
Abstract
Objective: Sorting is considered a very important application in many areas of computer science. Nowadays parallelization
of sorting algorithms using GPU computing, on CUDA hardware is increasing rapidly. The objective behind using GPU
computing is that the users can get, the more speedup of the algorithms. Methods: In this paper, we have focused on
count sort. It is very efficient sort with time complexity O(n). The problem with count sort is that, it is not recommended
for larger sets of data because it depends on the range of key elements.In this paper this drawback has been taken for
the research concern and we parallelized the count sort using GPU computing with CUDA. Findings: We have measured
the speedup achieved by the parallel count sort over sequential count sort. The sorting benchmark has been used to test
and measure the performance of both the versions of count sort (parallel and sequential). The sorting benchmark has
six types of test cases which are uniform, bucket, Gaussian, sorted, staggered and zero.In this paper, our finding is that
we have tested the parallel and sequential count sort on a larger sets of data which vary from N=1000 to N=10000000.
Improvement: After testing, we have achieved 66 times more efficient results of the parallel count sort in the case of
execution time using Gaussian test case. We found that the parallel count sort performs, the better experimental results
over sequential in all the test cases.

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(15), DOI: 10.17485/ijst/2016/v9i15/80080, April 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Performance Evaluation of Parallel Count Sort using
GPU Computing with CUDA

Neetu Faujdar* and SatyaPrakash Ghrera

Jaypee University of Information Technology, Department of CSE, Waknaghat, Himachal Pradesh, India;
neetu.faujdar@mail.juit.ac.in, sp.ghrera@juit.ac.in

Introduction
Nowadays multi core CPUs1 are easily available in the
market. The multi core CPUs are not sufficient to solve
the high data computation task. So, recently GPU2,3

introduced to solve these problems. The GPU is having
the multi core processors thousands of threads running
concurrently4. To program a GPU the basic need is the
parallel platform like NVIDIAs CUDA. The prime differ-
ence between OpenCL and CUDA is that: 1. The cuda is
specifically for Nvdia hardware, but opencl is run on dif-
ferent hardware which conforms to its standard5,6. There
are GPU and CPU available, but for to achieve high per-
formance, primarily focuses on the GPUs. Count sort is
a non-comparison based sorting algorithm7,8. This algo-
rithm works according to keys that are integer for sorting

a collection of objects9. Count sort is an integer sorting
algorithm. It is simple and efficient sorting algorithm10
with linear time complexity O(n + k), where ‘n’ is the
input elements and ‘k’ is the range of elements from 1 to
k. When k=O(n) then count sort runs in O(n) time. It is
stable sorting algorithm, i.e. if the same element occurs
twice in the data, then it is maintain the order of duplicate
keys.The ordering relation in countsort is derived from
the set, i.e. to be sorted say ‘A’.Suppose the set to be sorted
is called ‘A’. Then define the auxiliary array with equal size
of A, say B. The algorithm stores the number of items in
‘A’ which are smaller than or equal to ‘e’ in B(e) for each
element in ‘A’, say ‘e’. Now we will sort the elements of
‘C’ based on the index of array ‘B’ for every element of
the array ‘A’ and value of array ‘B’ is updated after each
update in ‘C’. The algorithm makes two passes over ‘A’ and

Keywords: CUDA, GPU, Parallel Count Sort, Sorting, Sequential Count Sort

Performance Evaluation of Parallel Count Sort using GPU Computing with CUDA

Indian Journal of Science and TechnologyVol 9 (15) | April 2016 | www.indjst.org 2

one pass over ‘B’. The time complexity for ‘n’ input with
range ‘k’ is O(n), where ‘k’ is less than ‘n’. The count sort
is cost efficient, stable and easy sorting algorithm, but it
is also having the disadvantage over it. It is not recom-
mended on large sets of data.This is the main drawback of
count sort. In this paper the drawback has been taken as
research concern and we have parallelized the count sort
using GPU computing with CUDA. We have used the
sorting benchmark to test both theversions of count sort
(parallel and sequential). The sorting benchmark having
the six types of test cases which are uniform, Gaussian,
staggered, sorted, zero, and bucket test cases. The detailed
information about sorting benchmark has been given in
section 2. We have also measured the speedup of parallel
count sort over sequential count sort. The contribution of
the paper is as follows:

• The main content of the paper is based on count sort.
The problem with count sort is that, it is not recom-
mended for larger sets of data because it depends on
the range of key elements.

• The drawback has been taken as research concern.
• The parallel and sequential count sort is tested on sort-

ing benchmark.
• The speedup is also calculated in this paper.

Bajpai et al. presented the modified version of count-
ing sort called E-Counting sort. In E-Counting sort some
efficiency has been improved by author and execution
time with original one11.

Svenningsson et al. investigated two sorting algo-
rithms which are counting sort and a variation
occurrence sort. The suggested algorithms are used to
remove duplicate elements and examine their suitability
running on the GPU. The duplicate removal is allowed to
have a natural functional and data parallel implementa-
tion which makes it for GPUs. The suggested algorithms
are implemented on the GPU in Obsidian. The Obsidian
is a high-level do-main specific language for GPU pro-
gramming. The result shows the implementations in
many cases outperforms sorting algorithm provided
by the library Thrust. The occurrence sort is two faster
than the ordinary counting sort. When we consider the
sorting algorithms for GPU counting sort is an impor-
tant contender. The occurrence sort is highly preferable
only when applicable. The author has also shown that
Obsidian can produce very competitive code. The con-
tribution of the paper as follows12:

• The author showed that counting sort is a competitive
algorithm for sorting keys on the GPU and outper-
formed the sorting implementation in the library
Thrust.

• The author showed the occurrence sort suitable for
implementing on the GPU.

• The Obsidian implementation of two sorting algo-
rithm is detailed with CUDA.

Sun et al. depicted the design issue of data parallel
implementation of count sort using GPU with CUDA.
The parallel version is more efficient than sequential13.

2. Sorting Benchmark
We have tested the both the versions (sequential and
parallel) of the count sort algorithm on six types of test
cases which are Uniform, Sorted, Zero, Bucket, Gaussian,
and Staggered14-16. We have varied the data from 100 to
10000000 and the thread in the multiple of 2 from 1 to
1024.

1. Uniform test case: In this test case values are picked
randomly from 0 to 2.

2. Gaussian test case: In this test case the distribution of
data is created by taking the average of four randomly
values picked from the uniform distribution.

3. Zero test case: In this test case a constant value is used.
4. Bucket test case: For pЄ N, the input of size ‘N’ is split

into ‘p’ blocks, such that the first n/p2elements in each
of them are random numbers in [0, 231/p−1], the sec-
ond n/p2 elements in [231/p, 232/p−1] and so forth.

5. Staggered test case: For pЄ N, the input of size ‘N’ is
split into ‘p’ blocks such that if the block index is i≤
p/2 all its n/p elements are set to a random number in
[(2i− 1)231/p, (2i)(231/p−1)].

6. Sorted test case: In this test case sorted uniformly dis-
tributed value has been taken.

3. Hardware
We ran the new version of the sequential count sort algo-
rithm on Window 7 64-bit operating system Intel® core™
i5 processor 3230M @ 2.60 GHz machine17. The new ver-
sion of the parallel count sort algorithm ran on Window
7 32-bit operating system Intel® core™ i3 processor 530@
2.93 GHz machine. The system has the GeForce GTX 460

Neetu Faujdar and SatyaPrakash Ghrera

Indian Journal of Science and Technology 3Vol 9 (15) | April 2016 | www.indjst.org

graphic processor with (7 multiprocessors X (48) CUDA
cores\MP) = 336 CUDA cores. There are maximum 1536
threads per multiprocessor and 1024 threads per block.
System having the CUDA runtime version is 6.0. The
total amount of global memory present in the system is
768 Mbytes and the total amount of constant memory
is 65536 bytes. The total amount of shared memory per
block is 49152 bytes. System having the total number of
registers available per block is 32768 and warp size is 32.
Maximum sizes of each dimension of a block are 1024 x
1024 x 64 and maximum size of each dimension of a grid
is 65535 x 65535 x 65535.

4. Implementation of Sequential
Count Sort Algorithm
In this section the implementation results of the sequen-
tial countsort has been shown. We have implemented the
algorithm on the sorting benchmark using six types of
test cases.We have calculated execution time in millisec-
onds of the algorithm which is shown in Table 1. In Table
1 we have shown that the algorithm recommended for the
large data sets as the data size has been varied from 100 to
10000000. By analyzing the Table 1. We can see that zero
test case is more efficient compare to other test cases.

5. Implementation of Parallel
Count Sort Algorithm
In this section we have implemented the parallel count
sort algorithm using GPU computing with CUDA. We

have tested the parallel count sort using sorting bench-
marks. The benchmarks having the six types of test cases.
The Table 2 shows the execution time in milliseconds
using uniform test case. By analysing the Tables 1 and 2,
we can see that the parallel count sort is much more effi-
cient than sequential count sort. We can see this effect in
Figure 1 and both the count sort (sequential, parallel) is
recommended for large number of data.

In the Tables 2 to 7 we have shown the parallel execu-
tion time using six types of test cases with varying data
and thread size. The thread size has been varied from
T=1 to 1024 but we have drawn the graph of execu-
tion time using T=1024 as it is not possible to show all
the graphs using all the possible value of thread given
in the table. In all the Figures 1 to 6, X-axis shows the
execution time in milliseconds and the Y-axis shows
the increasing data size. We have calculated the execu-
tion time using varying sizes of data and threads, but
in the graphs, we have only shown the execution time
comparison between parallel and sequential count sort
using the thread value 1024. The remaining graph can be
drawn in the similar manner using the possible values of
threads listed in the tables.

The Table 3 shows the execution time in millisec-
onds of the parallel count sort using sorted test case.
The parallel version of sorted test case is more efficient
than sequential. We can see this effect in Table 3 and in
Figure 2.

The Table 4 shows the execution time in millisec-
onds of the parallel count sort using zero test case. The
parallel version of zero test case is not efficient than the
sequential version of zero test case. It is because the zero

Table 1. Execution time in milliseconds of sequential count sort
Execution time of sequential count sort using six types of test cases

N/Test case Uniform Sorted Zero Bucket Gaussian Staggered
100 1418 1248 0.001 1529 1336 1581
1000 1472 1527 0.002 1539 1368 1599
10000 1691 1679 1 1541 1461 1641
100000 1765 1868 2 1642 1763 1689
500000 1773 1968 11 1734 1861 1742
1000000 1831 1971 19 1883 1896 1795
2500000 1993 1975 41 1959 1917 1863
5000000 2342 1995 97 1994 1974 1888
7500000 2379 2096 109 1997 1991 1959
10000000 2427 2159 129 2177 2059 1999

Performance Evaluation of Parallel Count Sort using GPU Computing with CUDA

Indian Journal of Science and TechnologyVol 9 (15) | April 2016 | www.indjst.org 4

Figure 1. Execution time comparison between parallel and sequential count sort using uniform test case.

Table 3. Execution timein milliseconds of parallel count sort using sorted test case

Execution time in milliseconds of parallel count sort using sorted test case
N/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
100 0.032 0.034 0.030 0.030 0.030 0.030 0.029 0.029 0.029 0.027
1000 0.101 0.069 0.052 0.041 0.035 0.035 0.034 0.034 0.034 0.034
10000 0.653 0.391 0.376 0.293 0.195 0.177 0.140 0.119 0.119 0.105
100000 8.206 5.695 5.493 5.424 5.298 4.634 4.481 4.354 4.223 3.950
500000 37.570 20.002 18.936 17.401 16.488 15.458 15.069 14.444 13.945 13.756
1000000 75.269 51.859 43.502 39.172 34.869 33.946 33.162 33.056 32.979 32.887
2500000 188.816 150.414 121.414 101.414 91.414 87.414 82.746 82.338 81.712 81.283
5000000 379.675 267.187 228.859 209.285 199.285 181.872 174.953 163.719 163.148 162.836
7500000 569.112 406.415 478.981 493.749 380.549 345.386 315.310 245.196 244.701 243.381
10000000 754.410 671.365 611.044 521.194 416.709 453.242 497.458 380.816 326.293 323.284

Table 2. Execution timein milliseconds of parallel count sort using uniform test case

Execution time in milliseconds of parallel count sort using uniform test case
N/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
100 0.044 0.040 0.040 0.039 0.036 0.036 0.035 0.034 0.033 0.031
1000 0.100 0.066 0.054 0.051 0.049 0.049 0.048 0.046 0.045 0.044
10000 0.678 0.368 0.231 0.203 0.192 0.176 0.173 0.172 0.169 0.167
100000 8.293 3.497 2.117 1.784 1.639 1.491 1.450 1.416 1.395 1.387
500000 37.467 20.145 11.708 8.796 8.007 7.816 6.997 6.923 6.814 6.711
1000000 74.799 40.351 23.544 19.053 15.985 14.724 14.358 14.188 13.149 13.362
2500000 184.719 100.631 58.557 47.843 43.137 35.742 34.434 33.035 32.907 31.596
5000000 367.033 199.474 117.197 94.633 83.796 71.566 68.537 66.966 65.874 64.917
7500000 549.743 297.629 174.571 144.056 126.228 106.157 102.674 99.820 98.722 97.298
10000000 732.190 396.518 232.582 189.154 166.405 140.392 137.161 134.435 133.611 132.594

Neetu Faujdar and SatyaPrakash Ghrera

Indian Journal of Science and Technology 5Vol 9 (15) | April 2016 | www.indjst.org

Table 4. Execution timein milliseconds of parallel count sort using zero test case

Execution time in milliseconds of parallel count sort using zero test case
N/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
100 0.025 0.024 0.024 0.023 0.022 0.022 0.020 0.020 0.020 0.020
1000 0.081 0.055 0.053 0.051 0.050 0.050 0.046 0.044 0.043 0.041
10000 0.631 0.361 0.336 0.336 0.334 0.324 0.319 0.300 0.300 0.299
100000 4.780 4.713 3.270 3.244 3.240 3.226 3.208 3.104 3.015 3.010
500000 38.029 21.117 18.222 17.526 16.580 15.519 14.255 14.229 13.434 13.187
1000000 75.887 42.284 36.134 34.456 32.989 31.032 30.364 30.261 30.129 30.105
2500000 188.004 105.031 90.246 86.356 85.136 83.355 82.661 81.714 80.822 80.503
5000000 373.451 207.937 180.223 171.998 167.729 166.847 163.299 162.962 162.520 161.926
7500000 559.198 311.249 270.726 259.670 251.825 247.898 244.596 243.982 241.184 240.215
10000000 745.075 413.768 360.978 343.993 334.753 330.347 324.874 323.811 322.980 321.848

Figure 2. Execution time comparison between parallel and sequential count sort using sorted test case.

means one unique number and to sort this, the sequen-
tial count sort take one count only as it is already sorted
and unique. It is not in the case of the parallel count sort
because in parallel, we always divide the number into
a number of blocks and threads, whether the data are
unique or sorted. In the Table 4 and Figure 3 we can see
that sequential count is more efficient than parallel when
the test case is zero.

The Table 5 shows the execution time in milliseconds
of the parallel count sort using bucket test case. The par-
allel version of the bucket test case is more efficient than
sequential. We can see this effect in Table 5 and in the
Figure 4. The Figure 4 tells us that parallel bucket test

case is having the very much less execution time in com-
parison to the sequential bucket test case. So in this way
speedup is also increased.

The Table 6 shows the execution time in milliseconds
of the parallel count sort using Gaussian test case. The
parallel version of the Gaussian test case is more efficient
than sequential. We can see this effect in Table 6 and in
Figure 5. The Figure 5 tells us that parallel Gaussian test
case is having the very much less execution time in com-
parison to the sequential Gaussian test case.

The Table 7 shows the execution time in milliseconds
of the parallel count sort using Gaussian test case. The
parallel version of the staggered test case is more efficient

Performance Evaluation of Parallel Count Sort using GPU Computing with CUDA

Indian Journal of Science and TechnologyVol 9 (15) | April 2016 | www.indjst.org 6

Table 5. Execution timein milliseconds of parallel count sort using bucket test case

Execution time in milliseconds of parallel count sort using bucket test case
N/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

100 0.041 0.036 0.034 0.033 0.033 0.031 0.030 0.030 0.030 0.029
1000 0.099 0.065 0.051 0.049 0.048 0.047 0.045 0.044 0.043 0.043
10000 0.677 0.368 0.232 0.200 0.188 0.169 0.169 0.168 0.161 0.160
100000 8.340 3.510 2.123 1.785 1.701 1.400 1.371 1.357 1.354 1.342
500000 37.902 21.378 10.715 8.783 7.979 6.882 6.694 6.627 6.620 6.605
1000000 75.584 42.820 21.642 18.170 15.945 14.748 14.465 14.173 14.000 13.476
2500000 187.064 107.055 100.112 95.294 85.750 35.635 34.978 33.510 31.774 30.618
5000000 371.482 211.861 107.769 89.266 79.266 69.266 68.388 66.388 61.807 60.807
7500000 556.547 316.744 160.419 137.144 117.144 106.133 102.549 101.275 98.349 97.349
10000000 740.812 421.667 213.901 180.264 140.374 137.022 136.350 135.485 126.532 125.519

Figure 3. Execution time comparison between parallel and sequential count sort using zero test case.

than sequential. We can see this effect in Table 7 and in
Figure 6.

6. Measurement of Speedup
Now we will show the speedup of parallel count sort in
comparison to the sequential. As the speedup measures
performance gain achieved by parallelizing a given appli-
cation over sequential application18. We have implemented
the count sort using the varying data size and number of

threads. Here we have only shown the speedup achieved
by parallel count sort with N=10000000, N=7500000,
N=5000000, N=2500000 and N=1000000 data size, for
the remaining values of ‘N’ we can find out speedup in
the similar manner. In the Tables 8, 9, 10, 11 and 12 we
have measured the speedup achieved by the parallel count
sort using the different types of test cases. In all the Tables
8, 9, 10, 11 and 12 we can see that zero test case is not
taken to measure the speedup. It is because the parallel
zero test case is less efficient than sequential. The reason

Neetu Faujdar and SatyaPrakash Ghrera

Indian Journal of Science and Technology 7Vol 9 (15) | April 2016 | www.indjst.org

Figure 4. Execution time comparison between parallel and sequential count sort using bucket test case.

Table 6. Execution timein milliseconds of parallel count sort using Gaussian test case

Execution time in milliseconds of parallel count sort using Gaussian test case
N/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
100 0.069 0.066 0.061 0.060 0.049 0.038 0.034 0.030 0.030 0.029
1000 0.099 0.066 0.050 0.042 0.036 0.033 0.032 0.030 0.030 0.026
10000 0.678 0.373 0.225 0.142 0.095 0.073 0.063 0.061 0.059 0.053
100000 8.334 3.565 2.060 1.192 0.712 0.461 0.358 0.323 0.322 0.316
500000 37.792 20.576 11.450 5.907 3.475 2.204 1.677 1.503 1.404 1.220
1000000 75.471 41.073 22.872 12.979 6.902 4.398 3.321 3.986 2.056 1.607
2500000 186.491 102.587 57.103 32.703 20.177 13.192 8.304 7.945 7.582 6.068
5000000 370.635 202.987 114.191 64.945 37.993 25.003 18.469 15.911 14.150 13.442
7500000 555.043 303.311 169.633 97.741 57.609 35.837 26.336 24.296 22.644 20.694
10000000 738.959 403.503 226.569 129.902 75.493 47.312 36.312 32.531 31.158 30.824

Figure 5. Execution time comparison between parallel and sequential count sort using Gaussian test case.

Performance Evaluation of Parallel Count Sort using GPU Computing with CUDA

Indian Journal of Science and TechnologyVol 9 (15) | April 2016 | www.indjst.org 8

Table 8. Speedup achieved by parallel count sort using different types of test cases with N=7500000

Speedup achieved by parallel count sort using different types of test cases with N=7500000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
Sorted 3.689 4.158 4.376 4.586 5.508 6.069 6.648 8.549 8.666 8.786
Gaussian 3.587 6.564 11.737 20.371 34.561 55.556 75.599 81.947 87.926 96.213
Uniform 4.327 7.993 13.628 16.514 18.847 22.411 23.171 23.833 24.098 24.451
Bucket 3.588 6.305 12.449 14.561 17.047 18.816 19.474 19.719 20.305 20.514
Staggered 3.549 6.449 12.496 14.535 17.038 19.251 20.083 20.456 20.672 20.899

Table 7. Execution timein milliseconds of parallel count sort using staggered test case

Execution time in milliseconds of parallel count sort using staggered test case
N/T T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024

100 0.061 0.054 0.051 0.051 0.050 0.050 0.040 0.040 0.030 0.031
1000 0.099 0.066 0.052 0.045 0.044 0.044 0.043 0.042 0.041 0.040
10000 0.649 0.572 0.454 0.430 0.429 0.401 0.398 0.395 0.380 0.321
100000 7.753 5.684 4.302 3.965 3.864 3.570 3.389 3.291 3.266 3.226
500000 35.234 19.543 9.162 8.583 7.532 6.983 6.845 6.731 6.431 6.231
1000000 73.652 40.752 19.654 17.875 16.986 15.877 14.865 14.542 14.362 14.123
2500000 183.755 101.766 95.864 88.885 81.777 32.876 31.886 30.766 29.654 29.123
5000000 365.754 208.676 105.665 85.754 79.765 65.888 64.886 63.999 62.665 61.664
7500000 551.886 303.768 156.776 134.776 114.976 101.765 97.544 95.765 94.765 94.123
10000000 735.766 417.655 208.654 175.433 132.876 128.654 125.876 121.765 115.764 104.654

Figure 6. Execution time comparison between parallel and sequential count sort using staggered test case.

Neetu Faujdar and SatyaPrakash Ghrera

Indian Journal of Science and Technology 9Vol 9 (15) | April 2016 | www.indjst.org

Table 9. Speedup achieved by parallel count sort using different types of test cases with N=10000000

Speedup achieved by parallel count sort using different types of test cases with N=10000000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
Sorted 2.862 3.216 3.534 4.152 5.182 5.764 5.892 5.998 6.617 6.679
Gaussian 2.787 5.103 9.088 15.851 27.274 43.519 56.703 63.293 66.081 66.798
Uniform 3.315 6.121 10.435 12.831 14.585 17.287 17.695 18.053 18.165 18.304
Bucket 2.939 5.163 10.178 12.077 15.509 15.888 15.967 16.068 17.201 17.344
Staggered 2.717 4.786 9.581 11.395 15.044 15.538 15.881 16.417 17.268 18.123

Table 10. Speedup achieved by parallel count sort using different types of test cases with N=5000000

Speedup achieved by parallel count sort using different types of test cases with N=5000000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
Sorted 5.254497 7.466667 8.717176 9.532443 10.01077 10.96927 11.40304 12.18551 12.22819 12.25157
Gaussian 5.325988 9.724768 17.28682 30.39504 51.95757 78.9505 106.8822 124.0665 139.5039 146.8582
uniform 6.38089 11.74089 19.98341 24.74813 27.94895 32.72502 34.17155 34.97321 35.55292 36.07679
Bucket 5.367693 9.411845 18.50262 22.3378 25.15589 28.78768 29.15716 30.03555 32.2617 32.79226
Staggered 5.161934 9.047536 17.86779 22.01647 23.66953 28.65469 29.09719 29.50055 30.12846 30.61754

Table 11. Speedup achieved by parallel count sort using different types of test cases with N=2500000

Speedup achieved by parallel count sort using different types of test cases with N=2500000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
Sorted 10.45991 13.1304 16.26662 19.47458 21.60494 22.59357 23.86822 23.98663 24.17038 24.2977
Gaussian 10.2793 18.68656 33.57112 58.61777 95.00785 145.3139 230.841 241.2967 252.8213 315.9162
uniform 10.78939 19.80505 34.03518 41.65739 46.20117 55.76106 57.87844 60.32947 60.5649 63.07805
Bucket 10.47238 18.29901 19.56813 20.55748 22.8456 54.97427 56.00727 58.45935 61.65334 63.98287
Staggered 10.13851 18.30676 19.43378 20.95957 22.78159 56.66748 58.4269 60.55465 62.82458 63.97006

Table 12. Speedup achieved by parallel count sort using different types of test cases with N=1000000

Speedup achieved by parallel count sort using different types of test cases with N=1000000
Test case T=1 T=2 T=4 T=8 T=16 T=32 T=64 T=128 T=512 T=1024
Sorted 26.18623 38.00683 45.30774 50.317 56.52545 58.063 59.43467 59.62546 59.765 59.93167
Gaussian 25.12211 46.16132 82.89624 146.0799 274.7189 431.0753 570.8532 475.6324 922.222 1179.738
uniform 24.47887 45.37677 77.77023 96.09797 114.5477 124.3513 127.526 129.0489 139.2475 137.0302
Bucket 24.91273 43.97504 87.00669 103.633 118.0935 127.6792 130.1749 132.8559 134.5037 139.7292
Staggered 24.37133 44.04681 91.33187 100.4179 105.6728 113.06 120.7534 123.4356 124.9826 127.0976

is explained earlier. The Figures 7, 8, 9, 10 and 11 have
been drawn using the Tables 8, 9, 10,11 and 12. In all the
FiguresX-axis represents the speedup achieved by the
algorithm and Y-axis represents the number of threads.

By analyzing all the Figures, we can see that if we increase
the number of threads the speedup isalso increases. And
in all the Figures Gaussian test case has achieved more
speedup compared to other test cases.

Performance Evaluation of Parallel Count Sort using GPU Computing with CUDA

Indian Journal of Science and TechnologyVol 9 (15) | April 2016 | www.indjst.org 10

7. Conclusion
The count sort is recommended for large sets of data as
shown by implementation results. We have done the test-
ing on the six types of test cases. We have varied the data
from 100 to 10000000 and the thread in the multiple of 2

Figure 7. Speedup achieved by parallel count sort using different types of test cases with N=7500000.

Figure 8. Speedup achieved by parallel count sort using different types of test cases with N=10000000.

from 1 to 1024. We have used the GPU computing using
CUDA hardware having the compute capability 2.1 to test
the algorithms. But, if the same algorithm has been used
on the hardware having the compute capability 3.0, then it
will give an added advantage of unified memory architec-
ture. We have also measured the speedup achieved by the

Neetu Faujdar and SatyaPrakash Ghrera

Indian Journal of Science and Technology 11Vol 9 (15) | April 2016 | www.indjst.org

parallel count sort over sequential. The main conclusion
is that parallel count sort has better experimental results
over sequential using five types of test case which has
explained earlier. We have implemented our code of the
sequential count sort algorithm in C language. Andthe
parallel count sort algorithm has done using GPU com-
puting with CUDA hardware.

Figure 9. Speedup achieved by parallel count sort using different types of test cases with N=5000000.

Figure 10. Speedup achieved by parallel count sort using different types of test cases with N=2500000.

8. Acknowledgment
This work has been done only for research concern. All
experimental results are done in the research lab of Jaypee
University of Information Technology, WaknaghatSolan,
India.

Performance Evaluation of Parallel Count Sort using GPU Computing with CUDA

Indian Journal of Science and TechnologyVol 9 (15) | April 2016 | www.indjst.org 12

References
1. Creeger M. Multicore CPUs for the masses. ACM Queue.

2005; 3(7):64-5.
2. Hacker H, Trinitis C, et al. Considering GPGPU for HPC

centers: Is it worth the effort? In Facing the Multicore-
Challenge. Lecture Notes in Computer Science. 2010;
63(10): 118–30.

3. Nickolls J, Dally WJ. The GPU computing era. IEEE Micro.
2010; 30(2):56–69.

4. Zhang Y, Owens JD. A quantitative performance analy-
sis model for GPU architectures. IEEE 17th International
Symposium on High Performance Computer Architecture;
San Antonio, TX. 2011. p. 382–93.

5. Garland M. Parallel computing with CUDA. IEEE
Symposium on Parallel and Distributed Processing IPDPS;
Atlanta, GA. 2010. p. 1-10.

6. KindratenkoVV, Enos J, Shi G, et al. GPU clusters for
high-performance computing. IEEE International
Conference on Cluster Computing Workshops, CLUSTER;
2009. p. 1–8.

7. Faujdar N, Ghrera SP. Analysis and testing of sorting
algorithms on a standard dataset. IEEE 5th International
Conference on Communication Systems and Network
Technologies (CSNT); Gwalior, India. 2015. p. 962-7.

8. Faujdar N, Ghrera SP. Performance Evaluation of merge
and quick sort using GPU Computing with CUDA.
International Journal of Applied Engineering Research
(IJAER). 2015; 10(18):39315-9.

9. Joshi R, Panwar GS, Pathak P. Analysis of non-comparison
based sorting algorithms: A review. International Journal of

Emerging Research in Management and Technology. 2013;
2(12):61-5.

10. Mishra A D, Garg D. Selection of best sorting algorithm.
International Journal of Intelligent Information Processing.
2008; 2(2):363-8.

11. Keshav B, Kots A. Implementing and analyzing an efficient
version of counting sort (E-counting sort). International
Journal of Computer Applications. 2014; 98(9):1-2 .

12. Svenningsson, David J, et al. Counting andoccurrence sort
for GPUs using an embedded language. ACM Proceedings
of the 2nd ACM SIGPLAN workshop on Functional High-
Performance Computing; Boston, MA, USA. 2013. p. 37-46.

13. Weidong S, Ma Z. Count sort for gpu computing.
IEEE Paralleland Distributed Systems (ICPADS) 15th
International Conference; Shenzhen. 2009. p. 919-24.

14. Cederman D, Tsigas P. Gpu-quicksort: A practical quicksort
algorithm for graphics processors. Journal of Experimental
Algorithmics (JEA). 2009. 14(4):1-24.

15. Leischner N, Osipov V, Sanders P. GPU sample sort. IEEE
International Symposium on Parallel and Distributed
Processing (IPDPS); Atlanta, GA. 2010. p. 1-10.

16. Matsumoto M, Nishimura T. Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-ran-
dom number generator. ACM Transactions on Modeling
and Computer Simulation (TOMACS). 1998; 8(1):3-30.

17. Krishnam Raju IR, et al. Deadline aware two stages sched-
uling algorithm in cloud computing. Indian Journal of
Science and Technology. 2016; 9(4):1-10.

18. Chitra E. Vigneswaran T. An Efficient low power and high
speed distributed arithmetic design for FIR filter. Indian
Journal of Science and Technology. 2016; 9(4):1-5.

Figure 11. Speedup achieved by parallel count sort using different types of test cases with N=1000000.

