curves in terms 
of computational time complexity on prime field is better 
than all.

In this section, we proposed a protected scalar multi-
plication for the prime extended twisted Edwards curve 
that can perform all the parallel be faster in respective 
approaches and protected schemes for SSCA, on behalf of 
literature including the faster Montgomery curve on the 
Montgomery Ladder method as compared and presented 
in15 and at Radix- 13. 
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5. Conclusion
The manuscript contributes a significant improvement 
in performance for the scalar multiplication techniques 
proposed for the Edwards and extended twisted Edwards 
curves. The problem statements have been defined on 
4-processors and 8-processors having to gain the compu-
tational efficiency for Elliptic Curve Cryptography (ECC). 

The ECC is justifying the security strength and effective-
ness on the shorter key lengths. The comparative reduction 
cost on the 4-processors is  
to  and on the 8-processors is 

 to . The generalized computation 
cost is reporting better than the existing approaches any 
length of key size scalar multiplication on 8-processors 
schemes.

Table 1. Comparison of Related Parallel Scheme on Edwards Curves

Prime Field
Size

Schemes on Processor Computational
Time Complexity

s=192

4 Processors for Jacobian Projective Coordinates16 191M+637S
4 Processors for Extended Twisted Edwards11 319M+191S
Montgomery Ladder method on the Montgomery curve15 382M+382S
Montgomery Ladder at Montgomery curve11 382M+191S
New Regular Radix-8 Processor Scheme13 320M+64S
Our Proposed 8 Processors Scheme 256M+64S

s=224

4 Processors for Jacobian Projective Coordinates16 223M+744S
4 Processors for Extended Twisted Edwards11 372M+223S
Montgomery Ladder method on the Montgomery curve15 446M+446S
Montgomery Ladder at Montgomery curve11 446M+223S
New Regular Radix-8 Processor Scheme13 446M+75S
Our Proposed 8 Processors Scheme 299M+75S

s=256

4 Processors for Jacobian Projective Coordinates16 225M+850S
4 Processors for Extended Twisted Edwards11 425M+245S
Montgomery Ladder method on the Montgomery curve15 510M+510S
Montgomery Ladder at Montgomery curve11 510M+255S
New Regular Radix-8 Processor Scheme13 427M+86S
Our Proposed 8 Processors Scheme 342M+86S

s=384

4 Processors for Jacobian Projective Coordinates16 383M+1177S
4 Processors for Extended Twisted Edwards11 639M+383S
Montgomery Ladder method on the Montgomery curve15 766M+766S
Montgomery Ladder at Montgomery curve11 766M+383S
New Regular Radix-8 Processor Scheme13 640M+128S
Our Proposed 8 Processors Scheme 512M+128S

s=521

4 Processors for Jacobian Projective Coordinates16 520M+1734S
4 Processors for Extended Twisted Edwards11 867M+520S
Montgomery Ladder method on the Montgomery curve15 1040M+1040S
Montgomery Ladder at Montgomery curve11 1040M+520S
New Regular Radix-8 Processor Scheme13 869M+174S
Our Proposed 8 Processors Scheme 695M+174S
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