
I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

Published Online December 2012 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2013.01.01 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

Energy-Sustainable Framework and Performance 

Analysis of Power Scheme for Operating Systems: 

A Tool 
 

P. K. Gupta 

Department of Computer Science and Engineering & IT, Jaypee University of Information Technology, Waknaghat, 

Solan-173 234, India 

Email: pradeep1976@yahoo.com 

 

G. Singh 

Department of Electronics and Communicat ion Engineering, Jaypee University of Informat ion Technology, Waknaghat, 

Solan-173 234, India 

Email: ghanshyam.singh@juit.ac.in 

 

Abstract— Recently, an Information and 

Communicat ions Technology (ICT) devices has become 

more user-friendly, which raised the problem of power 

dissipation across the globe and computer systems are 

one among them. This emerg ing issue of power 

dissipation has imposed a very significant issue on the 

system and software design. The concept of ‗green 

computing‘ gaining popularity and is being considered 

as one of the most promising technology by the 

designers of Information  Technology (IT) industry, 

which demonstrate the environmentally responsible way 

to reduce the power consumption and maximize the 

energy efficiency. In this paper, we have proposed an 

energy sustainable framework of the power schemes for 

operating systems to reduce the power consumption by 

computer systems and presented a Green Power tool 

(GP tool). Th is tool is designed using JAVA technology, 

which requires least configuration to make a decision 

for reducing the power consumption and proposed Swift 

mode algorithm, allows users to input the working time 

of their choice then after the end of time algorithm 

starts detection of human activity on the computer 

system. We also compared the Swift mode algorithm 

with existing power scheme in the operating system that 

provides up to 66% of the power saving. Finally, we 

have profiled the proposed framework to analyze the 

memory and Central Processing Unit (CPU) 

performance, which demonstrated that there is no 

memory leakage or CPU degradation problem and 

framework‘s behavior remain constant under various 

overhead scenarios of the memory as well as CPU. The 

proposed framework requires 3–7 MB memory space 

during its execution. 

 

Index Terms— Energy Efficiency, Exhaustive Mode, 

Green Computing, Hibernate, Shutdown, Swift Mode 

 

I. Introduction 

With the exp losive growth of Information 

Technology (IT), Information and Communications 

Technology (ICT) devices and its computer systems 

software can be considered as a high performance 

computing devices. If the system operator leaves these 

computer systems running without any work then the 

systems will not only consume the energy but also 

produce enough amount of heat. This is not good for the 

environment as energy consumption puts a lot of 

pressure to generate more energy production and 

produced heat is responsible for the greenhouse gas 

effect, which have various adverse effects on the human 

body [1]. According to the prediction from the United 

States Department of Energy,  the energy use by the 

computer systems in commercial sector is expected to 

grow by 2.9% per annum on an average between 1998 

and 2020 [2]. The green computing also known as 

sustainable computing [3] and focus on two important 

areas such as energy-efficient computing and power 

management [4]. Green computing also represents an 

intelligent and environment friendly way that 

transforms the existing engineering and various other 

disciplines to implement this concept into its processes, 

products and systems while considering the effects on 

environment as well as on human.  

In 1998, Microsoft, Intel and Toshiba developed the 

Advanced Configuration and Power Interface (ACPI), 

which shifted towards the major control of power 

management from basic input/output system (BIOS) to 

the more user-friendly environment known as operating 

systems [5]. Th is power management features in the 

operating systems are known as power schemes and 

used to minimize the power consumption by computer 

systems. In ACPI interface the operating system checks 

for the application  software act ivity. In case of no any 

activity is detected the operating system sends a 

message to the BIOS and then it starts a timer. Once the 



2 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

time-out occurs, it starts the power management by 

sending a message to that device and changes its state 

from active to id le, or sleep depending upon the 

configuration [6].   

Though ACPI is the industry wide accepted interface 

but it has some major drawbacks. The t ime-out 

approach is one of them that finds the idle period of 

software and machine components like Central 

Processing Unit (CPU), Hard disk drive and other 

peripheral devices. If one considers the case of 

Windows Operating System, then these power-saving 

schemes exist from past two decades in it. However, the 

sales of computers and other ICT devices have 

increased tremendously during this period and 

Windows Operating Systems still occupies largest (90%) 

market share [7], but there is no change in ACPI 

interface, or in Windows power schemes. In most cases 

difficult ies in properly configuring the power scheme is 

found and only 25% of the co mputer systems achieve 

the energy savings [8]. Therefore, there is a significant 

need of energy sustainable computing for the operating 

systems, which change the design of power schemes of 

operating systems to make it  more interactive and 

environment-friendly. 

In this paper, we have proposed an energy sustainable 

framework of power schemes for W indows Operating 

Systems because it is one of the preferred operating 

system by the users. This framework is totally different 

from the existing framework as it is very much human 

centric and continuously checks for CPU of computer 

system and target the human activ ity on the machine [9] 

in comparison to the interface of existing power scheme. 

The remainder of the paper is organized into various 

sections. Section II focuses on the detailed literature 

survey which consists of various techniques like 

dynamic voltage and frequency scaling (DVFS), CPU 

frequency and its utilization, memory optimization 

techniques and various designed tools. Section III 

focuses on proposed framework of power scheme which 

is very much human centric and claims more energy 

savings in comparison to the existing power scheme. 

Here, we have shown the internal view of the 

framework that includes the details of each package 

with their dependency diagram. Section IV implements 

the algorithm for Swift  mode used by proposed 

framework and further for its performance evaluation. 

Section V represents the detailed comparison of both 

the modes of proposed framework with the existing 

power schemes. Section VI represents the detailed 

performance evaluation of the proposed framework and 

focuses on the CPU performance, memory performance 

and thread monitoring. Finally, the section VI concludes 

this work and recommends future directions . 

 

II. Related Work 

Recently, Li and Zhou [9] have discussed the various 

potential issues related to the green computing and 

emphasized the need of energy efficiency and energy-

awareness. They have stated by having the proper 

awareness about the energy-awareness, a computer 

system can tune the power consumption of various 

devices to reduce the overall energy consumption and 

categorize the energy awareness approaches into two 

groups. Firstly, energy-awareness is the entire 

responsibility of indiv idual application and secondly, by 

considering the entire responsibility  of a computer 

system as a whole. In this second category, the authors 

have discussed about the time out approach by 

considering the inactiv ity period of various system 

components like CPU, Random Access Memory 

(RAM), etc. may be turned-off or the entire system may 

be hibernated. However, they have realized that this 

kind  of applications could sacrifice performance and 

functionality of computer system. Gupta and Singh [11] 

have presented the detailed survey on minimizing the 

power consumption by computer systems and discussed 

various key areas where energy-awareness policy could 

be implemented. However, they have also presented 

various case scenarios based on operating system‘s 

power scheme settings and found that these power 

schemes are not sufficient to minimize the power 

consumption and focused on the need of developing 

some intelligent algorithms for reducing the energy 

consumption. Gupta and Singh [12] focused on the 

adverse effect of heat dissipation on environment and 

human health by the computer system and realized the 

need to min imize this heat dissipation by minimizing 

the unwanted processing of computer systems. Here, the 

authors have calculated the power consumption of each 

running processes on the machine and proposed a 

algorithm for the state when all the processes becomes 

idle and there is no power consumption to switch off the 

computer system. Chen et al. [13] have investigated the 

adverse effects of DVFS and running a virtual machine 

on system performance using methods used for energy 

conservation in server consolidation. They proposed a 

new application-aware approach by introducing a new 

set of metrics: CPU grad ients that predict the impact of 

changes in CPU frequency. These gradients are simple 

models and represent the local-point derivatives of the 

end-to-end response time to the resource parameters. 

They used these CPU gradients for performance-aware 

energy conservation by deploying energy controllers. 

Chen et al. [14] have also focused on the problem of 

power dissipation by computer systems and observed 

this as a major problem for the modern computer 

systems.  In their experiments , they have measured the 

idle and busy states of various components like CPU, 

Memory, and disk. for their power dissipation using 

various benchmarks and find out that cache memory of 

the computer system provides the more accurate results 

compared to CPU, etc., and expressed that there should 

be some easy-to-use indicator that could more 

accurately reflect the CPU power. Zhong et al. [15] 

proposed an energy consumption model based on CPU 

utilizat ion. This model utilized system-level 

informat ion in  the form of average CPU utilization 



 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool  3 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

model and transistor-level in formation in the form of 

calculating the energy consumed by a single t ransistor. 

Minartz et al. [16] evaluated the power-saving 

mechanis m in high-performance computing. They have 

designed a power-aware cluster that includes the 

hardware‘s from d ifferent manufacturers. They  have 

measured the P-states and C-states for the set of 

processors of Intel and AMD and power consumption 

of Hard disk drives in d ifferent modes. Sp iliopoulos et 

al. [17] created a framework to optimize the power 

efficiency of real system and implemented Linux DVFS 

governors based on their analytical DVFS models. They 

have considered the activity of CPU when it is not 

lightly loaded and executes program. For memory-

bound cases, they have achieved 55% of power 

efficiency. Ye et al. [18] stated that as the size of main 

memory is growing over the period of time so the 

energy consumption by them and proposed a dynamic 

approach to reduce the memory energy consumption. 

This approach clearly provides the energy optimization 

for memory  by using various mechanisms like energy-

aware memory allocation and static-power state 

management. In their results, they observed that 

proposed mechanism provides the best performance and 

energy savings. Duan et al. [19] evaluated several 

energy management mechanisms for main memory 

proposed for desktops and servers. They have 

considered the RAM optimizat ion technique for s mart-

phone hardware and proposed a hybrid mechanism by 

applying optimization techniques to the newly emerging 

phase change memory with their energy efficiency and 

performance. In their results, they achieved more than 

98% of energy saving as compared to the standard 

smart phone. Wang and Wang [20] have presented and 

analyzed the data on the electricity consumptions in the 

IT industry and by the household computers in five 

major Chinese cit ies up to five consecutive years from 

2005 to 2009. Based on the data, they predicted that 

there is a great importance of green computing to 

reduce the energy consumption of IT industry as well as 

household computers. Weng et al. [21] utilizes the 

concept of simultaneous multithreading for today‘s 

microprocessors and proposed a power aware fetch 

policy for evaluating the power consumption of 

computation resources and memory-accessing resources. 

They have evaluated the power consumption for every 

thread and they found that proposed power aware fetch 

policy improves the power efficiency on an average by 

27% over others policies. Li et al. [22] proposed a novel 

solution that considers the dependence of power 

consumption on temperature and provided a new power 

model for temperature aware power allocation (TAPA). 

They have considered the cluster size of 13 machines to 

implement their optimizat ion algorithm and obtained 

that with the rise in CPU temperature power 

consumption increases. In their solutions they achieved 

higher computational efficiency over static solutions 

and DVFS solutions. Gupta et al. [23] designed a Green 

Data Center Simulator (GDCSim) tool to min imize the 

energy consumption in data centers. This tool study the 

energy efficiency of data centers under various data 

center geometries like its workload, power management 

schemes and scheduling algorithms. This tool basically 

captures the inter-dependencies between various 

resource-management techniques available online and 

the physical behavior of data center. Do et al. [24] 

developed a tool, pTop, to estimate the amount of 

energy consumed by each application in a system. This 

is basically a process-level profiling tool that runs 

parallel to services of the operating system at the kernel 

level and provides energy-consumption data. 

Gurumurthi et al. [25] investigated the existing power 

simulators for their design and found that they are 

manly targeted for part icular hardware such as CPU and 

memory and do not capture the interaction between 

other components. The SoftWatt tool developed by them 

considers the disk drives in addition to the CPU and 

memory and quantifies the power behavior of 

applications and operating systems. This tool also 

locates the power hot-spots in system components and 

identifies the power-hungry processes in operating 

systems. Banerjee and Agu [26] introduced the tool 

PowerSpy, which tracks the battery power consumed by 

different running threads and various I/O devices 

attached to the device. Th is tool requires no addit ional 

hardware to monitor the power consumption of a device. 

Naumann et al. [27] addressed the consumption of 

power and resources by ICT and presented a software-

based model of GREENSOFT. This model addresses the 

issue of energy reduction and resource consumption in 

ICT and the use of ICT to contribute to sustainable 

development. 

 

III. Proposed Framework of Power Scheme 

This section discusses the proposed framework of 

power schemes fo r W indows Operating Systems , which 

is developed as a tool known as Green Power tool (GP 

tool). This framework is shown in Fig. 1 and starts its 

functioning with the execution of power saver module. 

This power saver module starts as a local services of 

the Windows Operating System and prompts the user to 

input the approximate time also known as login 

duration of working on the computer system. As soon 

as the user inputs the value of login duration this value 

is utilized by three major modules of proposed 

framework that is power-saver main window, duration 

and calculate CPU usage. Here, power saver-main 

window represents the Graphical User Interface (GUI) 

of proposed GP tool whereas further two modules are 

very much concerned about implementation of the 

proposed algorithms to min imize the power 

consumption by the computer systems. These 

algorithms are implemented as two different modes 

known as: 1) Swift Mode and 2) Exhaustive Mode and 

are part of GUI as shown in Fig. 2. These two modes 

are very different in their functioning.  

 



4 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool  

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

Execution of 

Powersaver 

Module

Login 

Duration

Input

Power saver 

Main 

Window

Duration

Calculate 

CPU Usage

On Action

On Action

End of 

Timer

ShutDown/

Hibernate

Repository

 
Fig. 1: Framework of the proposed power scheme 

 

 

Fig. 2: GUI Implementation of proposed algorithms in GP tool 

 

Swift Mode – considers, the time of user login-duration 

and computer system continues its working till the time 

of login-duration comes to its end. Once the time login-

duration reached to its end, user of computer system 

notifies about that by prompting a window asking, do 

you want to continue your work?  By doing so, one can 

found the availability of user on the computer system. If 

user is there and wants to proceed their working, they 

have to enter a new time value of login duration 

otherwise proposed energy sustainable framework will 

switch the computer system to shutdown, or hibernate 

mode based on the various running application 

software‘s and repository configuration. 

Exhaustive Mode – the functioning of this mode is very 

much different with the previous Swift mode, the 

authors considered the time of login-duration as well as 

monitored the user activ ity continuously on the 

computer system by proposing Energy Sustainable 

Snapshot Algorithm (ESSA) [28].  



 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool  5 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

 
Fig. 3:  Repository of losable and non-losable software‘s in GP tool 

 

This algorithm puts another check for minimizing the 

power consumption of the computer system. Therefore, 

this mode provides better way of energy sustainability 

by the proposed framework.  

In this framework, we have used the concept of 

repository that provide the uniqueness to proposed GP 

tool and keep the record of various installed application 

software‘s on the computer system into two categories, 

losable and non-losable, as shown in Fig. 3. 

This repository is used by the shutdown/hibernate 

module to switch-off the computer system while 

making the decision by the proposed framework. Here, 

if it is found that any software running from the lossy 

category means that there is every chance to lose the 

user data while making energy-sustainable decision 

then the proposed framework switch the computer 

system to hibernate mode otherwise it gets shutdown. 

 

3.1 Internal View of the Framework 

This section describes about the internal view of 

proposed framework that includes the details on various 

packages, JAVA files, major classes, methods and inter-

dependency of packages. This internal view of the 

framework focuses on the five different packages 

connected with each other, details of each package, 

major classes, and methods defined are given below: 

 
A. PowerSaver package 

This is the main package of proposed framework and 

various other packages are dependent on this.  This 

package consists of single JAVA code file that 

calculates the screen size and popup the window of 

login-duration in the middle of the screen as shown in 

Fig. 4. 

 

Fig. 4: User prompt to input login duration time 

B. org.juitw.visual package 

This is the second next  invoked package that consists 

of number of JAVA program files with number of 

classes defined in  it. These program files are used to 

capture the login-duration from the user of the computer 

system to pop-up the main power saver window and an 

inner timer thread starts in sleep mode which checks for 

the exp iry of the login-duration time. Th is package is 

also responsible to measure the percentage of total CPU 

usage that is utilized by the exhaustive mode. 

 
C. org.juitw.timer package 

This package consists only JAVA program file that 

stores the login-duration time entered by the user and 

when it  get exp ires a pop-up message get invoked and  

also starts an inner-timer thread of fixed durat ion of one 

minute  to get  response from the user. When no user 

activity is found on the computer system, a process that 

collects the details of all running applications on the 

system gets started and performs a check on repository 

with the co llected details for making a decision whether 

to shutdown, or hibernate the computer system. 

 
D. org.juitw.process.collector package 

This package consists of the number of JAVA 

program files that implements some important methods 

for the proposed framework of power scheme. Here, 



6 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool   

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

CPUInfo .java is used for fetching and displaying the 

CPU informat ion, for example, in this framework we 

have used its percentage, CalculateCPUUsage.java 

declares the number of methods,  out of which there is 

one method createTimer( ) that takes input from the 

following configuration files: 

 mode.config which is responsible for checking 

the running mode of proposed framework for 

power scheme. There are on ly two modes, swift 

and exhaustive, for the proposed framework of 

power scheme. 

 custom.config this file is basically used to store 

the various input values of ESSA and is used by 

the exhaustive mode. These are the user-defined 

values and can be redefined according to the 

user‘s requirement. For better energy efficiency, 

power-saving and management of computer 

system, it is suggested that the CPU usage value 

should be kept always less than or equal to 20.  

Whereas, ProcessCollector.java program file is used 

to store the value of the various running application 

programs on the computer system. 

 
E. org.juitw.process.bean package 

This package declares the only class about the 

ProcessBean and its various attributes like pid, 

processname, memory, on behalf, and status. The 

defined class is just a collection of various getter and 

setter methods for various declared attributes in the 

proposed framework. 

 

F. org.juitw.actions package 

The role of this package is to include various 

execution files to the repository of the proposed 

framework. This package includes two JAVA program 

files, firstly, SimpleFileFilter.java, which is used to 

create a filter for various exiting files inside the folders. 

Secondly, program files SimpleFileView.java, which is 

used to show the various filtered executable files with 

an extension .exe from various folders to the user of the 

computer system and adds it to the repository. 

This internal v iew of the proposed framework of 

power scheme also represents the package dependency 

diagram as shown in Fig. 5. 

Fig. 5, shows the dependency among various 

packages in which they are used in the proposed 

framework as well as connectivity of these packages 

with various other packages used as import line in the 

respective program file. 

 

 

Fig. 5: Package dependency diagram of proposed framework for GP tool 



 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool  7 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

Table 1: Detailed view of each package and JAVA program files 

S. No. Source Packages Files Line of Code (LO C) Lines with Import Ts 

1 Power Saver PowerSaver.java 35 4 

2 org.juitw.visual 

Category.java 157 3 

CurrentProcessPanel.java 67 2 

Customization.java 309 4 

LoginDuration.java 195 13 

PowerSaverMainWindow. java 821 18 

ProcessTableModel.java 74 4 

3 org.juitw.actions 
SimpleFIleFilter.java 54 2 

SimpleFileView.java 34 4 

4 org.juitw.timer Duration.java 173 17 

5 org.juitw.process.collector 

CPUInfo.java 62 6 

CalculateCPUUsage.java 173 17 

ProcessCollector.java 116 7 

6 org.juitw.process.bean ProcessBean.java 72 0 

 

Table 1 gives the detailed overview of discussed 

packages and details about JAVA program files in  them.  

 

IV. Proposed Swift mode Algorithm 

This section represents algorithm implemented for 

the previously discussed scenario of Swift mode and 

used for collecting the data for analysis and result 

purpose. This algorithm in itializes the variables L, M 

and X in step 1 and starts a two timer threads  T1 and T2 

into sleep mode in step 2. These timer threads 

represents that the user has logged into the system and 

input the value of login  duration into the proposed 

framework of power scheme. In step 3, the working 

mode M from the two availab le modes Swift and 

Exhaustive is selected. In  this case, the mode is Swift. 

Selection of mode is part of user configurations and 

selected or changed when user wants to switch the 

mode. Next  step 4, is a major step and used for 

switching the computer system into hibernate or 

shutdown mode once the time of login duration gets 

expired. 

Algorithm: Swift mode 

Symbols used in this algorithm: 

i) L – The total login duration time 

ii) M – The mode of operation 

iii) X – The sleeping time 

iv) η – Extra time required if any 

v) T1 and T2 – Timers 

Step – 1: Initialize variables 

 Initialize L, M and X 

L  Take the input from the user during login 

to the system. 

M  Take the value from the configuration 

file set by the user. 

X  The sleeping time of a thread. 

Step – 2: Start of Timers 

 Starts two timer threads T1 and T2; 

 T1: expires after L x 60 x 1000 ms 

 T2: expires after each 1 x 60 x 1000 ms and   

sleeps for X time. 

Step – 3: Mode Selection 

 Selection of Mode (M): 

 IF  M = = Swift then 

  X L x 60 x 1000 

 ELSE  

  X  1 x 60 x 1000 

 

Step – 4: Functioning in Swift mode 

 When T1 expires 

a) Cancel T2 

b) η  input extra time. 

c) Starts a thread T3. T3 will expires after 1 x 60 x 

1000 ms. 

d) After 1 x 60 x 1000 ms  

IF  η = = 0 THEN check any losable program 

is running (check with repository) 

     IF yes 

 HIBERNATE the computer system 

     ELSE 

 SHUT DOWN the computer system 

     END 

ELSE 

    GO TO STEP (1) with 
 L  η 

END 

      END 



8 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool   

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

V. Comparison of Proposed Framework with 

Existing Power Schemes 

For detailed comparison of working of existing 

power-scheme in Windows Operating Systems with 

proposed framework of power-scheme, we have 

compared the working function of both proposed Swift 

mode and exhaustive mode with the functioning of 

existing scenario that available in windows power 

scheme.  

 

5.1 Existing Scenario of Power Scheme in Windows 

Operating System 

This scenario represents the configuration of existing 

power scheme in Windows Operating Systems. In this 

existing scenario of power scheme the user has 

performed various settings, as given below, to min imize 

the power consumption by the computer systems.  

 

Turn-off monitor/display    = after 30 min. 

Turn-off hard disks             = after 30 min. 

System standby/sleep          = after 30 min. 

User works for 2 min. and leave the computer 

system inactive. 

 

Using the above scenario as defined by the user, 

system will start power-saving only after the 30 min. of 

inactivity of computer system. The drawbacks of this 

setting are as follows: 

a) The settings are very much system-oriented and 

are based on time-out approach defined for 

various devices. There is no provision that 

detects for human activity on the system. 

b) The existing power scheme starts its functioning 

only after 30 min . of inactivity of keyboard and 

mouse, whereas user works for only 2 min. 

c) After the inactivity of 30 min. the computer 

system will be switched to sleep mode. In  sleep-

mode computer system also consumes small 

amount of power and consumption varies from 

computer system to computer system based on 

their configuration.  

 

5.2 Comparison with Swift Mode 

The authors compared the scenario of existing power 

scheme as stated above with the Swift  mode of our 

proposed framework of power scheme. The only  setting 

implemented by the proposed framework for this mode 

is given below: 

 

Login-duration = 10 min. 

User works for 2 min. and leave the computer 

system inactive. 

 

In Swift mode, user has to input the login duration 

just after the login to the Windows Operating System. 

This framework gets the user consensus during the 

login to the system about the user‘s working on the 

computer system. This nature provides the interactive 

and dynamic environment to proposed framework. Here, 

the user has consensus that he/she will work only fo r 10 

min., but due to some reasons he/she leaves the 

computer system inactive after 2 min. of t ime. The 

comparison observations with the existing power 

schemes are as follows: 

a) The existing power scheme scenario, which is 

more static in  nature, each time user has to 

change the power scheme settings if he/she 

wants to work less than the defined period in 

power scheme. Though it is possible but 

irritating too, as most of the time users are not 

concerned about the configurations in these 

power schemes. 

b) For users, it is difficult to memorize the various 

time interval values defined in the existing 

power scheme as these values are defined once 

and used forever. 

c) Proposed Swift mode overcome from the 

disadvantages discussed in (a) and (b), one does 

not need to worry  about the various time 

intervals values. 

d) This mode offers more than 66% of power-

saving over existing power scheme scenario. 

 

5.3 Comparison with Exhaustive Mode 

The authors have compared the scenario of existing 

power scheme with the exhaustive mode of proposed 

framework of power scheme. The various settings of 

this mode are given as below: 

 

Login-duration            =                   10 min. 

CPU usage                  =                  ≤ 20 

Number of snapshots   =  2 

User works for 2 min and leave the computer 

system inactive. 

 

When compared to the Swift mode, the exhaustive 

mode needs to be configured once from user side with 

minimal setting parameters like the value o f total CPU 

usage and number of snapshots to be compared before 

taking any decision of h ibernate/shutdown the computer 

system. The comparison observations of exhaustive 

mode with existing power schemes and Swift mode are 

given below: 

a) The scenarios of exiting power scheme, where 

there is no power-saving up to 28 min. and for 

Swift mode this time reduces to 8 min. by 

knowing the user consensus during the start up 

of the computer system.  



 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool  9 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

b) In exhaustive mode, we have tried to min imize 

the outstanding time of Swift  mode for more 

energy saving. 

c) The exhaustive mode will switch the computer 

system to hibernate/shutdown mode after 4 min. 

of time interval and offers more than 93% of 

power-saving over existing power scheme. 

It is assumed that the user is not available on the 

computer system after the working of 2 min ., therefore 

various prompts like “Are you available on the system...” 

or “Your login duration is expiring very soon, want to 

enter new time value...” invoked by the proposed 

framework of power schemes to check the user activity 

on the computer system gets expired after a certain 

period of time. 

 

VI. Performance Evaluation of Proposed 

Framework 

The performance measures for the proposed 

framework of power scheme include the thread 

monitoring, analyzing memory and CPU performance 

under various overheads. We used the profiler availab le 

in NetBeans-IDE [29] for evaluating the performance of 

proposed framework under Swift mode by giving an 

algorithm. By using profiler, one can easily determine 

the performance of system‘s memory and CPU under 

various performance measures like memory leakage 

[30], memory heap, and memory garbage collection 

[31], thread monitoring, CPU timestamps for each 

invoked methods etc. The fo llowing  are the results 

obtained after rigorous performance analysis of CPU 

and memory. 

 

6.1 Thread Monitoring 

The authors have monitored various active threads 

for the proposed framework. Fig. 6 provides the details 

of each active thread during profiling of proposed 

framework. These threads are divided into two 

categories, system threads and user threads. The 

descriptions about these threads are given in Table 2.  

 
Table 2: Thread details 

S. No. Thread name  Uses class Type of Thread Description 

1 
Reference 

Handler 
java.lang.ref.Reference$ReferenceHandler System 

High prior thread that enqueue pending 

references. 

2 Finalizer java.lang.ref.Finalizer$FinalizerThread System 
Performs finalization of objects before their 
garbage collection. 

3 Attach Listener java.lang.Thread User User Thread 

4 
Java 2D 

Disposer 
java.lang.Thread System 

Handles disposal of native data associated 

with java objects in Java 2D. 

5 AWT-Shutdown java.lang.Thread System 
AWT system thread, handles shutdown of 
AWT (Event Queues) when no GUI is 
displayed. 

6 
AWT-
EventQ ueue-0 

java.awt.EventDispatchThread System 
AWT thread, which is the main thread 
executing a GUI java applications. 

7 DestroyJavaVM java.lang.Thread User User Thread 

8 Timer Queue java.lang.Thread System 
Used to manage all javax.swing.Timer 

instances in one thread. 

9 Thread-7 java.lang.Thread User User Thread 

10 Thread-8 java.lang.Thread User User Thread 

11 Thread-10 java.lang.Thread User User Thread 

 

 

 

Fig. 6: Various active threads during framework monitoring 



10 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool   

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

From Fig. 6, one can easily found that the user 

threads 7 and 8 gets started into sleep mode by 

providing the login-duration time to the framework and 

after a certain period of t ime inner-t imer which 

corresponds to thread 7 gets expired and thread 8 

continues till the end of login-duration. Once the login-

duration ends then the AWT-EventQueue-0 system 

thread which is in wait state, gets activated and pop-up 

the message window to the user that ―your time is 

fin ished‖ do you want to continue your working, if user 

reply for yes, then another message window gets pop-up 

to enter the extended time duration and the user thread 

10 gets started into sleep mode for the new login-

duration.  

 

6.2 Analysis of Memory Performance 

The analysis of memory  performance of the proposed 

framework under different overheads includes  the 

various results like memory heap, garbage collection 

and threads and loaded classes. We have profiled the 

proposed framework under two different scenarios, 

firstly, performance overheads, where the memory 

performance have recorded for object creat ion only, 

secondly,  both object creation and garbage collection 

have recorded. In second overhead scenario the default 

value of stack sampling interval has fixed  at 10. This 

value means that the 10
th

 object allocation of every class 

will be recorded.  Using VM telemetry monitor various 

real time results have obtained as shown in the figures 

of subsections. In all our real time results of memory 

performance, we have profiled the proposed framework 

up to 15 min. 

 

a) Heap analysis 

In Fig. 7(a) and Fig. 7(b) the memory heap size over 

the period of time for both the overhead scenarios have 

been analyzed as stated above. It is easy to find out the 

details of maximum available heap size versus used-

heap by the profiled framework.  

 
(a) 

 

 
(b) 

Fig. 7: Analysis of memory performance for allocated heap size versus used-heap (a) object creation only and  

(b) both object creation and garbage collection. For each graph, x-axis denotes the time in (HH:MM) and y-axis shows the used-heap size in (MB) 

 

For both of our scenarios, maximum available heap 

size is the same with  little  variat ion in used-heap size in 

Fig. 7(b). Garbage collection is done after a certain 

interval o f t ime, which min imizes the used-heap size. 

These intervals are easily noticeable in Fig. 7(a) and Fig. 

7(b). Throughout the login-duration framework 

continues its functioning smoothly, which can be 

noticed with the sharp edges of Fig. 7(a) and Fig. 7(b), 

but when the login-duration time comes to at end, there 

is some deviations in the edge that refers to the 

activation and creation of threads in the memory. To 

know more about the threads, one can refer the thread 

monitoring section discussed above.  

 
b) Memory Leakage 

The problem of memory leakage for the proposed 

framework have analyzed  by finding various surviving 

generations and relat ive time spent in garbage 

collections. From Fig. 8(a) and Fig. 8(b), one can find  

that once the framework gets initialized total number of 

surviving generations becomes constant and remains at 



 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool  11 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

5 t ill the login-duration ends, whereas in Fig. 8(b) this 

number reaches up to 6 at the last which shows the 

removal of finished threads from the memory that 

profiled the framework for both object creation and 

garbage collection. So, there is no problem of memory 

leakage in proposed framework. Maximum relat ive time 

spent in garbage collection is 1% as shown in Fig. 8(a) 

and Fig. 8(b). 

 

(a) 
 

 

(b) 
 

Fig. 8: Analysis of memory performance for surviving generations versus Relative time spent in GC  
(a) object creation only and  

(b) both object creation and garbage collection. For each graph, x-axis denotes the time in (HH:MM) and  
y1-axis shows the surviving generations and y2-axis shows the relative time spent in GC (%) 

 

c) Thread Analysis 

It is very much similar to scenario discussed in thread 

monitoring section. The memory performance for 

various running threads versus loaded classes has 

analyzed. From Fig. 9(a) and Fig. 9(b) one can find that 

the maximum number of threads remains the same in 

both the cases, with a little variat ion in maximum 

loaded classes in Fig. 9(b). It can also observe that 

during the login duration, no new thread is created and 

total number of threads remains constant. At the end of 

login-duration, some threads get activated from sleep 

mode and some are created newly, details of which are 

given in the thread monitoring section. 

 

(a) 



12 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool   

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

 

(b) 
 

Fig. 9: Analysis of memory performance for threads versus loaded classes  
(a) object creation only and  

(b) both object creation and garbage collection. For each graph, x-axis denotes the time in (HH:MM) and  
y1-axis shows the running threads and y2-axis shows the loaded classes 

 

6.3 Analysis of CPU Performance 

By using CPU performance measurement, the 

proposed framework have analyzed  and obtained data 

related to its performance, including the time required 

to execute a code fragment within a method and the 

number of times that particular method was invoked. 

CPU under various overheads have also analyzed, 

firstly, by profiling the only project related classes that 

includes the project related core java classes only, and 

secondly, by profiling all classes that includes all core 

java classes and server classes, and imposes a very 

significant overhead. By using the first overhead 

maximum numbers of loaded classes are 2414, whereas 

with the second overhead, the numbers of classes are 

7596, used to analyze the CPU performance. This 

analysis is shown in Fig. 10(a), Fig. 10(b) and Fig. 10(c) 
that shows the call t ree class of calcu late CPU usage, 

login-duration and various threads created to monitor 

the proposed framework.  

 
(a) 

 

 
(b) 



 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool  13 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

 
(c) 

 
Fig. 10: Analysis of CPU performance (a) using only project classes (b, c) use all classes. 

 

Here, with both the overhead scenarios we have 

profiled the proposed framework around 15 min. Fig. 

10(a), Fig. 10(b) and Fig. 10(c) showed that thread 7, 8, 

9, and 10 corresponds to user threads, which resides 

into sleep state during its executions. Here, thread-8 

continues till the end of login-durat ion and invoked 

only once for both the overhead scenarios, whereas the 

time spent by the classes of this thread is different as it 

is 2483 ms and 4344 ms, respectively. Thread 7, which 

starts with thread 8 into sleep mode and get expired 

after a minute of t ime interval. Th is thread is basically 

used for calcu lating the CPU usage as it is profiled the 

proposed framework in Swift  mode and functioning of 

mode is independent of total CPU usage. Further, thread 

9 shows that user wants to continue the work once the 

login- durat ion has reached to its expiry and enters the 

new time value of login duration. By  entering the new 

time value of login-duration thread 10 gets started 

which is similar to thread 7. 

During CPU performance analysis we found that no 

classes or methods that utilizes, or keeps the CPU busy 

all the time. From Fig. 10(a), Fig. 10(b) and Fig. 10(c) 

showed that by increasing the overhead in the form of 

load of all classes over CPU the performance of 

proposed framework remains the same. 

 

VII. Conclusions 

In this paper, we have proposed an energy-

sustainable framework for the power schemes of 

operating systems to min imize the energy consumption 

by computer systems. The proposed framework is a part 

of GP Tool. The main objective of this tool is to 

structure concepts, strategies, and activities to design an 

energy-sustainable power scheme. This framework is 

useful for both the desktops and laptops. The unique 

characteristic of this tool is that it  required minimal 

input and calculations for saving energy. The proposed 

algorithm for Swift mode detects the human activity on 

the computer system in an effective manner and it is 

based on the time value supplied by the user during 

login to the system. Comparison of proposed 

framework with the discussed scenario in existing 

power scheme reveals that Swift mode provides more 

than 66% of energy saving and exhaustive mode 

provides more than 93% of energy saving. To enhance 

the accuracy of the proposed algorithm, we have 

evaluated the CPU and memory performance of the 

proposed framework. The results obtained from this 

evaluation are very impressive and demonstrated that 

there is no slow-down in CPU performance and no 

memory leakage problem during its execution is found. 

The results revealed that the proposed algorithm 

achieved the proposed goals both theoretically and 

practically for designing a complete energy-sustainable 

tool and suggest that any changes can be incorporated 

into the power schemes of operating systems. We hope 

that the algorithms and GP tool helps researchers to 

develop a comprehensive solution for the energy-

sustainable computing  

 

Acknowledgement 

The authors are sincerely thankful to the unanimous 

reviewers for their critical comments and suggestions to 

improve the quality of the manuscript. 

 

References 

[1] Ruediger Kuehr and Eric W illiams, ―Computers 

and the Environment: Understanding and 

Managing their Impacts,‖ Kluwer Academic 

Publishers, October 2010, pp. 1-285. 

[2] C. A Webber, R. E Brown and J Koomey, 

―Savings estimate for the ENERGY STAR
®  

voluntary labelling program,‖ Energy Policy, v28, 

n15, 2000, pp. 1137 – 1149. 



14 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool   

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

[3] Sandeep K.S. Gupta, Tridib Mukherjee, Georgios 

Varsamopoulos and Ayan Banerjee, ―Research 

directions in energy-sustainable cyber–physical 

systems,‖ Sustainable Computing: Informatics and 

Systems, v1, n1, 2011,  pp. 57 – 74. 

[4] S. Murugesan, ―Harnessing green it : princip les and 

practices,‖ IEEE IT Professional, v10, n1, 2008, 

pp. 24–33.  

[5] Judy A. Roberson, Gregory K. Homan, Akshay 

Mahajan, Bruce Nordman, Carrie A. Webber, 

Richard E. Brown, Marla McWhinney, and 

Jonathan G. Koomey, ― Energy Use and Power 

Levels in New Monitors and Personal Computers,‖ 

LBNL-48581, Lawrence Berkeley National 

Laboratory, 2002,  pp. 1 – 36. 

[6] B. Nordman, M. A. Piette, K. Kinney and C. 

Webber, ―User guide to power management for 

PCs and monitors,‖ LBNL-39466, Lawrence 

Berkeley National Laboratory, 1997, pp. 1 – 72. 

[7] Mary Jo Foley, ―Windows server still rules the 

server roots‖ IDC, June 3, 2010. 

[8] Kaoru Kawamoto, Jonathan G Koomey, Bruce 

Nordman, Richard E Brown, Mary  Ann Piette, 

Michael Ting and Alan K Meier, ―Electricity used 

by office equipment and network equipment in the 

US,‖ Energy, v27, n3, 2002, pp. 255 – 269.  

[9] Ishfaq Ahmad and Sanjay Ranka, ―Handbook of 

Energy-Aware and Green Computing‖ Chapman & 

Hall/CRC Computer and Information Science 

series, CRC Press, 2012, pp. 1 – 1196. 

[10] Qilin Li and Mingtian  Zhou, ―The survey and 

future evolution of green computing,‖ Proc. 

IEEE/ACM International Conference on Green 

Computing and Communications, China, 2011, pp. 

230 – 233. 

[11] P. K. Gupta, G. Singh, "Minimizing Power 

Consumption by Personal Computers: A Technical 

Survey", IJITCS, vol.4, no.10, pp.57-66, 2012. 

[12] P. K. Gupta and G. Singh, ―A framework of 

creating intelligent power profiles in operating 

systems to minimize power consumption and 

greenhouse effect caused by computer systems ," 

Journal of Green Engineering, v1, n2, 2011, pp. 

145 – 163. 

[13] Shuyi Chen, Kaustubh R. Joshi, Matti A. Hiltunen, 

Richard D. Schlichting and William H. Sanders, 

―Using CPU grad ients for performance-aware 

energy conservation in mult itier systems,‖ 

Sustainable Computing: Informatics and Systems, 

v1, n2, 2011, pp. 113 – 133. 

[14]  Hui Chen, Sh inan Wang and Wei song Shi, 

―Where does the power go in a computer system: 

experimental analysis and implications,‖ Proc. 

IEEE International Green Computing Conference 

and Workshops, Orlando, FL, 2011, pp. 1 – 6. 

[15] Benjamin Zhong, Ming Feng and Chung-Horng 

Lung, ―A green computing based architecture 

comparison and analysis,‖ Proc. IEEE/ACM 

International Conference on Green Computing and 

Communications, Hangzhou, 2010, pp. 386 – 391.  

[16] Timo Minartz, Thomas Ludwig, Michael 

Knobloch and Bernd Mohr, ―Managing hardware 

power saving modes for high performance 

computing,‖ IEEE International Green Computing 

Conference and Workshops, Orlando, FL, 2011, pp. 

1-8. 

[17] Vasileios Spiliopoulos, Stefanos Kaxiras and 

Georgios Keramidas, ―Green governors: a 

framework fo r continuously adaptive DVFS,‖ Proc. 

IEEE International Green Computing Conference 

and Workshops, Orlando, FL, 2011, pp. 1 – 8.  

[18] Lei Ye, Chris Gniady and John H. Hartman, 

―Energy-efficient memory management in virtual 

machine environments,‖ Proc. IEEE International 

Green Computing Conference and Workshops, 

Orlando, FL, 2011, pp. 1 - 8.  

[19] Ran Duan, Mingsong Bi and Chris Gniady, 

―Exploring memory energy optimizations in 

smartphones,‖ Proc. IEEE International Green 

Computing Conference and Workshops, Orlando, 

FL, 2011, pp. 1 - 8. 

[20] Luyang Wang and Tao Wang, ― Green computing 

wanted: electricity consumptions in the IT industry 

and by household computers in five major Chinese 

cities,‖ Proc. IEEE/ACM International Conference 

on Green Computing and Communications, 

Sichuan, 2011, pp. 226 – 229.  

[21] Lichen Weng, Gang Quan and Chen Liu, 

―PCOUNT: a power aware fetch policy in 

simultaneous mult ithreading processors,‖ Proc. 

IEEE International Green Computing Conference 

and Workshops, Orlando, FL, 2011, pp. 1 - 6. 

[22] Shen Li, and Tarek Abdelzaher and Mindi Yuan, 

―TAPA: temperature aware power allocation in 

data center with map-reduce,‖ Proc. IEEE 

International Green Computing Conference and 

Workshops, Orlando, FL, 2011, pp. 1 - 8.  

[23] Sandeep K.S. Gupta, Rose Robin Gilbert, Ayan 

Banerjee, Zahra Abbasi, Trid ib Mukherjee and 

Georgios Varsamopoulos, ―GDCSim: A  tool for 

analyzing green data center design and resource 

management techniques,‖ Proc. IEEE 

International Green Computing Conference and 

Workshops, Orlando, FL, 2011, pp. 1 - 8.  

[24] T. Do, S. Rawshdeh and W. Shi, ―PTOP: a 

process-level power profiling tool,‖ Proc. 2
nd

 

Workshop on Power Aware Computing and 

Systems (HotPower’09), Big  Sky, MT, 2009, pp. 

1-5. 



 Energy-Sustainable Framework and Performance Analysis of Power Scheme for Operating Systems: A Tool  15 

Copyright © 2013 MECS                                                             I.J. Intelligent Systems and Applications, 2013, 01, 1-15 

[25] Sudhanva Gurumurthi, Anand Sivasubramaniam, 

Mary Jane Irwin, N. Vijaykrishnan, Mahmut 

Kandemir, Tao Li and Lizy Kurian John, ―Using 

complete machine simulat ion for software power 

estimation: the Soft Watt Approach,‖ Proc. 8
th

 

International Symposium on High-Performance 

Computer Architecture (HPCA.02), USA, 2002, 

pp. 141 – 150.  

[26] Kutty S Banerjee and Emmanuel Agu, ―PowerSpy: 

fine-grained software energy profiling for mobile 

devices,‖ Proc. IEEE International Conference on 

Wireless Networks, Communications and Mobile 

Computing, MA, USA, 2005, pp. 1136 – 1141. 

[27] Stefan Naumann, Markus Dick, Eva Kern and 

Timo Johann, ―The GREENSOFT Model: a 

reference model for green and sustainable software 

and its engineering,‖ Sustainable Computing: 

Informatics and Systems, v1, n4, 2011, pp. 294 – 

304.  

[28] P. K. Gupta and G. Singh, ― Energy-sustainable 

snapshot algorithm for operating systems to 

minimize power consumption,‖ Sustainable 

Computing: Informatics and Systems, 2012. 

(Under review) 

[29] NetBeans IDE 7.1.2, 

http://netbeans.org/community/news/show/1556.ht

ml (accessed 2012-05-05) 

[30] Peng Hao-lin, Liu  Yi-min , You Xiang-bai, 

―Research on memory leakage in Java application,‖ 

Proc. IEEE International Conference on Computer 

Science and Information Technology, Wuhan, 

China, v2, 2010, pp. 146-148.  

[31] G. Chen, R. Shetty, M. Kandemir, N. 

Vijaykrishnan, M. J. Irwin and M. Wolczko, 

―Tuning garbage collection  for reducing memory 

system energy in an embedded Java environment,‖ 

ACM Trans. on Embedded Computing Systems, v1, 

n1, 2002, pp. 27–55. 

 

Authors’ Profiles  

P. K. Gupta graduated in 

Informatics and Computer 

Engineering from Vladimir State 

University, Vladimir, Russia, in 

1999 and received h is M.E. degree 

in Informat ics & Computer 

Engineering in 2001 from the same 

university. He has been associated 

with academics more than ten years in different 

institutions like BIT M.Nagar, RKGIT Ghaziabad. In 

India and Currently he is working as Senior Lecturer 

with the Department of Co mputer Science and 

Engineering & IT, Jaypee University of Information 

Technology, Waknaghat, Solan(HP), India. He is also 

pursuing his Ph.D. from JUIT Solan. He has supervised 

a number o f B.Tech/M.Tech/M.Phil. theses from 

various universities of India. His  research interests 

include Storage Networks, Green Computing, Software 

Testing and Cloud Computing. P.K. Gupta is a Member 

of IEEE, Life Member of CSI and Life member of 

Indian Science Congress Association. 

 

G. Singh received his Ph.D. 

degree in electronics engineering 

from the Institute of Technology, 

Banaras Hindu University, 

Varanasi, India, in 2000. He was 

associated with Central Electronics 

Engineering Research Institute, 

Pilani, and Institute for Plasma 

Research, Gandhinagar, India, 

respectively, where he was Research Scientist. He also 

worked as an Assistant Professor at Electronics and 

Communicat ion Engineering Department, Nirma 

University of Science and Technology, Ahmedanad, 

India. He was a Visit ing Researcher at the Seoul 

National University, Seoul, S. Korea. At present, he is 

an Associate Professor with the Department of 

Electronics and Communicat ion Engineering, Jaypee 

University of Information Technology, Wakanaghat, 

Solan, India. He is the author and co-author of more 

than 120 scientific papers of refereed journals and 

international/national conferences. His research 

interests include electromagnetic and its applicat ions, 

software defined radio/cognitive radio  network, OFDM, 

nanophotonics and THz communication, imaging and 

sensing. 

 

 

 
How to cite this paper: P. K. Gupta, G. Singh,"Energy-

Sustainable Framework and Performance Analysis of Power 

Scheme for Operating Systems: A Tool", International Journal 

of Intelligent Systems and Applications(IJISA), vol.5, no.1, 

pp.1-15, 2013.DOI: 10.5815/ijisa.2013.01.01 


