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of electronic devices and their early obsolescence has been 
observed [24]. Globally, 41.8 million tons of e-waste was 
generated in 2014, and the amount of e-waste has been pre-
dicted to rise to 50 million tons by 2018 [3]. The disposal of 
e-waste has raised environmental and health concerns due to 
the presence of hazardous and toxic components (i.e., lead, 
cadmium, mercury, beryllium, and polybrominated diphenyl 
ethers) [22, 33]. On the other hand, e-waste has been treated 
as a “secondary ore” in “urban mining” due to the presence 
of precious metals (e.g., Au, Ag, Pd) [11]. The concentration 
of precious metals in the e-waste of printed circuit boards 
(PCBs) is higher than that in primary ores; for example, 
the ore deposit of both Ag and Au is <10 g/ton compared 
to the PCB deposits of Ag and Au at 1000 and 250 g/ton, 
respectively [7, 16]. Thus, the interest in e-waste recycling 
has risen, especially with the aim of recovering precious 
metals from waste PCBs.

Several hydrometallurgical, pyrometallurgical, and bio-
metallurgical (bioleaching) methods of metal recovery 
are currently practiced [24]. Both hydrometallurgical and 
pyrometallurgical methods of metals extraction are rapid 
and less time-consuming compared to bioleaching process. 
However, extensive energy requirement and investment cost, 
associated toxicity, and high metals loss during recovery 
from e-waste increases the redundancy of these methods. 
The considerable quantities of secondary byproducts are also 
generated, which limits their use [12, 22, 23, 37]. In contrast, 
bioleaching is an environmentally friendly and cost-effective 
technology that has been employed by various researchers 
to recover metals [5, 6, 31]. Bioleaching offers advantage 
of comparatively higher metal extraction rate from the 
low-grade ores/depleted/and complex resources, through 
the involvement of active bioagents [34]. In addition, low 
cost of bioleaching process is another major advantage; 
an important driver for the industry [32, 34]. Bioleaching 
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lowers the demand for resources such as energy, ores, and 
landfill space, but its application is still in its infancy [36]. A 
variety of chemolithotrophic bacteria (e.g., Acidithiobacil-
lus thiooxidans, Acidithiobacillus ferrooxidans) cyanogenic 
bacteria (e.g., Chromobacterium violaceum, Pseudomonas 
sp., and Bacillus megaterium) and fungi (e.g., Aspergillus 
niger, Penicillium simplicissimum) are known for their abil-
ity to mobilize metals from e-waste [5, 15, 20, 32]. Precious 
metal leaching has been mainly reported using cyanogenic 
bacteria, especially Chromobacterium violaceum [9, 30]. 
Cyanogenic bacteria, such as Chromobacterium violaceum, 
Pseudomonas sp., and Bacillus megaterium produces hydro-
gen cyanide (as a secondary metabolite) and form water-
soluble metal cyanide complexes under alkaline conditions 
(pH 8–10; [9]), on reacting with metals containing solids 
such as waste PCBs [6, 13]. The present study aimed to 
simultaneously recover Au and Ag from PCBs using indig-
enous bacterial strains from an e-waste recycling facility and 
to access the e-waste toxicity on them.

It has been reported that higher concentrations of e-waste 
are toxic to bacteria [29, 30, 32], and metal bioleaching is 
strongly dependent on the metabolic activity and status of 
the cell [8]. Therefore, assessing the toxicity of e-waste is 
required to guarantee and prevent failure in the bioleach-
ing process. Toxicity studies generate dose–response curves 
and provide estimates of the median concentration or 50% 
effective concentration  (EC50) and the threshold concentra-
tion of metal bioleaching. In this context, indigenous micro-
organisms are favorable over foreign microorganisms, as 
indigenous microbes have the physiological and metabolic 
machinery necessary to resist the contaminant due to natu-
ral selection [8]. Studies related to Pseudomonas balearica 
SAE1 to recover metals from e-waste and their toxicity 
assessment have not been conducted until now.

Materials and Methods

Source and Compositional Analysis of e-Waste

The e-waste of PCBs with particle sizes ≤150 µm (i.e., 
standard test sieves as per IS 460: 1962) was procured in zip-
per storage bags from the storehouse (i.e., a concrete room 
designed to store waste before its safe disposal) of Exigo 
Recycling Pvt. Ltd., Panipat, Haryana, India. The company 
collected waste PCBs from different states of India and then 
segregated, manually dismantled, pulverized, and recycled 
to recover precious (Au, Ad, Pd) and base metals (Cu). The 
waste leftover after physico-mechanically recycling of the 
metals was prepared for safe disposal at a treatment, stor-
age, and disposal facility (TSDF). The metallic content of 
waste PCBs was determined using acid digestion with aqua 

regia  (HNO3: HCl = 1:3), a protocol used in several studies 
[19, 32, 40].

Isolation of Bacteria from e-Waste Recycling Facility

Bacteria tolerant to e-waste toxicity were isolated from 
e-waste refuse by inoculating an e-waste sample (1 g) in100 
mL of Luria broth (LB) in 250-mL Erlenmeyer flasks. The 
flasks were incubated in an incubator shaker (Thermo Sci-
entific MaxQ 8000) at 30 ± 2 °C and 150 rpm for 6 days. 
Flasks with 100 mL of LB inoculated with sterilized (by 
autoclaving) e-waste refuse were kept as controls. The bac-
terial population associated with the e-waste was enriched 
by transferring 5 mL (2 × 108 CFU/ mL) of the sample from 
this flask to second flasks with LB supplemented with 25 g/L 
of sterilized e-waste. The flasks were incubated at 30 ± 2 °C 
and 150 rpm for 6 days. The sequential enrichment (50, 75, 
100 g/L of sterilized e-waste) was continued for 30 days. 
After 30 days, the sample from the last flask with 100 g/L 
of e-waste was serially diluted (0.85% NaCl) and spread on 
nutrient agar (NA) plates aseptically. Bacteria were sub-
cultured using streak plate method to ensure the purity of 
culture.

Characterization and Phylogenetic Analysis of Bacterial 
Isolate SAE1

To identify bacterial isolate SAE1, actively growing cells in 
LB medium were harvested and their DNA extracted using a 
Wizard Genomic DNA Purification Kit (Promega) according 
to the manufacturer’s instructions. Then, 16S rRNA gene 
amplification of the extracted DNA was conducted using 
universal primers 27F and 1492R. A PCR mixture of 20 µL 
volume was made, containing 50 ng of template genomic 
DNA (Estimated spectrophotometrically by A260 and A280 
measurements; NanoDrop, Thermo Fisher Scientific, Inc., 
Massachusetts, USA), 5 pmol of forward and reverse prim-
ers and PCR master mix (Promega, USA). PCR reaction 
was performed with initial denaturation at 95 °C for 5 min 
followed by 35 cycles at 95 °C for 1 min, 51.8 °C for 1 min 
and 72 °C for 1 min and having a final extension at 72 °C for 
7 min. The PCR product (1465 bp) was analyzed by agarose 
gel electrophoresis. The amplified product was then sent 
for sequencing to Xcelris Labs Limited, Gujarat, India. The 
obtained sequence was compared with pre-existing DNA 
sequences available on the GenBank database using the 
BLAST tool of the National Center for Biotechnology Infor-
mation (NCBI), MD, USA. The sequences were aligned by 
ClustalW, and a phylogenetic tree was constructed using a 
neighbor-joining method with MEGA 6.0 [39]. The evolu-
tionary distances were calculated using the Jukes and Cantor 
model and compared with that of the other microbial strains 
obtained from the GenBank database. A bootstrap analysis 



196 A. Kumar et al.

1 3

of 1000 replicates [14] was used to evaluate the topology 
of the tree.

Determination of e-Waste Toxicity Tolerance Levels 
and Dose–Response Analysis

The bacterial isolate SAE1 along with Chromobacterium 
violaceum (MTCC 2656) was tested for its toxicity toler-
ance at 10, 100, 200, 300, 400, and 500 g/L pulp density of 
e-waste. Chromobacterium violaceum used in the present 
study was procured from the Institute of Microbial Technol-
ogy in Chandigarh, India. Toxicity tolerance was measured 
by bacterial growth at respective pulp density in terms of 
the colony-forming unit (CFU) count method. The Clini-
cal and Laboratory Standards Institute guidelines for mini-
mum inhibitory concentration testing were followed using 
Luria–Bertani (LB) broth to determine e-waste toxicity 
[10]. The experiments were performed in a 250-mL Erlen-
meyer flask containing 100 mL LB medium. The flasks were 
inoculated with 1% (v/v) of inoculum containing 1.4 × 105 
CFU/mL, along with the respective concentration of sterile 
e-waste. Flasks containing medium and bacterial cells with-
out e-waste were kept as controls. All flasks (in duplicates 
sets) were incubated at 30 °C and 150 rpm for 24 h. After 
24 h, samples from each flask were taken following enumer-
ation of bacteria by serial dilution and spread plate methods.

For the dose–response curve, percent inhibition response 
was calculated as shown in Eq. (1): 

where IR is the inhibition response, Control is bacterial 
growth in the absence of e-waste, and Test is bacterial 
growth in the presence of e-waste.

Nonlinear regression was performed using GraphPad 
Prism 6 (GraphPad Software, Inc., La Jolla, California). 
The dose–response curve was determined using log (ago-
nist) versus normalized response-variable slope procedure 
in GraphPad Prism 6 [25].  EC50 value (statistically derived 
estimate about the concentration of a substance resulting 
in 50% reduction of growth in a specified time period) was 
estimated based on dose–response data.

Two-Step Bioleaching

A two-step bioleaching process was employed for solubi-
lization of metals from e-waste [6, 29, 32]. In the process, 
bacterial culture [5% (v/v) containing 2 × 108 CFU/mL] was 
inoculated into sterile LB medium in the absence of e-waste 
for 48 h. After 48 h e-waste sterilized by autoclaving [35] 
was added to culture flasks and incubated for a time period 
of 7 days, then the flasks were analyzed for the presence of 
metal ions.

(1)% IR =
Control − Test

Control
× 100

Optimization of Experimental Parameters

It was reported that bioleaching of metals from waste PCBs 
using cyanogenic microorganisms depends on initial pH [9, 
29], pulp density [1], temperature, and glycine concentration 
(precursor) [6, 13]. Therefore, the aforementioned factors 
were tested on variable ranges of pulp density (10, 50, and 
100 g/L), glycine concentration (2.5, 5.0, 7.5, and 10.0 g/L), 
temperature (25, 30, 35, and 40 °C), and initial pH (7, 8, and 
9) for maximum metal mobilization from waste PCBs in the 
present study.

Analytical Methods

Samples were filtered using Whatman grade 1 filter paper 
and then centrifuged (Eppendorf Centrifuge 5804 R; Eppen-
dorf India, Ambattur, Chennai, India) at 6300 rcf for 10 min 
to remove solid particles (e-waste) and cell biomass. The 
supernatant/leachate was collected and analyzed for the pres-
ence of metal ions using atomic absorption spectrometry 
(PerkinElmer AAnalyst 400; PerkinElmer, Inc., Waltham, 
Massachusetts) on respective wavelengths. Prior to analy-
sis, leachate was passed through a 0.45-µm glass fiber filter 
(PALL-GF-A/E-I) to ensure particle-free suspension [32]. 
The final pH of the supernatant/leachate was analyzed by 
portable digital pH meter (Eutech pH Testr30; Thermo 
Fisher Scientific, Inc., Massachusetts, USA).

Statistical Analysis

All the experiments were conducted under the statistical 
framework of duplicate experiments along with appropri-
ate control. Experimental data were statistically interpreted 
with two-way analysis of variance (ANOVA). The statistical 
significance was determined at a probability level of P < 0.05 
using GraphPad Prism version 6 (GraphPad Software, Inc., 
La Jolla, California).

Results and Discussion

Compositional Analysis of e-Waste (PCBs)

Metals compositional analysis of e-waste dust was per-
formed, and results are presented in Table 1. The concen-
tration of copper (Cu 23.4 mg/g) and iron (Fe 22.2 mg/g) 
was in bulk. However, precious and base metals were deter-
mined as Au (0.08 mg/g), Ag (0.4 mg/g), Ni (2.0 mg/g), Co 
(1.1 mg/g), Cr (0.9 mg/g), and Zn (0.7 mg/g). The present 
study depicts a significantly lower metals concentration than 
those reported previously from waste PCBs [2, 29, 32]. The 
low concentration is because the waste used in the present 
study was subjected for physio-mechanical recovery of 
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metals at industry before procurement, whereas other studies 
that reported higher metals composition used virgin waste 
from industry. The precious metals concentration in the pre-
sent study was higher compared to Xiang et al. and Liang 
et al. who reported 0.0144 mg/g and 0.014 mg/g of Au and 
0.22 mg/g and 0.03 mg/g of Ag from waste PCBs, respec-
tively [27, 41]. Heterogeneity was observed in comparison 
with metal ions of those reported by various researchers 
[4, 41, 42], which may be attributed to the origin, nature, 
industrial waste processing of e-waste material, and type of 
analytical methods used.

Characterization of e-Waste Associated Bacteria

Three morphologically different bacterial strains were iso-
lated from the original sample of e-waste on nutrient agar 
medium. However, sequential enrichment leads to the selec-
tion of single bacterial strain SAE1 at 100 g/L pulp den-
sity of e-waste and was used in the bioleaching study. No 
growth was observed in the control flasks containing steri-
lized e-waste. Bacterial colonies were circular, entire, flat, 
and mucoid with yellowish pigmentation. The bacterial cell 
was Gram-negative and rod shape in nature. The identity of 
bacterial isolate SAE1 was confirmed by 16S rRNA gene 
sequencing. The results of BLASTN analysis of the 16S 
rRNA sequence showed the highest homology (100%) with 
Pseudomonas balearica when compared with the available 
sequence in the National Center for Biotechnology Infor-
mation (NCBI) GenBank database. The sequence obtained 
was deposited in the NCBI GenBank database (Accession 
no. KU053282). The phylogenetic analysis was performed 
using a neighbor-joining method with 1000 bootstrap sam-
pling values, and a tree was constructed (tree not shown). 
It was observed that bacterial isolate SAE1 showed a 100% 
similarity index with species of genus Pseudomonas. Differ-
ent Pseudomonas species, for example, Pseudomonas aer-
uginosa, and Pseudomonas fluorescens have been reported 
for their bioleaching potential from e-waste [30, 32]. Other 
than e-waste bioleaching, many Pseudomonas species were 

reported for their inorganic phosphate solubilization [28] 
and rare earth metals leaching capabilities [17].

Determination of e-Waste Toxicity Tolerant Capability 
of SAE1

The toxicity was accessed by reduced number of CFU/mL 
of Pseudomonas balearica SAE1 along with C. violaceum 
to that of control. The percent inhibition response was cal-
culated and shown in Fig. 1a. Pseudomonas balearica SAE1 
was capable of growing at e-waste pulp density of 500 g/L, 
whereas C. violaceum was completely inhibited at e-waste 
pulp density of 200 g/L in 24 h. The toxicity of e-waste is 
attributed to the presence of heavy metals and other toxic 
pollutants such as polybrominated diphenyl ethers [22, 
33]. To get a better idea of e-waste toxicity, a quantitative 
dose–response curve was plotted in Fig. 1b, c. The  EC50 
value for the bacterial strain SAE1 and C. violaceum was 
325.7 g/L  (LogEC50 = 2.5) and 83.70 g/L  (LogEC50 = 1.9), 
respectively. The 95% confidence intervals were Log 2.5 
to 2.6 (315.1–346.7  g/L) for SAE1 and Log 1.8 to 2.0 
(68.7–102.0 g/L) for C. violaceum. However, these val-
ues may vary depending on bacterial species and type of 
e-waste used. According to Chen et al.  EC20 and  EC50 values 
provide estimates about the feasibility of the bioleaching 
process [8]. Therefore,  EC20 was determined by using the 
GraphPad QuickCalcs online tool (http://graphpad.com/
quickcalcs/ECanything1/). The  EC20 value of P. balearica 
SAE1 (149.6 g/L) was higher than C. violaceum (45.8 g/L). 
E-waste at approximately 10 g/L pulp density was nontoxic 
to P. balearica SAE1 without any percent inhibition in this 
case; therefore, it can be used for bioleaching. However, the 
results of the dose–response analysis clearly suggest the 
technological feasibility and viable operation range of met-
als bioleaching from e-waste using P. balearica SAE1.

Optimization of Experimental Parameters

Influence of Pulp Density

The effect of increasing pulp density on metal recovery is 
shown in Fig. 2a. It was observed that P. balearica SAE1 
was able to mobilize maximum of 56.4 and 30.5% of Au and 
Ag, respectively, at 10 g/L pulp density. Further increase 
in pulp density from 10 to 100 g/L resulted in significantly 
decreased recovery of metals. The Au and Ag mobilization 
at 100 g/L pulp density was 8.3 and 1.8%, respectively. The 
low metals mobilization at higher pulp density may be due 
to toxic effects of the e-waste, which have inhibited the bac-
terial metabolism [20], thereby resulting in reduced growth 
and poor lixiviant production. A similar study by Pradhan 
and Kumar, reported 69.3% mobilization of Au at 10 g/L 
pulp density and was decreased to 20.28% at 100 g/L pulp 

Table 1  E-waste (PCBs) metal 
content analysis using aqua 
regia  (HNO3: HCl; 1:3)

This is a partial composition of 
PCBs, indicating major metals

Metals Concentration (mg/g)

Cu 23.4 ± 1.9
Fe 22.2 ± 1.7
Ni 2.0 ± 0.42
Co 1.1 ± 0.2
Cr 0.9 ± 0.09
Zn 0.7 ± 0.02
Ag 0.4 ± 0.04
Au 0.08 ± 0.01

http://graphpad.com/quickcalcs/ECanything1/
http://graphpad.com/quickcalcs/ECanything1/
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density using C. violaceum [32]. The total Au present in 
the e-waste of Pradhan and Kumar, was 0.084% (w/w) [31]. 
Natarajan and Ting, reported higher mobilization of Au 
(11.3%) and Cu (86.2%) from pretreated (with nitric acid) 

electronic scrap material at low pulp density (5 g/L) using 
C. violaceum [30]. The percentage of bioleaching was calcu-
lated from 0.024 and 3.04% of total Au and Cu, respectively, 
present in the pretreated e-waste of Natarajan and Ting [30]. 

Fig. 1  a Percent inhibition 
response of P. balearica SAE1 
and C. violaceum; b dose 
response curve for P. balearica 
SAE1; c dose response curve 
for C. violaceum. The dose–
response curve was determined 
using equation “log (agonist) 
versus normalized response–
variable slope” procedure in 
GraphPad Prism 6

Fig. 2  OFAT optimization for 
enhancement of precious metals 
recovery during bioleaching 
of e-waste: a influence of pulp 
density, b influence of tem-
perature, c influence of glycine 
concentration, d influence of pH
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However, metals bioleaching at low pulp density is a poten-
tial challenge in implementing the process economically.

Influence of Temperature

Researchers reported the influence of temperature on cya-
nide production using Pseudomonas chloroaphis and C. 
violaceum. The suitable temperature for cyanide production 
ranged from 25 to 35 °C [36, 43]. Therefore, the present 
study selected a range of temperatures from 25 to 40 °C. The 
results were presented in Fig. 2b. The highest recovery of Au 
and Ag was 56.2 and 26.6%, respectively, and appeared at 
30 °C, pH 8.0, and pulp density 10 g/L. The moderate tem-
perature (30 °C) offers the advantage of low energy require-
ment during industrial-scale application, thereby potentially 
reducing the cost of the process.

Influence of Additive Concentration

Cyanide producing ability of cyanogenic microorganisms is 
favored by the addition of glycine [2, 6, 36]. Thus, different 
concentrations of glycine (2.5, 5.0, 7.5, and 10.0 g/L) were 
added to the experimental flasks to investigate their effects 
on recovery of Au and Ag. It was observed that increase in 
glycine concentration from 2.5 to 7.5 g/L have increased the 
metals leaching capabilities of bacterial strain SAE1. How-
ever, a further increase in glycine concentration from 7.5 to 
10.0 g/L resulted in decreased metals mobilization. This is 
due to inhibitory effects of glycine on bacteria at a concen-
tration above 7.5 g/L. According to Faramarzi et al. glycine 
concentration greater than optimum was toxic, which led to 
reduced bacterial growth and poor metals mobilization [13]. 
Işıldar et al. and Shin et al. reported inhibitory effects of 
glycine above 7.5 g/L using P. fluorescens and Pseudomonas 
putida during the bioleaching of metals from e-waste [21, 
38]. The maximum leaching of Au (62.1%) and Ag (27.9%) 
was at glycine concentration of 7.5 g/L (Fig. 2c). Metals 
bioleaching at glycine concentrations 5 and 7.5 g/L did not 
show any significant differences. Therefore, glycine concen-
tration 5 g/L was taken as optimum for further experiments.

Influence of pH

The pKa of HCN is 9.3, alkaline pH increases the availabil-
ity of aqueous cyanide ions (CN−) and thereby enhances the 
metal mobilization efficiency. However, optimum bacterial 
growth occurs at physiological pH range of 7–8 [29]. An 
equilibrium reaction of bacterial cyanide production can be 
represented as per Eq. (2) [30]: 

Therefore, metal leaching efficiency of P. balearica SAE1 
was investigated on a range of pH from 7 to 9. From the results 

(2)HCN ↔ H
+ + CN

−

of Fig. 2d, higher metals leaching (Au 68.5%; Ag 33.8%) was 
observed at culture conditions of pH 9 after 7 days, whereas 
low metals mobilization was observed at pH 7. This is because 
at low pH (7) equilibrium shifts to produce more HCN gas, 
which is volatile and less water-soluble. At alkaline pH (9), the 
equilibrium shifts toward aqueous cyanide ions (CN−), mak-
ing it highly available for metals solubilization/complexation 
[30]. Our study reported significantly higher recovery of Au 
at pH 9 than the studies of Arshadi and Mousavi, Chi et al. 
and Natarajan and Ting [2, 9, 30]. Though cyanide has been 
used in extraction of Ag from industrial mine and metallurgical 
waste. Ag leaching using alkaline cyanidation process provides 
optimal conditions and highest recovery of this metals [18]. 
Hence, alkalophilic cyanogenic microorganisms have a great 
application in Au and Ag leaching from mine tailings. There 
are few reports of silver leaching at alkaline pH using cyano-
genic microorganisms from metals containing solid waste [6, 
21].

Bioleaching Assay Under Optimized Conditions

The two-step bioleaching process was optimized for recovery 
of Au and Ag. Results of Fig. 3 present the metals dissolu-
tion profile of Au and Ag during the two-step bioleaching 
process. The leaching of metals increased up to the seventh 
day; thereafter, no mobilization was observed. The maximum 
Au (68.5%) and Ag (33.8%) were mobilized at pulp density 
10 g/L, glycine concentration of 5 g/L, pH 9, temperature 
30 °C, rpm 150, and waste PCBs of particle size ≤150 µm. 
Cyanogenic microorganisms such as Pseudomonas species 
and C. violaceum produce HCN as secondary metabolite [21, 
30], which form water-soluble complex (i.e., dicyanoaurate 
with Au) [13]. The dissolution of Au can be represented as 
shown in Eq. (3) [36]: 

(3)4Au + 8CN
− + O

2
+ 2H

2
O = 4Au(CN)−

2
+ 4OH

−

Fig. 3  Percentage bioleaching of precious metals (primary axis) and 
change in final pH (secondary axis) under OFAT optimized condi-
tions by P. balearica SAE1
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Ag cyanidation follows very similar reaction and 
was reported to be mobilized as dicyanoargentate dur-
ing cyanogenic bioleaching by various researchers [6, 
13]. The present study observed higher Ag mobilization 
(33.8%; Fig. 3) as compared to the previous studies [32, 
36], which showed 12.1 and 7% of Ag mobilization from 
e-waste using cyanogenic bacterial strains. Brandl et al. 
reported 5% mobilization of Ag as dicyanoargentate from 
jewelry waste using cyanogenic bacterial strain Pseu-
domonas plecoglossicida [6]. The higher mobilization of 
Ag may be attributed to heterogeneous nature of e-waste. 
This is because the previously compared studies [2, 32, 
36] reported higher amounts of Cu (10.00, 12.06, and 
90.43%, respectively) in their e-waste, which interferes 
with precious metals leaching by consuming cyanide pro-
duced during cyanogenic bioleaching, resulting in poor 
metal mobilization. In the present study, the amount of 
Cu is less (2.4%), making cyanide available for precious 
metals, which resulted in the higher mobilization of Ag 
and Au. Although the elevated concentration of dicy-
anoargentate was toxic to bacteria [6], the even higher 
e-waste toxicity tolerance ability of P. balearica SAE1 
provided the selective advantage to the bacterial strain. 
The presence of cyanide was tested at Jeedimetla Effluent 
Treatment Ltd. Hyderabad, India. The results showed a 
positive cyanide test for the bacterial strain P. balearica 
SAE1. Further, proper controls were undertaken in the 
study, which did not show the presence of cyanide as well 
as leaching of Au and Ag, respectively.

The change in pH was also observed during bioleach-
ing of metals (Fig. 3). In the absence of e-waste, the 
pH slightly decreased from 9.0 to 8.7 in 48 h (data not 
shown). This may be attributed to bacterial conversion of 
organic compounds such as glycine into glyoxylic, cyano-
formic, and oxamic acids [26]. However, after addition of 
waste PCBs, pH increased gradually from 8.7 to 9.2 until 
the seventh day of incubation (Fig. 3). The increased pH 
corresponds to the reaction of HCN with metals present 
in e-waste; thus, the formation of metals-cyanide com-
plexes and similar findings have been reported by Sahni 
et al. during bioleaching of metals from subscriber iden-
tity module waste using C. violaceum [37]. Arshadi and 
Mousavi, reported a similar trend of pH change during 
Au and Cu extraction from waste PCBs using cyanogenic 
bacterium Bacillus megaterium [2]. Because alkaline con-
ditions allow for the easier recovery of metals compared 
to acidic conditions, pH is a significant parameter in the 
bioleaching process. In this study, simultaneous recovery 
of higher amounts of Au and Ag from waste PCBs at alka-
line pH (9.0) by P. balearica SAE1 may be promising for 
industrial applications.

Conclusion

Indigenous bacterial strain P. balearica SAE1 was isolated 
from an e-waste recycling facility. Toxicity assessment 
study showed higher tolerance of SAE1 to e-waste toxic-
ity, i.e.,  EC50 = 325.7 g PCBs/L of the culture medium. 
Pseudomonas balearica SAE1 was used for the bioleach-
ing of Au and Ag from waste printed circuit boards. Pre-
cious metals (Au and Ag) dissolution was enhanced by 
optimization of parameters. Pseudomonas balearica SAE1 
was able to leach 68.5 and 33.8% of Au and Ag under 
optimized conditions. The higher tolerance of P. balearica 
SAE1 to e-waste toxicity with efficient metal mobilization 
ability, confirms its suitability for industrial bioleaching 
operations of recovering precious metals from e-waste. 
These efforts will surely pave the way toward conserva-
tion of primary/natural resources, prevent environmental 
degradation, and significantly contribute to the transition 
to a circular economy.
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