Dr. Pradeep Kr. Padey

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT T2 EXAMINATIONS, OCTOBER-2019

B.Tech I Semester (CS/IT/EC/CE)

Course Code: 18B11MA111

MAX. MARKS: 25

Course Name: Engineering Mathematics-I

MAX. TIME: 1.5 Hours

Course Credits: 04

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Marks are indicated in square brackets against each question.

- 1. Find the absolute maximum and absolute minimum values of $f(x,y) = x^3 + y^2 xy x$ on a closed and bounded region $x \ge 0$, $y \ge 0$ and $x + y \le 2$. [4], [CO2]
- 2. By reversing the order of integration, evaluate $\int_{y=0}^{y=1} \int_{x=y}^{x=1} 3\cos x^2 dx dy$. [4], [CO3]
- 3. Evaluate $\iint_S \frac{z}{2} dS$, where S is the upper half surface of sphere $x^2 + y^2 + z^2 = 4$. [4], [CO3]
- 4. Integrate $f(x, y) = x^2 y$ over the curve $C: x^2 + y^2 = 4$ in the first quadrant from (0, 2) to $(\sqrt{2}, \sqrt{2})$.
- 5. Find the equations of tangent plane and normal line at the point (0, 1, 2) on the surface $\cos \pi x x^2 y + e^{xz} + yz = 4$. [4], [CO4]
- 6. (a) Evaluate $L\{(t + e^{2t})^2\}$. [2.5], [CO5]
 - (b) Using convolution, evaluate $L^{-1}\left\{\frac{1}{(s+1)(s+2)}\right\}$. [2.5], [CO5]