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Abstract A simple soft chemical method has been sug-

gested for large-scale production of zinc oxide (ZnO)

nanosheets at room temperature using two synthesis

mediums: aqueous (H2O) and non-aqueous (C2H5OH). In

H2O medium, nanosheets interwoven group wise in flower-

like structures revealing the strong inter-hydrogen bonding

among initially nucleated ZnO nanocrystals, whereas weak

hydrogen bonding in C2H5OH medium leads to the for-

mation of un-aggregated interwoven’ nanosheets. The

growth of ZnO flower-like and interwoven nanosheets

proceeded via anisotropic oriented attachment of ZnO

nanocrystals. Obtained nanosheets were faceted, possess-

ing large surface area, width hundreds of nanometers, and

thickness in tens of nanometer, as characterized by scan-

ning electron microscopy and transmission electron

microscopy. These nanosheets show high sunlight photo-

catalytic activity toward the degradation of an organic

pollutant ‘methylene blue dye.’ The enhancement in pho-

todegradation efficiencies, interwoven sheets 99.94 %, and

flower-like nanosheets 79.76 % for 120 min of irradiation

is attributed to the surface oxygen vacancies narrowing the

band gap as confirmed by photoluminescence spectra,

faceted geometry, and large surface area of ZnO

nanosheets.

Introduction

Zinc oxide (ZnO) nanostructures show many interesting

physical and chemical properties such as optical, elec-

tronic, catalyst, photocatalysts, etc. [1–9]. In recent years,

especially for industrial wastewater treatment for environ-

mental remediation, the ZnO has attracted great attention

[10] owing to its high quantum efficiency, excellent ther-

mal and chemical stability, non-toxicity, low cost, and high

photocatalytic efficiency for decomposing organic pollu-

tants in water [11–13]. However, the wide bandgap 3.2 eV

(k = 380 nm) of ZnO restricts its use only in UV region,

exhibiting hardly no response to the visible light as about

3–5 % spectrum of visible light falls in UV region limiting

its photocatalytic efficiency. Several efforts have been

made to overcome this disadvantage and to expand visible

light absorption such as by doping with Co, Mn, Ni, N, etc.

element, which narrows the band gap of ZnO, coupling of

ZnO with other oxides like ZnO/SnO2 and ZnO/ZnO2, and

deposition of Fe2O3, WO3, and CdS on ZnO substrate [14].

In addition, concentration of oxygen vacancy defects on the

surface [15–17], shape and size of nanostructures [18],

existence of facets [19–21], and surface area [22, 23] are

also discovered as important factors to enhance the pho-

tocatalytic activity of undoped ZnO.

The oxygen vacancy defects are kind of self-doping

without addition of external impurities, which enhances the

visible photocatalytic activity by narrowing the bandgap [24]

while preserving the intrinsic crystal structure unlike to

impurity doped ZnO. The oxygen vacancies induce visible

spectrum absorption and enhance photocatalytic activity as

reported by Li et al. for TiO2 [24–26]. The surface oxygen

vacancies act as the photoinduced charge trap and adsorption

sites to diminish the probability of recombination of photo-

induced electron–hole pairs [27]. The photocatalytic activity
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is mainly a surface phenomenon; therefore, nanostructures

perform much better than their bulk counterpart. Besides

that, the photocatalytic activity is not only dependent on

surface oxygen vacancies but also influences to the shape of

nanostructures. As reported earlier, the polar surfaces of ZnO

demonstrate greater photocatalytic activity than its non-polar

surfaces [28, 29]. It is demonstrated that due to the surface

positivity of (0001) polar surface, the OH- ion gets adsorbed

preferably on it, which then reacts with hole (h?) and gen-

erates reactive OH radical, thereby enhancing the photocat-

alytic activity. Compared with spherical nanocrystals, the

one-dimensional (1D) nanostructures would have larger

number of h? and e–, determining the photocatalytic reaction

rate, on the faceted surfaces/active sites, which results from

the dimensional anisotropy [19, 20]. Conclusively, utilization

of ZnO structures of large surface area, large number of

oxygen vacancy defects, and faceted surfaces would enhance

photocatalytic activity.

Nanostructures shape with large surface area depends

upon the synthesis methods. Although there are several

approaches to tune the shape and size of ZnO nanostruc-

tures, they are synthesized by hydrolytic method explained

elsewhere [30]. In hydrolytic method, the controlled ZnO

nanostructures are obtained using templates [21, 31–38], or

properly selecting (structure directing) a hydrolyzing agent

[39, 40] or reaction media [41, 42]. A template provides the

shape/size to the nanostructures by confining the reaction

in a restricted space [36]. Similarly, a hydrolyzing agents

act as a soft template, which controls the shape/size of

nanostructures e.g., the room temperature ionic liquids

(RTIL) form different pre-organized solvent structures,

which assist in the anisotropic growth of nanostructures

[38, 43]. In case of reaction media, the reaction media

controls the rate of hydrolysis thereby controlling the

growth process and, hence, the shape/size of nanostructures

[39, 44]. Now, so far the increase in the number of oxygen

vacancies is concern, it is basically related with the dis-

orders at higher temperature. Although converting white

color of ZnO nanostructures to yellow is an enhancement

in oxygen vacancies, however, in most of ZnO nano-

structures except perfect single crystals [45], the oxygen

vacancy defects always exist. There are various studies on

the surface oxygen vacancies of the ZnO nanosheets [46–

51] but it is rarely reported the formation of ZnO nano-

sheets without surfactant, directing agent and templates.

The ZnO nanostructure with large surface area, which

remains stable against aggregation and possess faceted sur-

face to enhance photocatalytic activity, still remains a

challenge. Herein, for the first time, we demonstrate differ-

ent aggregation tendencies of ZnO nanoparticles, which lead

to the formation of faceted ZnO un-aggregated interwoven

nanosheets and group wise interwoven i.e., flower-like

nanosheets in different reaction mediums without utilizing

template or directing agent at room temperature. Although

similar ZnO structures have been already synthesized in

many cases using templates, directing agents and surfactants

[46, 52–54], in this work, we have prepared ZnO nanosheets

without surfactant, directing agent and templates. In whole

of the discussion, we would call un-aggregated interwoven

nanosheets simply as ‘interwoven’ nanosheets’ and group-

wise interwoven i.e., flower-like nanosheets as ‘flower-like’

nanosheets. In this work, the alcoholic (C2H5OH) medium

leads to the formation of ZnO interwoven nanosheets,

whereas flower-like nanosheets were obtained in aqueous

medium. The obtained faceted ZnO interwoven nanosheets

and flower-like nanosheets having large surface area were

used for sunlight photocatalytic purification of organic pol-

lutant ‘methylene blue (MB) dye’ from water. The obtained

significantly high photocatalytic activity is due to the oxy-

gen vacancies, large surface area, and faceted structure of

the as-synthesized ZnO nanosheets.

Experimental

Zinc acetate dihydrate (Zn(CH3COO)2�2H2O) was pur-

chased from Sigma-Aldrich (USA), and potassium

hydroxide (KOH) was purchased from Merck (India). All

the reagents used in this experiment were analytically pure

and used without further purification. In a typical synthesis

process, ZnO nanosheets were synthesized separately in

alcoholic (C2H5OH) and aqueous (deionized H2O) med-

ium, respectively. Two 0.5 mol/L solutions of zinc acetate

dihydrate (Zn(CH3COO)2�2H2O) were formed separately

in C2H5OH and H2O. A 25 mL solution of KOH was then

added dropwise in each of the solutions under vigorous

stirring condition at room temperature. To monitor growth

mechanism (i.e., pattern) of ZnO nanostructures, samples

were collected at 0.25, 1, 2, and 4 h of time intervals from

the reaction mixture. Collected precipitate was filtered and

washed with deionized water and ethanol to remove

undesirable ions such as CH3COO-, and K? was dried at

100 �C for 1 h, which yielded to a ZnO powder in both

synthesis medium cases. The obtained nanopowders were

examined by field emission scanning electron microscopy

(FESEM) for morphological investigation, X-ray Diffrac-

tometer (XRD) and high-resolution transmission electron

microscopy (HRTEM) for crystallographic information,

Fourier transform infra red (FTIR) spectroscopy for func-

tional group analysis, and photoluminescence (PL) for

surface oxygen vacancy defects and Brunauer–Emmett–

Teller (BET) surface area measurement.

The photocatalytic activities were investigated for both

of ZnO nanosheets and synthesized for 4 h reaction time in

C2H5OH and H2O mediums, respectively. The MB dye was

used as degraded material in quartz beakers. A 50 mg of
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each ZnO nanosheets was dispersed separately in 150 mL

aqueous solutions of MB formed with initial concentration

20 mg/L. The mixtures after sonicating for 15 min and

stirred for 15 min were exposed to sunlight. The experi-

ment was performed from 9:00 am to 2:00 pm on a sunny

day (6 % clouds and 34 % humidity) on April 29 and April

30, 2014 in Solan city, India (geographical location: 31.15

degree north latitudes and 77.20 degree east longitude,

environmental temperature: 25 �C). The small aliquots

(5 mL) were drawn from the reaction mixture at fixed

interval, subsequently centrifuged at a rate of 5000 rpm for

10 min, and monitored for the absorbance at a wavelength

of 660 nm. The degradation of MB was monitored using

the UV–Vis spectrophotometer.

Results and discussion

The product synthesized in C2H5OH media for prolonged

‘4 h’ of reaction time was characterized by FESEM, as

shown in Fig. 1a, b. Figure 1a is low-magnification image

showing large-scale synthesis of the product, and Fig. 1b

shows higher magnification FESEM image showing

interwoven nanosheet structure. The obtained nanosheets

are of width about 200 nm and thickness in tens of nano-

meters, and are interwoven to each other as in Fig. 1b. The

crystal structure of these interwoven nanosheets investi-

gated by X-ray diffraction (XRD) is shown in Fig. 1c.

Diffraction peaks at 2h = 32.7�, 34.5�, and 36.42� in XRD

pattern could be assigned the (100), (002), and (101) lattice

planes of ZnO (JCPDS file no. 36–1451). The well-mat-

ched diffraction peaks and calculated lattice constants

a = 3.253 Å and c = 5.211 Å indicate hexagonal crystal

structure of obtained ZnO nanosheets.

Similarly, the product synthesized in H2O media for 4 h

of reaction time was characterized by FESEM that is

shown in Fig. 1d, e. Figure 1d shows large-scale synthesis

of the product, and from Fig. 1e it can be observed that the

nanosheets are interwoven groupwise in the flower-like

structure, so we can call them as flower-like nanosheets.

Fig. 1 FESEM images of ZnO

nanosheets synthesized at room

temperature in ionic mediums

for 4 h of reaction time. a, b are

interwoven nanosheets at

different magnifications

synthesized in H2O medium,

and c is corresponding XRD

pattern. d, e show flower-like

nanosheets synthesized in

C2H5OH medium, and f is

corresponding XRD pattern
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The flower-like nanosheet structure was resulted due to

higher extent of aggregation of initially nucleated ZnO

nanocrystals unlike to the case of interwoven nanosheets.

The size of flower structure is about 2 lm indicating

nanosheet width as 2 lm, also the thickness of nanosheets

in these flower-like structures is about 25 nm as in case of

interwoven nanosheets. In XRD pattern as shown in

Fig. 1f, diffraction peaks at 2h = 32.7�, 34.5�, and 36.42�
could be assigned as the (100), (002), and (101) lattice

planes of ZnO similar to the case of interwoven nanosheets

except that in this case obtained peaks are intense as

compared with interwoven nanosheets. The observed lat-

tice constants (a = 3.256 Å and c = 5.211 Å) indicate the

formation of hexagonal phase structure similar to the

interwoven nanosheets. The obtained higher intensity of

peaks can be expected due to denser geometry of flower-

like nanosheets, which might result in large counts in XRD.

Both interwoven nanosheets and flower-like nanosheets

show some weak orientations as well in XRD pattern at

2h = 47.44� and 56.58�, which corresponds to lattice

planes (102) and (110).

To investigate crystal structure and growth direction of

nanosheets, we analyzed interwoven and flower-like

nanosheets by TEM. Figure 2a shows TEM image of

interwoven nanosheet. The nanosheet has faceted edges as

indicated by arrows in Fig. 2a. In this image, some nano-

crystals (encircled) are also observed attached on the sur-

face of nanosheet. The presence of faceted edges and

nanocrystals in TEM image indicates that the growth of

nanosheet would have proceeded via oriented attachment

[55–57] of nanocrystals at the faceted edges. The nano-

crystals formed in solution would have attached orientedly

to create a new faceted surface, and the process of oriented

attachment continues until the precursor inside the solution

is consumed completely. In HRTEM image of interwoven

nanosheet, the lattice spacing 0.26 nm as shown in Fig. 2b

corresponds to the growth direction (002) of wurtzite

structure of ZnO. Similarly, the TEM image (Fig. 2c) of

flower-like nanosheets also shows faceted edges indicating

the growth process via oriented attachment of nanocrystals.

Also, the similar lattice spacing 0.26 nm (Fig. 2d) as that

of interwoven nanosheets corresponds to the growth

direction (002) of wurtzite structure of ZnO. Therefore,

both the ZnO nanostructures interwoven nanosheets and

flower-like nanosheets have faceted edges and are grown

via oriented attachment of nanocrystals along 002

Fig. 2 TEM images of ZnO interwoven and flower-like nanosheets

a show the interwoven nanosheets with facet edges indicated by

arrows, and nanoparticles on the surface of nanosheet enclosed by

circles, b high-resolution TEM image, c the flower-like nanosheets

with facet edges as encircled, and d high-resolution TEM image of

flower-like nanosheet
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directions. The TEM observations show that both inter-

woven and flower-like nanosheets are faceted, and for both

ZnO nanosheets, the XRD and TEM parameters are similar

except that flower-like nanosheets result from higher

aggregation tendency of ZnO nuclei in aqueous medium.

Investigation of different aggregation tendencies

of ZnO nanocrystals in H2O and C2H5OH mediums

We tried to investigate the reason behind the different

aggregation tendencies of initially nucleated ZnO nano-

crystals in H2O and C2H5OH medium, which leads to the

formation of interwoven nanosheets and flower-like nano-

sheets with the reaction time. We presumed that difference

in the aggregation tendencies is attributed to the extent of

hydrogen bonding. After formation of ZnO nanocrystals,

the residual OH- and CH3COO- ions remain adsorbed on

the surface of ZnO nuclei as shown by schematic in

Fig. 3a. The CH3COO- ions adsorbed on ZnO nuclei help

not only in hydrogen bonding but also in stabilizing such

bonding (Fig. 3c) in free form in crystal. A strong hydro-

gen bonding network exists between the adjacent ZnO

nuclei (Fig. 3b) in case of H2O medium due to extremely

high polarity of water.

However, in C2H5OH medium, such a hydrogen bond-

ing is relatively weak due to interference of bulky ethyl

groups and lower polarity of ethanol. Therefore, the

aqueous medium is more favorable for the aggregation of

nanocrystals than alcoholic medium. To confirm the

assumption, the ZnO nanostructure samples were investi-

gated by FTIR. The FTIR spectra contain broad peaks in

both the cases (Fig. 4a, b) at around 3392 and 1635 cm-1,

which are assigned to the stretching and bending modes,

respectively, of hydroxyl groups (chemisorbed and/or

physisorbed H2O molecules) on the surface of ZnO nano-

crystals. A band at 1403 cm-1 related to the symmetrical/

asymmetrical stretching modes of the carboxylate group of

acetate coordinated to the surface of ZnO nanocrystals can

be observed. Also, a high-intensity broad band around

884 cm-1 due to the typical bending mode of hydroxyl

group is observed in the spectra of these structures as

shown in Fig. 4a, b. Other unsigned peaks are attributed to

remnant organic species in the samples. The observed

growth direction (002) in TEM characterization for both

the ZnO nanostructures i.e., flower-like and interwoven

nanosheets indicates that the mediums affect only aggre-

gation tendencies of initially formed nanocrystals and not

the direction of growth of nanosheets.

In view of the possibility of occurrence of symmetry

distortion in the –OH stretching band due to existence of

hydrogen bonding, this distortion (i.e. D�) among corre-

sponding peaks was compared using a reported method

[58] and calculated. The difference in the –OH stretching

peak symmetry (between 2750 and 3750 cm-1) can be

clearly seen in the spectra Fig. 4c, d. First, a vertical line

starting from the bottom of the peak was constructed par-

allel to y-axis. Similar straight lines were also drawn par-

allel to x-axis at various percent transmittances (%T). Then

on each line, the distance from the vertical one to the right

and left was measured. By taking the difference between

two measurements (� left–� right), D� was calculated as

D1=2 ¼ oaþ obþ ocþ odð Þ=4;

where oa ¼ a1� a2, ob ¼ b1� b2, oc ¼ c1� c2,

od ¼ d1� d2:

Although the difference is very small, the symmetry

distortion is found to be higher in case of nanocrystals from

H2O medium revealing the strong inter-hydrogen bonding

among these ZnO nanocrystals as compared to the ZnO

nanocrystals obtained from C2H5OH medium (Fig. 4c, d).

The possible distortion of –OH band can be influenced by

many factors among others amount of OAc anions on the

surface or different morphology. But in present work, –OH

band distortion due to the OAc anions amount on the

surface could be ruled out as the ZnAc2 concentration is

Fig. 3 Aggregation mechanism of ZnO nanocrystal a hydroxyl and

acetate ion adsorbed on ZnO, b strong hydrogen bonding network in

water solvent, and c weak hydrogen bonding network in alcohol

solvent condition
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same in both the medium. As far as the different mor-

phology is concerned, there is no report having evidence of

IR band symmetry dependence on the morphology so far.

Stretching peak symmetry distortion is an exclusive phe-

nomenon of hydrogen bonding.

Confirming different aggregation tendencies of ZnO

nuclei in the respective mediums, the mechanism of

nanosheets growth is an interesting step to discuss. To

propose a formation mechanism of ZnO interwoven

nanosheets and flower-like nanosheets, we monitored the

product at different time intervals i.e., 0.25, 1, 2, and 4 h.

All the collected samples were filtered, washed with

deionized water, dried at 100 �C for 1 h, and subjected to

FESEM investigation. Figure 5 shows FESEM image of

ZnO nanostructures synthesized in C2H5OH and H2O

mediums at successive stages of reaction. In the beginning

when the reaction proceeded for 0.25 h, nanocrystals of

size about 25 nm were formed as shown in Fig. 5a–c,

however, with different aggregation tendencies. The

nanocrystals formed in H2O medium are more aggregated

as compared with that formed in C2H5OH medium. The

different aggregation tendencies of nanocrystals in

C2H5OH and H2O mediums appear clearly in successive

stages of the growth as shown in Fig. 5. Figure 5d shows

that scattered nanosheet-like structures with some nano-

particles start to appear for 1 h of reaction time in C2H5OH

medium, whereas in case of H2O medium for same reaction

time, aggregated nanosheets along with few nanocrystals

are formed as shown in Fig. 5e, f. For 2 h of reaction time,

the nanosheets formed in C2H5OH medium are interwoven

as shown in Fig. 5g, and the aggregated nanosheets formed

in H2O medium appears in flower-like structure as shown in

Fig. 5h, i. In Fig. 5i, clear faceted edges of nanosheets

along with some attached nanocrystals can be seen, sug-

gesting the oriented attachment process of growth. When

the reaction was preceded for 4 h of reaction time, in SEM

(Fig. 5j–l) images of ZnO nanostructures, no nanocrystal is

observed, which again indicates that the nanosheets grow at

the expanse of the nanocrystals.

In nut shell, the whole process of formation of ZnO

nanostructures i.e., interwoven nanosheets and flower-like

nanosheets may be described to proceed via the nucleation

of ZnO nanocrystals, their different aggregation in

respective mediums and then subsequent directional

growth to form nanosheet structures. The nucleation takes

place in a condition when the concentration of precursors

(i.e., nanocrystals or monomers) exceeds the critical super

saturation level. In such a condition, smaller nanocrystals

Fig. 4 FTIR spectra of a interwoven nanosheets and b flower-like nanosheets show IR absorption frequencies of organic functional groups and

their respective spectra c and d for determining symmetry distortion between 2750 and 3750 cm-1
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grow rapidly until their concentration falls below the crit-

ical level for nucleation [59]. To understand the nucleation

process, the chemical reaction must be understood. Ini-

tially, the Zn2? from ZnAc2 and OH– ions from the med-

ium (H2O or C2H5OH) coordinate with each other to form

an aggregate of the type [Znx(OH)y]
(2x-y)? [60], which

after dehydration forms a small ZnO nanocrystal. These

nanocrystals that are oriented randomly in the beginning

start aggregating with different tendencies depending upon

the medium (H2O or C2H5OH). Such a tendency of initially

formed ZnO nanocrystals is higher in aqueous medium

than that in alcoholic medium (Fig. 5b). After aggregation

of nanocrystals, the anisotropic growth, leading to the

formation of interwoven nanosheets and flower-like nano-

sheets, may occur either by (i) collision (due to random

Brownian motion) [61] and fusion between the particles,

known as oriented attachment [62] of nanocrystals or by

(ii) exchange (dissolution and diffusion) of molecules

between various particles, known as Ostwald ripening [63].

Since a hexagonal ZnO nanocrystal has two polar planes

(±002) and six non-polar planes [64], the polar planes

having relatively higher surface energy can promote the

anisotropic growth in the ±001 directions. The polar ZnO

nanocrystals show oriented attachment to minimize the

overall system energy by rotating/piling up and then fusing

with the attached nanocrystals [65]. Therefore, in the ori-

ented attachment process, initially the randomly oriented

ZnO nanocrystals aggregate, as indicated by encircles in

Fig. 2a, and then with the passage of reaction time they

might have rotated to ensure their orientations parallel to

(±002) direction as indicated by arrows in Fig. 2a. Further,

as the observed nanosheets are smooth (Fig. 5j–l), the

Fig. 5 Evolution of the ZnO nanostructures with the increase of reaction times: a–c are for 0.25 h, d–f are for 1 h, g–i are for 2 h, and j–l are for

4 h reaction time
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bottle neck between the adjacent nanocrystals may later

when the precursor concentration is lowered, have filled up

by the Ostwald ripening process and thus smoothening the

surface of nanosheets [33]. In the other consideration, the

anisotropic nanostructures may be supposed to be grown

via directional Ostwald ripening process. In this process,

similar to the above mechanism, initially, the randomly

oriented ZnO nanocrystals aggregate, and then with the

passage of reaction time smaller, nanocrystals dissolve into

the solution and attach on the polar surfaces of larger

nanocrystals in the aggregate, leading to the formation of

oriented nanosheets in the aggregate. We know that when

the precursor concentration falls below the nucleation

concentration the nucleation stops. According to Ostwald

ripening process [66, 67], the large nanocrystals grow at

the cost of smaller nanocrystals. The growth of large

nanocrystals proceeds by the capturing of Zn? ion formed

from the dissolution of smaller nanocrystals and brought

near to the surface of larger nanocrystals by the process of

diffusion. These surface Zn? ions are terminated by OH-

ions available inside the solution. Thus, the growth con-

tinues further by capturing Zn? ions, OH- ions followed

by dehydration [59]. Owing to the higher surface energy of

polar surfaces of ZnO nanocrystals, the ions Zn? and OH-

adsorb favorably on the polar surfaces. Such a process is

repeated over the time leading to the directional (±002)

growth of nanosheets. Although both of the growth

mechanisms can be suggested for the obtained ZnO

nanostructures, from TEM observations, the oriented

attachment of nanocrystals followed by Ostwald ripening

process smoothening the surface is more plausible.

Photocatalytic performance of ZnO interwoven

nanosheets and flower-like nanosheets: organic

pollutant removal

The photocatalytic activity of interwoven and flower-like

nanosheets as catalyst for the degradation of MB was

investigated under sunlight irradiation. The degradation of

MB by both of the ZnO nanostructures was carried out in

the similar conditions. For this purpose, 0.34 g/L of ZnO

nanosheets was added into 6.25 9 10-5 M of MB solu-

tions. The change in optical absorption spectra with the

degradation of MB dye by interwoven and flower-like

nanosheets for different time intervals under sunlight irra-

diation is shown in Fig. 6. The observed decrease in the

absorption band intensities of MB indicates that MB gets

degraded by both ZnO nanostructures. In case of interwo-

ven nanosheets, the disappearance of the characteristic

band of MB dye at 660 nm after 2 h of sunlight irradiation

(Fig. 6a) indicates that MB has been degraded completely

by interwoven nanosheets. For the similar conditions in

case of flower-like nanosheets, there exists the character-

istic peak of the MB dyes solution indicating the presence

of MB molecules in the solution as shown in Fig. 6b. The

progress of photodegradation of MB dye by both ZnO

nanostructures under sunlight irradiation can simply be

realized by the color change of solution as shown in the

inset of Fig. 6.

Figure 7 shows the relative concentration C=C0 of MB

dye with irradiation time, where C0 is MB dye’s initial

concentration after the equilibrium adsorption of ZnO

nanosheets and C is concentration of MB at time t. Figure 7

shows that under sunlight irradiation, the self-degradation of

MB without introducing ZnO nanosheets is negligible,

whereas its concentration decreases rapidly in the presence

of ZnO nanosheets. The photocatalytic efficiency was cal-

culated using the expression g = ð1� C=C0Þ � 100, where

C0 is the concentration of MB before illumination and C is

the concentration after irradiation time. Figure 7 shows the

photocatalytic efficiency, and the MB dye is removed

around 100 % while using interwoven nanosheets, whereas

the flower-like nanosheets remove around 80 % when irra-

diated for 120 min in sunlight.

Figure 8 shows the plots between lnðC0=CÞ and irradi-

ation time. A linear relationship between lnðC0=CÞ and

Fig. 6 Time-dependant

absorption spectra of MB dye

solution under sunlight

irradiation with catalyst a ZnO

interwoven nanosheets and

b ZnO flower-like nanosheets
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irradiation time indicates that the photodegradation of MB

dye, by interwoven and flower-like ZnO nanostructures,

proceeds via a pseudo-first-order kinetic reaction i.e.,

lnðC0=CÞ ¼ kt, where k is the photodegradation rate con-

stant. The corresponding parameters of degradation and

pseudo-first-order model for ZnO nanostructures are sum-

marized in Table 1.

We also investigated the degradation in photocatalytic

performance of ZnO nanosheets. For this reason, ZnO

interwoven and flower-like nanosheets were used for three

photocatalytic cycles. In each cyclic run, the photocatalytic

experiment was performed as mentioned earlier using the

concentration 0.34 g/L of ZnO nanostructures and

6.25 9 10-5 M of MB dye. The degradation of MB dye was

investigated by UV–Vis spectrophotometer. After each run,

the ZnO nanosheets were separated from the solution by

centrifugation, which was reused after drying at 100 �C.

Figure 9 shows the degradation of MB dye under sunlight

irradiation for three cycles. From Fig. 9, it is observed that

after three catalytic cycles, there appeared a very negligible

degradation in the photocatalytic performance of both types

of ZnO nanosheets.

Photocatalytic mechanism

Since photocatalytic activity is a surface phenomenon,

therefore, a nanoscale ZnO material is believed to perform

much better than its bulk counterpart [68]. The basic

mechanism of photocatalysis of ZnO is well established

[55, 69–71]. Initially, when the solution was kept in dark

for 30 min, the adsorption–desorption of MB on the sur-

face of ZnO nanosheets occurred. As a photocatalytic

phenomenon, when the solution was irradiated with sun-

light, electron–hole pairs would have generated in ZnO

nanosheets. However, as the band gap of ZnO is 3.3 eV,

only UV light can excite the ZnO nanosheets to generate

electron–hole pairs. The created holes initiate reaction

either with electron-rich surface hydroxyl groups or adsorb

water molecules to yield hydroxyl OH2. On the other hand,

the electrons react with the dissolved oxygen molecules to

produce superoxide radical anions O2
2. Thereafter, the

superoxide radical anions O2
2 could yield hydroperoxyl

radicals HO2 and OH by the subsequent hydration pro-

cesses. These resultant radicals (OH and O2
2) are respon-

sible for decomposition or mineralization of MB [72]. But

as there is only 3–5 % of UV photons present in the sun-

light, it should show poor photocatalytic efficiency [73];

therefore, we might consider other factors such as self-

photosensitization of MB, ZnO surface oxygen vacancies,

and the presence of facets on ZnO nanosheets, which

enhance photocatalytic activity of ZnO.

The MB itself helps in enhancing the photocatalytic

activity because it acts as a self-photosensitizer under

sunlight irradiation [74]. It absorbs visible light and

transfers the absorbed energy to other molecules [75–77].

The transfer of energy may occur via two different pro-

cesses: electrons transfer process, forming exciplex; and

the energy transfer process, exciting the molecule to higher

energy state. In the energy transfer process, when MB is

exposed to both oxygen (O2) and sunlight, the excited state

MB transfers energy to ground state O2 (triplet) and con-

verts it into the excited state O2 (singlet) for photo-oxy-

genation [76]. The transfer process of electron from the dye

to semiconductor, especially for ZnO, has also been

reported previously as well [73]. But in our case, in the

absence of photocatalyst (Fig. 7a), a negligible amount of

Fig. 7 Plot represents photocatalytic activity of interwoven nano-

sheets and flower-like nanosheets as catalysts under sunlight

irradiation

Fig. 8 Plots for photocatalytic kinetics analysis for the degradation

of MB with both type of ZnO nanosheets (initial concentration of

MB = 10-5 M)
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MB was degraded through 120 min of irradiation under

sunlight. It indicates that the self-photosensitization pro-

cess of MB can be neglected in our case.

Besides UV photon excitation of ZnO and self-sensiti-

zation of MB, the oxygen vacancies on the surface of ZnO

nanostructures play very important role for enhancing the

photocatalytic activity of ZnO. The oxygen vacancies not

only form the active centers or trap centers for photoin-

duced charge [17, 78, 79] but also they narrow the band

gap of ZnO. The narrowing of the energy band gap is

induced by the surface oxygen vacancies by the broadening

of valance band, which results for the generation of visible-

light photoactivity in ZnO and, hence, the increase of the

photocatalytic activity under sunlight irradiation. In our

case, surface oxygen vacancies are considered as one of the

factor enhancing the photocatalytic activities of both

interwoven and flower-like nanosheets. We used PL mea-

surements to confirm the existence and properties of sur-

face oxygen vacancies in ZnO interwoven and flower-like

nanosheets trusting that PL is a direct method to observe

various behaviors of defects such as oxygen vacancies and

zinc interstitials [17, 80].

The PL spectra of ZnO interwoven and flower-like

nanosheets investigated at wavelength 340 nm excitation are

shown in Fig. 10. Both PL spectra were fitted with a five

Gaussian functions at the center wavelengths of 390 nm

(UV), 420 nm (violet), 466 nm (blue), 485 nm (blue–green),

and 520 nm (green), which reproduces the PL spectrum

more reasonably. The UV emission around 390 nm

(3.17 eV) corresponds to near-band-edge (NBE) emission

[81]. The band edge emission is mainly due to radiative

recombination of excitons. The emission at 420 nm

(2.95 eV) is attributed to the transition between shallow

donors (oxygen vacancy) to the valence band VB [28–30].

The peak at 465 nm (2.66 eV) is related to zinc vacancy and

interstitial defects [82]. The emission at 485 nm (2.55 eV)

wavelength was assigned to recombination between the

oxygen vacancy and interstitial oxygen, and lattice defects

related to oxygen and zinc vacancies [83, 84]. A broad peak

around 520 nm (2.38 eV) is due to radiative recombination

of a photogenerated hole with an electron occupying the

oxygen vacancy, which is attributed to the single ionized

oxygen vacancy [85]. These transitions confirm the exis-

tence of the oxygen and zinc vacancies in both the inter-

woven and flower-like nanosheets. Therefore, the enhanced

photocatalytic activity may be attributed to the presence of

both UV and visible emission in both of the ZnO nano-

structures as indicated in PL spectra.

The absorption of UV and visible spectrum from sun-

light by ZnO nanosheets would excited to create electron–

hole pairs [72], which react further according to the fol-

lowing reactions Eqs. (1)–(8):

ZnOþ hm! hþ þ e� ð1Þ

hþ þ H2O! OH� þ Hþ ð2Þ

hþ þ OH� ! OH� ð3Þ
e� þ O2 ! O��2 ð4Þ
O��2 þ H2O! HO�2 þ OH� ð5Þ

HO�2 þ H2O! H2O2 þ OH� ð6Þ

H2O2 ! 2OH� ð7Þ

MBþ OH�

MBþ O��2

�
! CO2 þ H2O

+ Degraded products
ð8Þ

The schematic of photocatalytic mechanism, occurring

in dye-photocatalyst solution under the sunlight irradiation,

is shown in Fig. 11.

As compared with previous studies, a significant

enhancement in photodegradation efficiencies, interwoven

sheets 99.94 %, and flower-like nanosheets 79.76 %, while

irradiated for 120 min, cannot be attributed only to the

Table 1 ZnO as photocatalysts

follow the pseudo-first-order

kinetics (initial concentration of

MB was 10-5 M)

Nanostructure % Degradation

(in 120 min)

k (min-1) Correlation

coefficient (R2)

SE

Interwoven nanosheets 99.94 0.0494 0.98506 0.0023

Flower-like nanosheets 79.76 0.0127 0.98266 6.38904e-4

Fig. 9 Effect of number of runs on the degradation of MB dye in the

presence of ZnO nanosheets as catalyst under sunlight irradiation

(catalyst concentration: 0.34 g/L; initial concentration of dye:

6.25 9 10-5 M)
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surface oxygen vacancies but also the faceted geometry

and large surface area of ZnO nanosheets. As observed

from the SEM and TEM characterizations, the nanosheet

structures have more surface defects generated. As reported

earlier [86, 87], in our case too, the nanosheets with unique

surface orientation exhibit high density of atomic steps and

ledges, which serve as active sites for breaking chemical

bonds, enhancing the photocatalytic activity. The observed

difference between the degradation efficiencies of inter-

woven and flower-like nanosheets indicates that the mor-

phology of ZnO influences the production of OH and O2
2.

So far the surface area effect is considered; the samples

were characterized using BET measurement. Here, the

interwoven nanosheets show higher surface area

(11.765 m2/g) as compared with flower-like nanosheets

(10.247 m2/g). The difference in the surface area of

nanosheets would effect the production of free radicals

responsible for photocatalytic activity. Further, in case of

flower-like structure, the nanosheets being in aggregated

form perform less efficiently as compared to interwoven

nanosheets. When interwoven nanosheets are used as

photocatalyst in the solution, each of the nanosheet get

dispersed availing its whole surfaces for photocatalytic

reaction and, hence, a higher photocatalytic efficiency. The

flower-like nanosheets due to aggregation tendencies do not

completely expose their surface for sunlight irradiation,

resulting in less production of OH� and O2
2 radicals. Con-

clusively, in our case, the photocatalytic activity is clearly

dependent on the morphology, oxygen vacancies, and

textures of ZnO nanostructures formed [87–89].

Conclusions

A facile, cost-effective, and room temperature solution route

is developed to fabricate the large-scale surfactant free

Fig. 10 PL spectra of ZnO

nanosheets, grown in a ethanol,

and b water mediums,

respectively. The black solid

curves are the experimental

data, and the green curves are

individual peaks from the

fittings. Spectra are recorded at

340 nm excitation wavelength

Fig. 11 Schematic representation of photocatalytic mechanism for the degradation of MB dyes in the presence of ZnO nanosheets under sunlight

irradiation
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interwoven and flower-like nanosheets of ZnO. The exis-

tence of hydorgen bonding among ZnO nanocrystals is less

prominent when the C2H5OH medium is used due to the

presence of ethyl group and, hence, lesser aggregation of

ZnO nanocrystals, which results in the formation of inter-

woven nanosheets with the passage of reaction. The presence

of surface oxygen vacancies, faceted structure, and large

surface area resulted in enhanced photocatalytic efficiency

of both ZnO nanostructures. The flower-like nanosheets due

to aggregation tendencies do not completely expose their

surfaces when irradiated in sunlight irradiation, resulting in

less production of OH and O2
2 radicals and, hence, a lower

degradation efficiency of MB dye.
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