J Supercomput (2012) 59:569-588
DOI 10.1007/s11227-010-0454-7

Comparative analysis of Traffic Patterns on k-ary n-tree
using adaptive algorithms based on Burton Normal
Form

Nitin - Durg Singh Chauhan

Published online: 10 June 2010
© Springer Science+Business Media, LLC 2010

Abstract k-ary n-trees are a particular type of Fat-Trees that belong to paramet-
ric family of topologies. In spite of their wide usage as an Interconnection Network
topology, it has been quite unclear about the performance of Adaptive Routing Algo-
rithms on them. In this paper, we consider a 4-ary 3-tree and analyze two Adaptive
Routing Algorithms namely the Non-Minimal Adaptive Routing Algorithm and Min-
imal Adaptive Routing Algorithm. Specifically, the application of these algorithms on
4-ary 3-tree using various Traffic Patterns has been simulated. The six Traffic Patterns
called BitTranspose, BitReversal, BitComplement, Uniform Distribution, k-shift and
Ring are used as running examples throughout the paper. The simulation results show
that the Network Latency for k-ary n-tree is much higher in case of the Non-Minimal
Algorithm as compared to the Minimal Algorithm. However, in case of Ring Traffic,
the results show a deviant behavior when compared to other patterns.

Keywords Index Terms - Interconnection networks - Fat-trees - k-ary n-trees -
Traffic Patterns - Non-Minimal Adaptive Routing - Minimal Adaptive Routing -
BigNetSim - Burton Normal Form - Congestion-free patterns and flow-control

Nitin (&)

Department of CSE and IT, Jaypee University of Information Technology, Waknaghat,
Solan 173234, Himachal Pradesh, India

e-mail: nitin@jes.juit.ac.in

Nitin

e-mail: delnitin@ufl.edu

D.S. Chauhan

Uttarakhand Technical University, Dehradun 248001, Uttarakhand, India
e-mail: pdschauhan@gmail.com

@ Springer

mailto:nitin@jes.juit.ac.in
mailto:delnitin@ufl.edu
mailto:pdschauhan@gmail.com

570 Nitin, D.S. Chauhan

1 Introduction and motivation

Interconnection Networks (INs) enable fast data communication between the com-
ponents of a digital system. INs are based on three aspects: Network Topology, the
Routing Algorithm, and the Flow Control mechanism employed [1-10]. One of three
prime aspects of INs is topology. The topology is packaged such that it is cost ef-
fective along with its ability to achieve good performance (in terms of throughput,
latency, and scalability, etc.) [11]. Parametric family of regular topologies consists
of k-ary n-cube, k-ary n-butterflies, and k-ary n-trees that can be built by varying
the two parameters k and n. k-ary n-trees are a particular type of Fat-Trees built us-
ing processing nodes and constant Arity Switches interconnected in a butterfly like
topology [12].

In this paper, we focus on Non-Minimal, Minimal Adaptive Algorithms, and their
application on k-ary n-tree using various Traffic Patterns. Section 2 introduces a Fat-
Tree, k-ary n-tree, and different types of Traffic Patterns. In Sect. 3, we explain rout-
ing algorithms used in the paper. In Sect. 4, we discuss Testbed and Simulation results
of various Traffic Patterns on 4-ary 3-tree using BigNetSim followed by conclusion
and references.

2 Preliminaries and background

An IN has a regular topology in which switches are identical and organized as a set of
stages where each stage is only connected to the previous and to the next stage using
a regular connection pattern. They are widely used for broadband switching technol-
ogy and for multiprocessor systems. Besides this, they offer an enthusiastic way of
implementing switches used in data communication networks. With the performance
requirement of the switches exceeding several terabits/sec and teraflops/sec, it be-
comes imperative to make them dynamic and fault-tolerant. A number of techniques
have been used to increase the reliability and fault-tolerance of the INs. A survey of
the fault-tolerance attributes of these networks can be found in [1-7].

The typical modern day application of the INs includes fault-tolerant packet
switches, designing multicast, broadcast router fabrics while system on-chip and net-
works on-chip are hottest nowa-days. Normally the following aspects always con-
sidered while deigning the fault-tolerant INs: the topology chosen, the routing algo-
rithm used, and the flow control mechanism adhered. The topology helps in selecting
the characteristics of the present chip technology in order to get higher bandwidth,
throughput, processing power, processor utilization, and probability of acceptance
from the IN based applications, at an optimum hardware cost. Soon, as the topology
is frozen, the analytical bounds, which help for measuring reliability and availability,
can be examined. The topology helps in determining the throughput and latency of
the INs whereas the routing algorithm and flow control encourages in achieving the
performance bounds.

In particular, here we focus on parametric family of regular topologies, which
consists of k-ary n-trees, a type of Fat-Trees (that are most common type of INs in
commercial machines) [13-15]. A Fat-Tree topology is an IN based on binary tree,
which gets thicker near the root. A set of processors is located at the leaves or at the

@ Springer

Comparative analysis of Traffic Patterns on k-ary n-tree 571

Fig. 1 A Fat-Tree

first stage switches of the Fat-Tree and each edge of the underlying tree corresponds
to a bidirectional channel (between a parent and a child). The number of wires in a
channel connecting switches measures the capacity of a Fat-Tree; it is these wires,
which create options for packets to flow during Congestion using Adaptive Routing
Algorithm, i.e., a Fat-Tree is parameterized not only in the number of processors, but
also in the communication bandwidth it can support.

Before we understand k-ary n-tree in detail, it is very important for us to know
more about Fat-Trees.

2.1 A Fat-Tree

A Fat-Tree is a collection of vertices connected by edges and is defined recursively
as follows [15].

1. A single vertex by itself is a Fat-Tree. This vertex is also the root of the Fat-Tree.

2. If vy, va,...,v; are vertices and T1, T2, ..., T; are Fat-Trees, with ry, r, ..., ri as
roots (j and k need not to be equal), a new Fat-Tree is built by connecting with
edges, in any manner, the vertices vy, vz, ..., v; to the roots rq,r2, ..., rr. The
roots of the new Fat-Tree are vy, vy, ..., v;. See Fig. 1.

The arity or ports of the internal switches of the Fat-Tree increases as we go closer
to the root, hence the practical implementation of the same becomes almost unfea-
sible. Due to this, few alternative solutions are proposed, which intend to keep fixed
switch degree, while focusing on k-ary n-trees; bandwidth is increased by replicating
switches while going toward the root. Let us turn our attention to a particular class
of fat-trees, the k-ary n-trees. k-ary n-trees borrow from a popular class of multistage
interconnection networks, the k-ary n-butterflies [14, 15] (or k-ary n-flies for short),
the topology of the internal switches.

@ Springer

572

Nitin, D.S. Chauhan

Fig. 2 A 2-ary 3-tree

9 10 11 12
) A
A 4

5 6 7 8
A A A A
v v Y v

1 2

2.2

So0e

A k-ary n-tree

The knowledge of Fat-Trees will help in exploring k-ary n-trees; In general, k-ary
n-trees are a particular type of Fat-Trees that belong to parametric family of regular
topologies, hence the structure of the same depends on the values of k and n, where k
is the number of links of a switch that connects to the previous or next stage i.e. degree
of switch is 2k while n is the number of stages [13—15]. After having knowledge of

the

values of k and n we see that a k-ary n-tree is constructed using N = k" processing

nodes and nk" 1k % k communication switches [16].

1.

A processing node is represented as a tuple {0, 1, ..., k}".

2. A switch is defined as an ordered pair {s, 0}, where s is the stage at where the

23

In

switch is located, s € {0, 1,...,n — 1} and o is a n — 1 tuple {0, 1,...,k}”_1,
which identifies the switch inside its stage.

Two switches, {s,0,-2,...,01,00} and {s,0)_,,...,0},0;} are connected if
s'=s+ 1 and 0; = 0, for all i # s. There is a link between the switch
{0,0,-2,...,01,02} and the processing node p,_i,..., p1, po if and only if
oj =p; foralli e{n—2,...,1,0}. We will use this link for numbering to the
switches of a k-ary n-tree: descending links are labeled from O to k — 1, and as-
cending links are labeled from k to 2k — 1. Figure 2 represent a 2-ary 3-tree, which
is a type of k-ary n-tree.

Definition of Traffic Patterns

this section, we are providing the definition of following six types of existing

Traffic Patterns.

@ Springer

Comparative analysis of Traffic Patterns on k-ary n-tree 573

Definition 2.3.1 BitTranspose Traffic: Address of the destination node is a transpose
of that of the source node, i.e., d; = s(i+%)mod(N).
Definition 2.3.2 BitReversal Traffic: Address of the destination node is a reversal of
the bit address of the Source node, i.e., d; = sp—_;_1.

Definition 2.3.3 BitComplement Traffic: Address of the destination node is a bitwise
complement of the address of the source node.

Definition 2.3.4 Uniform Distributed Traffic: Here, the number of packets arriving at
every node is statistically equal, where the performance gain of the slot reuse scheme
strongly depends on the traffic destination distribution. The probability p; ; of send-
ing packet from node i to node j is ﬁ — 1 where M is the number of nodes in the
bus, i is the source and j is the destination node.

Definition 2.3.5 k-shift Traffic: In this strategy, each node p sends messages to k
nodes {(p — L(I%I)J,...,p—Z,p— Lp+1l,p+2,....,p+ L(k%l)J),p—i-k}.Each
message that node p gets from node p — k, can be copied into its network interface
card (NIC) before it is sent to the k neighbors. This is repeated for % iterations to
complete the collective operation.

Definition 2.3.6 Ring Traffic: In this strategy, messages are sent along a ring formed
by all the nodes in the system. In all stages of the ring strategy, on receiving a message
node p forwards that message to its neighbor ((p 4+ 1) mod p) in the ring.

3 Adaptive Routing Algorithms

We have considered two Adaptive Routing Algorithms, namely the Minimal Rout-
ing Algorithm and Non-Minimal Routing Algorithm, which are further tested on six
Traffic Patterns, results of which are discussed throughout the paper.

3.1 Minimal Adaptive Routing Algorithm

In a network due to existence of multiple shortest paths between source and desti-
nation called profitable links, the routing algorithm chooses amongst them based on
local or temporal conditions to forward packets. The number of Minimal paths from
source to destination is directly proportional to distance between them. Hence, the
algorithm proves to be ineffective if the destination is close to source [12].

Similarly, in k-ary n-tree the profitable links exist and helps in the implementation
of Minimal Adaptive Routing Algorithm in the same form as it does in other topolo-
gies. Figure 2 shows four Minimal paths from node 1 to node 4 via switches are as
follows:

1-5-9-7-4

1-5-11-7-4

1-6-10-8-4

1-6-12-8-4

@ Springer

574 Nitin, D.S. Chauhan

While two paths from node 1 to 2 via switches are as follows:

1-6-2

1-5-2

Hence, proving the direct proportionality between number of Minimal paths and
distance between source and destination.

3.2 Non-Minimal Adaptive Routing Algorithm

To avoid congestion and improve fault-tolerance, it is very important that packets
route themselves to Non-Minimal/longer paths when all Minimal paths are con-
gested, this will help improving performance by reducing the time required be-
tween source and destination than otherwise. Our Simulation studies show that Non-
Minimal Adaptive Algorithms are more effective than other Adaptive Algorithms in
providing Deadlock freedom and prevention of Live-lock [17, 18].

In k-ary n-tree, this works very efficiently as well. Figure 2 shows Non-Minimal
paths from node 1 to node 4 via switches (apart from ones shown in Minimal Adaptive
Routing Algorithm) is as follows:

1-6-2-5-9-7-4

1-6-2-5-11-7-4

This comes to action when all Minimal paths are congested and packets route
adaptively after sensing the congestion. Hence, even the paths are longer, it gives
better performance.

4 Evaluation of Traffic Patterns using BigNetSim
4.1 Experimental setup and Testbed

In this section, we are providing the simulation results. For our simulation, we have
used IBM System x86, running with Novell’s SUSE Linux Enterprise Server 11 and
with BigSim Network Simulator. The BigSim [19, 20] Network Simulator is also
known as BigSimulator and lives in the subversion (SVN) repository of Parallel Pro-
gramming Laboratory, University of Illinois at Urbana Champaign, USA. This comes
to action when all Minimal paths are congested and packets route adaptively after
sensing the same.

Definition 4.1.1 BigNetSim: The BigSim simulator along with the network simula-
tor is together also known as BigNetSim [21]. Both the simulators run on top of the
POSE framework [20], which is a Parallel Discrete Event Simulation framework built
on top of CHARM++ [22].

Definition 4.1.2 CHARM-++: It is a parallel object-oriented programming language
based on C++ and developed in the Parallel Programming Laboratory at the Uni-
versity of Illinois at Urbana-Champaign. It is designed with the goal of enhancing
programmer productivity by providing a high-level abstraction of a parallel program
and delivering good performance on a wide variety of underlying hardware platforms.

@ Springer

Comparative analysis of Traffic Patterns on k-ary n-tree 575

Fig. 3 Conceptual model of
BigNetSi
renem Switch
Topology
Ports Arbiter Strategy
Routing Channel
Input Virtual NIC
Channel
Selection Send NIC Recv NIC
Output Virtual Node
Channel
. Proc Co—Proc Tr.Gen
Selection
Network Architecture Network Entities

Figure 3 shows the conceptual model of BigNetSim [19] used for our analysis,
where using existing k-ary n-tree topology classes, both Routing Algorithms are im-
plemented over it under different Traffic Patterns; some keywords mentioned below
explains the model.

1. Switch: A switch decides the routing on a packet. Switches could be input buffered
or output buffered. The former are implemented as individual posers per port of
each switch while the latter are implemented as a poser per switch. In an Input
Buffered (IB) switch, a packet in a switch is stored at the input port until its next
route is decided and leaves the switch if it finds available space on the next switch
in the route. While in an Output Buffered (OB) switch, a packet in a switch decides
beforehand on the next route to take and is buffered at the output port until space
is available on the next switch along the route.

2. Network Interface Card (NIC): Network cards packetize and unpacketize mes-
sages. A NIC is implemented as two posers. The sending and receiving entities in
a NIC are implemented as separate posers. A NIC is attached to each node.

3. Channel: These are modeled as posers and connect a NIC to a switch or a switch
to another switch.

4. Compute node: Each compute node connects to a network interface card. A com-
pute node simulates execution of entry methods on it. It is also attached to a mes-
sage traffic generator, which is used when only an interconnection network is be-
ing simulated. This traffic generator can generate any message pattern on each of
the compute nodes. The traffic generator can send point-to-point messages, reduc-
tions, multicasts, broadcasts, and other collective traffic. It supports BitComple-
ment, BitTranspose, BitReversal, Uniform Distribution, k-shift, and Ring Traffic.
These are based on common communication patterns found in real applications.

@ Springer

576

Nitin, D.S. Chauhan

Table 1 Key network parameters used in the experimental setup

Network parameters

Values for simulation scenario-1

Values for simulation scenario-2

1. Channel bandwidth 1.75 Bps 1.75 Bps
2. Packet size 256 Bytes 2048 Bytes
3. Channel delay 9 ms 9 ms

4. Switch delay 0 ms 0 ms

5. Switch virtual channel 2 2

6. Switch port 8 8

7. Switch buffer 1.75 1.75

8. Number of nodes 64 64

9. Message size 200 400

A uniform determines the frequency of message generation or Poisson distribu-
tion.

5. Topology, routing strategies, input, and output virtual channel selection strategies
need to be decided for any interconnection network. Once we have all of these in
place, we can simulate an interconnection network.

The simulator system includes these components:

1. A parallel emulator that emulates a low-level machine API targeting architecture
like Bluegene.
2. A message driven programming language (Charm-++) running on the top of emu-
lator.
. The Adaptive MPI (an implementation of MPI on top of Charm++) environment.
4. A parallel post-mortem mode simulator for performance prediction, including net-
work simulation.

(98]

The key networks parameters that passed to Charm++ tabulated in Table 1. All
the simulations results have been tabulated in Tables 2, 3, respectively, and simul-
taneously put forth using Figs. 4(a—f), 5(a—f). Two types of simulation scenario i.e.
scenario-1 and scenario-2 have been setup for the analysis. Scenario-2 differs from
scenario-1 in terms of packet size and the message size.

4.1.1 Key network parameters for simulation scenario-1 and scenario-2
4.2 Key parameters used for analysis of simulation results

The performance of an IN under dynamic load is usually assessed by two quantita-
tive parameters, Throughput and the Latency. Two important characteristics are the
saturation point and the sustained rate after saturation. Saturation is defined as the
minimum offered load where the accepted bandwidth is lower than the global packet
creation rate at the source nodes. The behavior above saturation is important because
the network and/or the routing algorithm can become unstable, leading to sharp per-
formance degradation. We usually expect the accepted bandwidth to remain stable
after saturation, both in the presence of bursty applications that require peak per-
formance for a short period of time and applications that operate after saturation in
normal conditions, e.g. when executing a global permutation pattern.

@ Springer

Comparative analysis of Traffic Patterns on k-ary n-tree 577

1.34
1.32

13
1.28
1.26
1.24

1.22 rg -,

1.2 == Minimal
1.18 /
1.16 /
1.14 ‘

61 02 03 04 05 06 07 08 09

== Non-Minimal

Latency {ms)

Load Factor
(a) 4-ary 3-tree, BitComplement Traffic

16

1.55 —t
1.5

1.45

14 i

1.35 »
P // /

1.25 4= Non-Minimal
1.2
1.15

1.1
1.05

Latency (ms)

== Minimal

01 02 03 04 05 06 07 08 05

Load Factor
(b) 4-ary 3-tree, BitTranspose Traffic

Fig. 4 (a—f) Graphical representation of simulation results (scenario-1) of lower Load Factor versus lower
Latency (microseconds) for Non-Minimal and Minimal Adaptive Routing Algorithms for six Traffic Pat-
tern on 4-ary 3-tree using BigNetSim. The simulation results obtained from BigNetSim are tabulated in
Table 2

Definition 4.2.1 Network Latency: The Network Latency is the time taken for mes-
sages to travel from source to destination, is an important measure of the commu-
nication performance. It does not include the source queuing delay. The end-to-end
latency rises to infinity above saturation and is impossible to gain any information

@ Springer

578 Nitin, D.S. Chauhan

1.5

1.45

1.4 -

1.35
z /
£ 13
L:’? 1.25 i
% 1.2 +— Non-Minimal
- 1.15 == Minimal

1.1

1.05

1

01 02 03 04 05 06 07 08 09
Load Factor
(c) 4-ary 3-tree, BitReversal Traffic
ry

0.23

0.22

0.21
g /j-"/
= 0.19
Q
c
e 0.18 =—#—Non-Minimal
(1]
I == Minimal

0.16
0.15 (/
0.14 “

01 02 03 04 05 06 07 08 09

Load Factor
(d) 4-ary 3-tree, Uniform Distribution Traffic

Fig. 4 (Continued)

in this case. For this reason, the Network Latency is often preferred to analyze the
network performance.

Definition 4.2.2 Load Factor: Load Factor is the ratio of the mean arrival rate of
packets and the arrival rate that saturates a link.

@ Springer

Comparative analysis of Traffic Patterns on k-ary n-tree 579

0.22

0.21
0.2 /".’L.

0.19

0.18 ,/

0.17

0.16

0.15

0.14
0.13

== Non-Minimal

Latency (ms)

== Minimal

01 02 03 04 05 06 07 08 09

Load Factor
(e) 4-ary 3-tree, k-shift Traffic

0.24

0.23
0.22 ’ﬁ
0.21

0.2

0.19
0.18 —4—Non-Minimal

Latency {ms)

0.17 == Minimal
0.16
0.15
0.14

01 02 03 04 05 06 07 08 09

Load Factor
(f) 4-ary 3-tree, Ring Traffic

Fig. 4 (Continued)

The experimental results of each Traffic Pattern presented according to the Burton
Normal Form (BNF) [2].

Definition 4.2.3 Burton Normal Form: The BNF uses single-graph plot of both la-
tency and throughput. The prime reason for using BNF is that BNF shows both
throughput and latency, before and after saturation. The X-axis corresponds to
achieve throughput, and the Y-axis corresponds to latency (in microseconds). In ad-

@ Springer

Nitin, D.S. Chauhan

580

1620 1€2T0 620C°0 LIIT0 96¢C0 6LCC0 Lyl LSST €'l Lyl See’l €e'l 60
YLTTO Cleeo 8¢0C0 €11co £1¢T0 19220 €'l (A3 el 19%'1 LIE'1 1eel 80
L0TT0 9S1T0 L861°0 LOTT0 10CT0 yaa 66¢'1 15671 10¥'1 oSyl [Vl elel L0
eviTo LY1T0 1S61°0 6£0C°0 101T°0 €170 9LE'T (43! el 8S1'l 16Tl et 90
€10C°0 L0020 LEBTO 8661°0 1S61°0 €00 9¢¢l 87’1 el IS¥°1 SLT'1 el S0
9961°0 LY61°0 891°0 L681°0 £981°0 6961°0 8¢l wl LST'T oyl LST'1 9LT'1 0
16L1°0 L8810 €651°0 ¥8L1T°0 “LT0 LT81°0 wel LET el 9tr'l YTl 86Tl €0
L891°0 [LLT°O 9er1'0 92910 £891°0 YILT'O evl'l wl €01l 6071 L0T'1 6£C'l 0
S0S1°0 18S1°0 6E1°0 80S1°0 8¥¥1°0 SS10 SOI'l 9’1 850°1 8¢l STl 1Tl I'0

[eUwIuI [ewuIN [eUWIU [eWIUIN [eUWIUA [BUWIUIA

[BUWIUTIA -UON [BWIUTIA -UON [BWIUIA -UON [BWIUTIA -UON [EWIUIA -UON [BWIUTIA -UON

swyLos[y Junnoy swy)Lo3[y Sunnoy swyLos[y Junnoy swy)Los[y Junnoy swyLos[y Junnoy swy)Lo3[y Junnoy
Sury Jys-y uonnquIsI WIoyIun asodsueipig [esIoAaIIg Juawardwog 10008
suINed dyjel], peo

wiISIONSIg Suisn 2a.43-¢ £1p-£ U0 uINed dyjel],
XIS 10} SWLo3[y unnoy dandepy [BWIUIA PUB [BWIUIA-UON J0J (SPUOISOIONU) AOUIJR] JOMO] SNSIOA J0J0B PeoT IoMO[JO ([-OLIeUuads) s)[NSal Uone[nuils g J[qe],

pringer

NS

Comparative analysis of Traffic Patterns on k-ary n-tree 581

dition, it is worth noting that k-ary n-trees are not bisection-bandwidth limited as the
k-ary n-cubes, whose BNF is normalized on the bisection bandwidth and the upper
bound on the throughput for the uniform traffic.

We have used 4-ary 3-tree for our experiment; hence, the tree has 64 (i.e. k" = 64
as k =4 and n = 3) processing nodes and 48 (i.e. nk"1=48 ask =4 and n =3)
switches.

4.2.1 Comparative analysis of simulation results obtained for scenario-1

Refer Table 1 for key parameters used in the experiment, Table 2 show the re-
sults of the simulation scenario-1 while Table 3 shows the results of the simulation
scenario-2.

4.2.1.1 BitComplement Traffic The BNF of the Complement Traffic shows a sur-
prising behavior, at least at first glance. As can be seen in Fig. 4(a), the saturation
point is at about 67% of the capacity for all flow control strategies. The use of more
than a virtual channel (VC) is counterproductive in terms of network latency [10] so
we have fixed the VC and thereafter analyzed the network. The Complement Traf-
fic belongs to a wide class of permutations that map a k-ary n-tree into itself. These
permutations do not generate any congestion on the descending phase and called
congestion-free. Here, we see that for the Minimal Routing Algorithm graph; the
message latency is approximately same for a Non-Minimal. However, in case of low
network load, the network latency for Non-Minimal Routing Algorithm was 30%
more. Thus, for lesser load the Non-Minimal Algorithm gives better performance.

4.2.1.2 BitTranspose Traffic BitTranspose and BitReversal Traffic are considered
as a standard for testing algorithms on INs. Both have similar distribution in terms
of the distance from source to destination. Figure 4(b) that deals with BitTranspose
Traffic, the network latency shown by Non-Minimal Algorithm is again 23% more
than that of the Minimal Algorithm. There is a steep rise in network latency between
the Load Factor 0.4 and 0.5. However, In case of higher Load Factor values, it is
saturated.

4.2.1.3 BitReversal Traffic In Fig. 4(c), we can see a drastic difference between
Minimal and Non-Minimal Routing strategies as when the Load Factor is considered
as 0.1. The Non-Minimal curve is saturated much earlier than the Minimal curve
that shows a steep rise from 0.6 to 0.7. Finally, there is rising in 10% more network
latency, again, in case of Non-Minimal algorithm.

4.2.1.4 Uniform Distribution Traffic In Fig. 4(d), for Uniform Distribution, the
Non-Minimal Algorithm again performs slightly better than Minimal Algorithm
throughout the range of load applied. There is saturation in the network when the
value of applied load is 0.7.

@ Springer

582

Nitin, D.S. Chauhan

1.94
1.92

1.9
1.88
1.86
1.84
1.82

1.8
1.78
1.76

Latency (ms)

2.03
2.01
1.99
1.97
1.95
1.93

Latency (ms)

1.91
1.89
1.87

i

./ == Non-Minimal

== Minimal

{

02040608 1 12141618 2 22242628

Load Factor
(a) 4-ary 3-tree, BitComplement Traffic

/A_,.!...!H

r/+‘ == Non-Minimal

== Minimal

02040608 1 12141618 2 22242628

Load Factor
(b) 4-ary 3-tree, BitTranspose Traffic

Fig.5 Graphical representation of simulation results (scenario-2) of higher Load Factor versus higher La-
tency (microseconds) for Non-Minimal and Minimal Adaptive Routing Algorithms for six Traffic Pattern
on 4-ary 3-tree using BigNetSim. The simulation results obtained from BigNetSim are tabulated in Table 3

4.2.1.5 k-shift Traffic In case of k-shift Traffic, shown by Fig. 4(e), Non-Minimal
curve shows 10% more latency as compared to the Minimal curve. Again, Minimal
curve shows less Latency, and hence better performance throughout the range of load
applied, finally saturating at 0.8 Load Factor.

@ Springer

Comparative analysis of Traffic Patterns on k-ary n-tree

583

2.03
2.01
1.99
1.97
1.95
1.93
191
1.89
1.87
1.85

Latency {ms)

2.11
2.08
2.05
2.02
1.99
1.96
1.93

1.9
1.87
1.84
1.81

Latency {ms)

02040608 1 12141618 2 222426238

Load Factor
(c) 4-ary 3-tree, BitReversal Traffic

i
¢

== Non-Minimal
== Minimal

&

¢ Non-Minimal

J

4

Fig. 5 (Continued)

4.2.1.6 Ring Traffic

0.2040608 1 12141618 2 22242628

Load Factor

(d) 4-ary 3-tree, Uniform Distribution Traffic

== Minimal

The Ring Traffic shows a deviant behavior when compared to

other Traffic Patterns. As shown by Fig. 4(f), for higher load values, i.e., from 0.7
to 1, the Non-Minimal curve shows better performance than Minimal curve that is
contrary to what observed in other patterns. For lower loads, the nature of the curve
is same as in other Traffic Patterns.

@ Springer

584

Nitin, D.S. Chauhan

1.98
1.96
1.94
1.92

1.9
1.88
1.86
1.84
1.82

1.8

Latency {ms)

1.98
1.96
1.94
1.92

1.9
1.88
1.86
1.84
1.82

1.8
1.78
1.76

Latency (ms)

St

?/' \/

02040608 1 12141618 2 222426238

Load Factor
(e) 4-ary 3-tree, k-shift Traffic

/

é

02040608 1 12141618 2 22242628

Load Factor
(f) 4-ary 3-tree, Ring Traffic

Fig. 5 (Continued)

== Non-Minimal
== Minimal

== Non-Minimal
== Minimal

4.2.2 Comparative analysis of simulation results obtained for scenario-2

In scenario-2, attempts have been made to create congestion like conditions by in-
creasing the packet and message size from 256 to 2048 bytes and 200 to 400, respec-
tively. Refer to Table 1 for key parameters used in the experiment.

4.2.2.1 BitComplement Traffic

The BNF of the Complement Traffic shows a sur-

prising behavior, at least at first glance. As can be seen in Fig. 5(a), for initial loads

@ Springer

585

Comparative analysis of Traffic Patterns on k-ary n-tree

67561 wLe'l SIL6'T [Ly6'1 160°C LELOT €€10°C 80L6'1 LLIOC 6600°C 69061 €6'l 87T
LTS6'1 6696°1 €1L6'] °so6’l ¥60°C SrS0C €10C 10L6°1 L900°C Lv00C 6068°1 8LT6'1 9T
YCS6'1 wse'l €1L6] S196°1 L80°C 88¥0°C 110C 66961 1800°C $e00°C L68'T L9761 ¥
8¥v6'1 76’1 €0v6'l €1L6'] 90T e0T ¢l0c 656'1 900C ¥200°C 66061 6116'1 (44
8C6'1 6861 LEEO'] 11L6°1 91¢0C Lve0C L00C r6'l [166°1 1000°C L2061 L06'1 [4
wol6'1 68¢16°'1 96C6°1 0961 8€¢0C 810°C 810C °6¢6°1 1186°1 L6661 LLO6'L cles’l 8’1
1706'1 1016°1 6L06'1 68Y6'1 CLI0T [qx¢ 78661 68¢€16'1 90861 7861 116°1 69881 91
S068°1 6£68'1 268’1 68¢6°1 801¢86'1 $600°C 861 1016’1 6L6'1 60L6'1 6868’1 66L8'1 !
G988°l GSLY'L LTE8'] ¥9¢6°'1 ¥8L6'1 87661 6L96°1 896'1 G956l £656°1 €688l LILY'T [
7898°1 96981 LOL8'T 6£C6'1 L96'1 186'1 SESO'l r6’l 99¢6°1 6LY6'1 1CL8'1 98¥8°1 I
Y8¥8°1 8681 £€998°1 116’1 LESO'T LSS6'T 6LE6°1 LSTO'1 Yeeo'l 18€6°1 op8'1 U 80
(444! 781 PSS8'l G168l CLTO'] LI€6'1 90261 ¥S016'1 veo'l 6€16'1 ¥8E81 €8¢8’1 90
LOI8'T 44 6£8°1 §998°l 68881 YIL8'1 §S06°'1 86681 8061 €106'1 €918l 61181 0
92081 LL'T 80181 YLY8'1 98’1 9¢8’1 60681 LE8Y'T CLLS'T 9881 8GELL'L ST8L'1 0

[BUITUIA [ewtuIN [ewuIN [ewIunN [ewIu [ewumn

[BUWIUTIA -UoN [BUWIUTIA -UoN [BWIUTIA -UON [BWIUTIA -UON [eUIuIN -UON [eWIUIA -UoN

swyILo3[y Junnoy swyILo3[y Junnoy suyLo3[y Sunnoy swyos[y Sunnoy swyIos[y Sunnoy swyILIos[y Sunnoy
Sury JIys-y uonnqLISI(WIoyIuN asodsueig [esIoAIIg wowedwopnd j19e 1
suIaNed Oyjel], peo

WISIONSIG SuIsn 2a.44-¢ £40-£ uo uINed Syjel],
XIS 10} SuIIoS[y unnoy oAndepy [BWIUIA PUB [BWIUIIA-UON J0J (SPU0I9s0IoN) Aoud)e] JoySIy SnsIoA J0)o. pPeo I9Y3IY JO (Z-OLIRUS) SINSAI Uone[NWIS € J[qE],

pringer

A's

586 Nitin, D.S. Chauhan

Minimal Algorithm shows 10% better performance than Non-Minimal. Thereafter,
comparable and difference decreases with the increase in load.

4.2.2.2 BitTranspose Traffic BitTranspose and BitReversal are considered as a
standard for testing algorithms on INs. Both have similar distribution over destina-
tions in terms of the distance from source to destination. In Fig. 5(b) that deals with
BitTranspose Traffic, we observe that Minimal is better than Non-Minimal again,
similar to scenario-1, saturation occurs toward the end i.e. on higher loads, and the
difference decreases.

4.2.2.3 BitReversal Traffic Unlike scenario-1, here in Fig. 5(c), we did not observe
any drastic difference between the Minimal and Non-Minimal Routing Algorithm.
The Minimal Algorithm shows 22% better performance than the Non-Minimal.

4.2.2.4 Uniform Distribution Traffic In Fig. 5(d), for Uniform Distribution, the
Minimal Algorithm again performs slightly better than the Minimal Algorithm
throughout the range of load applied. Minimal algorithm shows 22% better perfor-
mance than the Non-Minimal for higher loads.

4.2.2.5 k-shift Traffic In case of k-shift Traffic, shown by Fig. 5(e), we observe that
the performance of Minimal is better than Non-Minimal throughout. However, it is
interesting to note that there exists a wide gap of 31% between Minimal and Non-
Minimal in case of 1.2 Load Factor.

4.2.2.6 Ring Traffic The Ring Traffic shows expected behavior in scenario-2, i.e.,
when congestion is increased by increasing message and packet size. As shown by
Fig. 5(f), for all load values, the Minimal curve shows better performance than Non-
Minimal curve, the difference increases for post 0.8 value of Load Factor.

5 Conclusion

We have introduced Parametric Family of regular topologies that consists of k-ary
n-trees and analyzed two Adaptive Algorithms, on discussed six Traffic Patterns.

As shown in Figs. 4(a)-4(e) and Table 2 under scenario 1, the Network Latency for
Non-Minimal Routing Algorithm is higher as compared to Minimal Routing Algo-
rithm. Moreover, from these results, we can conclude that the network performance
for k-ary n-tree is much higher in case of the Minimal Algorithm as compared to
the Non-Minimal Algorithm. However, for the Ring Traffic Pattern, on higher loads,
i.e., from 0.7-1.0, there is an increase in latency value for the Minimal Adaptive
Algorithm as compared to the Non-Minimal Adaptive that decreases the Minimal
Algorithms performance over the Non-Minimal.

However, in Figs. 5(a)-5(e) and Table 3 under scenario-2 when congestion is in-
creased by increasing packet and message size while keeping the number of virtual
channels constant, we observe that for all Traffic Patterns, including Ring we get
higher performance for Minimal than Non-Minimal thereby proving the Minimal
adaptive algorithm to be better in every case, even after an increase in congestion.
Congestion-free patterns are a powerful tool to reach optimal performance and guar-
anteed scalability.

@ Springer

Comparative analysis of Traffic Patterns on k-ary n-tree 587

6 Future work

We will analyze the various Traffic Patterns on Fat-Tree topology (having larger band-
width on higher nodes) and to analyze whether it has better efficiency than k-ary
n-tree topology.

Acknowledgements A very special thanks goes to the Jaypee Education System (JES) and Jaypee Uni-
versity of Information Technology (JUIT) for providing excellent Research Environment and Learning
Ambience and Sun Solaris and High-end Parallel Computing Lab at JUIT.

This research work is dedicated to my Shri Shri 1008 Swami Shri Paramhans Dayal Sacchidanand
Maharaja Ji and the loving memories of my departed maternal grandfather, grandmother, and father-in-
law, who continue to guide me in spirit.

References

1. Nitin, Subramanian A (2008) Efficient algorithms to solve dynamic MINs stability problems using
stable matching with complete TIES. J Discrete Algorithms 6(3):353-380
2. Nitin, Garhwal S, Srivastava N (2009) Designing a fault-tolerant fully-chained combining
switches multi-stage interconnection network with disjoint paths. J Supercomput. doi:10.1007/
s11227-009-0336-z
3. Nitin, Chauhan DS, Sehgal VK (2008) Two O (nz) time fault-tolerant parallel algorithm for inter NoC
communication in NiP. Springer, Berlin, ISBN: 978-3-540-79186-7, pp 267-282. Invited
4. Nitin, Vaish R, Shrivastava U, Rana M (2009) Adaptive deterministic routing algorithm for k-ary n-
cube torus network. In: 7th Annual workshop on Charm++ and its applications. Parallel Programming
Lab, University of Illinois, Urbana Champaign
5. Nitin, Sehgal VK, Bansal PK (2007) On MTTF analysis of a fault-tolerant hybrid MINs. WSEAS
Trans Comput Res 2(2):130-138
6. Nitin (2006) Component level reliability analysis of fault-tolerant hybrid MINs. WSEAS Trans Com-
put 5(9):1851-1859
7. Dally WJ, Towels B (2005) Principles and practices of interconnection networks. Morgan Kaufmann,
San Mateo
8. Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at recon-
figurable multi-ring network. J Supercomput 25(1):43-63
9. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-
and-data-decomposition approach. J Parallel Distrib Comput 10(2):188-193
10. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Int J
Eurograph Assoc 8(1):3-12
11. Singh A, Dally WIJ, Gupta AK, Towles B (2004) Adaptive channel queue routing on k-ary n-cubes.
In: Proceedings of the 16th annual ACM symposium on parallelism in algorithms and architectures,
pp 11-19
12. Dally WJ (1990) Network and processor architecture for message-driven computers, VLSI and paral-
lel computers. Morgan Kaufmann, San Mateo, pp 140-222
13. Gomez C, Gilabert F, Gomez ME, Lopez P, Duato J (2007) Deterministic versus adaptive routing in
fat-trees. In: Proceedings of the international parallel and distributed processing symposium, p 297
14. Leighton FT (1992) Introduction to parallel algorithms and architectures: arrays, trees, hypercubes.
Morgan Kaufmann, San Mateo
15. Petrini F, Vanneschi M (1997) k-ary n-trees: high performance networks for massively parallel archi-
tecture. In: Proceedings of the 11th international parallel processing symposium, pp 87-93
16. Gomez C, Gilabert F, Gomez ME, Lopez P, Duato J (2007) An efficient fault-tolerant routing method-
ology for fat tree interconnection networks. In: Proceedings of the 5th international symposium on
parallel and distributed processing and applications, pp 509-522
17. Nguyen TD, Synder L (1994) Performance analysis of a minimal adaptive router. In: Lecture notes in
computer science, vol 853. Springer, Berlin, pp 31-44
18. Bolding K, Fulgham M, Synder L (1997) The case for chaotic adaptive routing. IEEE Trans Comput
46(12):1281-1292

@ Springer

http://dx.doi.org/10.1007/s11227-009-0336-z
http://dx.doi.org/10.1007/s11227-009-0336-z

588 Nitin, D.S. Chauhan

19. Zheng G, Kakulapati G, Kale LV (2004) BigSim: a parallel simulator for performance prediction of
extremely large parallel machines. In: Proceedings of the 18th international parallel and distributed
processing symposium, vol 1, p 78b

20. Wilmarth TL, Zheng G, Bohm EJ, Mehta Y, Choudhury N, Jagadishprasad P, Kale LV (2005) Perfor-
mance prediction using simulation of large-scale interconnection networks in POSE. In: Proceedings
of the 19th workshop on principles of advanced and distributed simulation, pp 109-118

21. Kale LV, Krishnan S (1993) CHARM-++: a portable concurrent object oriented system based on C++.
ACM SIGPLAN Notices 28(10):91-108

22. Choudhury N, Mehta T.L. Wilmarth Y, Bohm EJ, Kale LV (2005) Scaling an optimistic parallel sim-
ulation of large scale interconnection networks. In: Proceedings of the 37th conference on winter
simulation, pp 591-600

@ Springer

	Comparative analysis of Traffic Patterns on k-ary n-tree using adaptive algorithms based on Burton Normal Form
	Abstract
	Introduction and motivation
	Preliminaries and background
	A Fat-Tree
	A k-ary n-tree
	Definition of Traffic Patterns

	Adaptive Routing Algorithms
	Minimal Adaptive Routing Algorithm
	Non-Minimal Adaptive Routing Algorithm

	Evaluation of Traffic Patterns using BigNetSim
	Experimental setup and Testbed
	Key network parameters for simulation scenario-1 and scenario-2

	Key parameters used for analysis of simulation results
	Comparative analysis of simulation results obtained for scenario-1
	BitComplement Traffic
	BitTranspose Traffic
	BitReversal Traffic
	Uniform Distribution Traffic
	k-shift Traffic
	Ring Traffic

	Comparative analysis of simulation results obtained for scenario-2
	BitComplement Traffic
	BitTranspose Traffic
	BitReversal Traffic
	Uniform Distribution Traffic
	k-shift Traffic
	Ring Traffic

	Conclusion
	Future work
	Acknowledgements
	References

