Mr. Kanshal

Roll	No	

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- MAY-2019

M.Tech IInd/IVth/B.Tech VIIIth Semester

COURSE CODE: 11M1WCE133

MAX. MARKS: 35

COURSE NAME: Bridge Engineering

COURSE CREDITS: 3

MAX. TIME: 2 Hrs

Note: (i) Carrying of mobile phone during examinations will be treated as case of unfair means. (ii) IRC-6 is allowed also 1 page one sided hand written note is allowed.

- Q1. What are the various types of piers? What are the various forces considered in the design of piers?

 [3 Marks]
- Q2. Why Box culvert bridges are economical? What are different conditions of loading in box culvert, which are treated critical? [3 Marks]
- Q3. What is the function of bearings in bridges? What are basis of selection of bearings? [3 Marks]
- Q4. Explain pigeaud's theory.

[3 Marks]

Q5. Write short notes on "IRC class A-A loading (wheeled)".

[3 Marks]

- Q6. Verify the stability of the abutment for the following data:
 - Top width -1.5 m
 - Height 4.0 m
 - Back batter 1 in 6
 - Front face abutment is vertical
 - Type of material Stone masonry($\gamma = 24 \text{ KN/m}^3$
 - Unit wt. of soil 18 KN/m³
 - Angle of repose 30°
 - Superstructure T-beam bridge of span 15.0 m
 - Loading IRC class A-A (tracked)

Assume suitable dimensions for components of the superstructure.

[8 Marks]

Q7. Design an elastomeric bearing for following data:

- Dead load reaction per bearing = 230 KN
- Live load reaction per bearing = 480 KN
- Longitudinal force = 38 KN
- Effective span of bridge = 16.0 m
- Total estimated shear strain due to creep, shrinkage and temp. = 6×10^{-4}
- Estimated rotation at bearing of the girder due to dead load and live loads = 0.002
- Concrete for T-beam and bed block = M20

[6 Marks]

Roll	No
------	----

- Q8. A well foundation is to be designed for an abutment of 10×5 m base dimensions. The well is founded on sandy soil, the following data is
 - Height of bearing above maximum scour level = 28 m
 - Permissible horizontal displacement of the bearing level = 50 mm
 - Height of abutment = 6.0 m
 - Total vertical load including weight of abutment and well = 20,000 KN
 - Total Lateral load at scour level = 400 KN
 - Submerged unit weight of soil = 10 KN/m³

Design the well and verifying stresses in the steining. Also sketch the reinforcement details.

[6 Marks]