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Abstract
Rhodiola imbricata is a rare medicinal plant of the trans-Himalayan region of Ladakh.
It is used for the treatment of numerous health ailments. Compact callus aggregate
(CCA) suspension cultures of Rhodiola imbricata were established to counter extinc-
tion threats and for production of therapeutically valuable phenolic compounds to meet
their increasing industrial demands. The present study also investigated the effect of
jasmonic acid (JA) on production of phenolic compounds and bioactivities in CCA
suspension cultures. CCA suspension cultures established in an optimized Murashige
and Skoog medium supplemented with 30 g/l sucrose, 3 mg/l NAA, and 3 mg/l BAP
showed maximum biomass accumulation (8.43 g/l DW) and highest salidroside pro-
duction (3.37 mg/g DW). Upon 100 μM JA treatment, salidroside production
(5.25 mg/g DW), total phenolic content (14.69 mg CHA/g DW), total flavonoid
content (4.95 mg RE/g DW), and ascorbic acid content (17.93 mg/g DW) were
significantly increased in cultures. In addition, DPPH-scavenging activity (56.32%)
and total antioxidant capacity (60.45 mg QE/g DW) were significantly enhanced upon
JA treatment, and this was positively correlated with increased accumulation of
phenolic compounds. JA-elicited cultures exhibited highest antimicrobial activity
against Escherichia coli. This is the first report describing the enhanced production
of phenolic compounds and bioactivities from JA-elicited CCA suspension cultures of
Rhodiola imbricata.
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Abbreviations
AAC Ascorbic acid content
BAP 6-Benzylaminopurine
CHA Chlorogenic acid
DFRSA DPPH free radical scavenging activity
DW Dry weight
FW Fresh weight
JA Jasmonic acid
MBC Minimal bactericidal concentration
MIC Minimal inhibitory concentration
NAA 1-naphthaleneacetic acid
PGRs Plant growth regulators
QE Quercetin equivalent
RE Rutin equivalent
TAC Total antioxidant capacity
TFC Total flavonoid content
TPC Total phenolic content

Introduction

Rhodiola imbricata Edgew. (Shrolo) family Crassulaceae is a multipurpose medicinal
plant with well-established adaptogenic and antioxidant properties [1–6]. The plant
grows along the rocky slopes and stony crevices of high-altitude pass (Penzila
(14,000 ft), Changla (17,586 ft), and Khardungla (18,380 ft)) in the trans-Himalayan
region of Ladakh. Recently, R. imbricata has attracted considerable scientific and
commercial interest due to its unique phytochemistry and pronounced physiological
and pharmacological activities. R. imbricata is widely used by the traditional herbal
practitioners of indigenous community for the treatment of various human health ail-
ments such as cold, cough, fever, and central nervous system disorders [5, 7]. It is a well-
known medicinal herb because of its high content of bioactive compounds, including
polyphenol, phenolic acid, flavonol, and flavonoids [4]. R. imbricata root is used as an
important constituent in several nutraceutical and pharmaceutical preparations [4, 8]. It is
also the major constituent of an herbal antioxidant tea patented as a medical supplement
in India [9]. R. imbricata root contains high amounts of health-promoting nutritional
constituents like essential amino acids, fatty acids, and dietary mineral elements [10].
Recently, Tayade et al. [11, 12] have reported the presence of various volatile and semi-
volatile phytochemicals, fat-soluble vitamins (vitamin B complex), and water-soluble
vitamin (vitamin E) in the underground part of this plant. Rhodiola preparations have
been used for treating disorders like cerebral ischemia, diabetes, hypoxia, neurodegen-
erative diseases, and cancer [13]. Rhodiola is also used as a dietary supplement to
increase work performance, longevity and improve resistance to high-altitude sickness
[14, 15]. A number of pharmacological investigations have demonstrated that
R. imbricata preparations exhibit antiviral [16], radioprotective [17, 18], wound healing
[19], immunomodulatory [20], adaptogenic [2], anti-cancer [6, 21], immunostimulatory
[20, 22], hepatoprotective [23], cytoprotective, and antioxidant properties [1, 2, 4, 5].
The majority of these pharmacological properties have been attributed to its diverse array
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of phenolic compounds [3, 4, 14, 23]. Phenolic compounds have been used for centuries
in different medicinal applications [24]. Phenolic compounds exert a beneficial lifespan
enhancing effect by acting as antioxidants [25]. These compounds are of great interest on
account of their biological activities involved in human health-related issues [24].
Applications of phenolic compounds are also increasing rapidly in the food and phar-
maceutical industry [26, 27]. Salidroside and Tyrosol (phenylethanoids) are considered to
be the major bioactive compounds of Rhodiola [28–30]. Salidroside and tyrosol have
received a considerable amount of attention due to their broad range of pharmacological
properties, including anti-stress, antifatigue, adaptogenic, cardioprotective, antidepres-
sant, hepatoprotective, and immunomodulatory properties [31–33].

The natural populations of R. imbricata are highly threatened and classified as rare in the
red data list of Indian flora [34]. Field cultivation of this plant is a laborious and time-
consuming process. These issues necessitate the development of alternate strategies for the
production of medicinally important phenolic compounds of R. imbricata. Plant tissue culture,
in particular compact callus aggregate (CCA) culture offers a promising system for the
sustainable and economical production of secondary metabolites [35, 36]. The CCA shows
some degree of differentiation that favors the increased production of secondary metabolites
[35–38]. Several studies have demonstrated that the CCA culture is an efficient alternative
source of secondary metabolites, such as, indole alkaloids of Catharanthus roseus [36, 38] and
phenylethanoid glycosides of Rhodiola sachalinensis [35], but so far, the literature contains no
reports on CCA suspension culture of R. imbricata.

Plant tissue culture systems are often constrained by low yield of secondary metab-
olites and genetic instability of cell lines [36, 38]. Elicitation has been widely used to
increase the production of secondary metabolites in plant cell cultures [39, 40]. Plants
have evolved a wide variety of inducible defense mechanisms that are triggered upon
elicitation [41]. Numerous studies have demonstrated that the addition of an elicitor
(biotic or abiotic) to the culture media significantly increase the production of secondary
metabolites in vitro by triggering a metabolic cascade [40, 41]. Jasmonic acid has been
recognized as an effective elicitor that triggers the biosynthesis of secondary defense
compounds in plant suspension cultures by activating the genes of secondary metabo-
lism [42]. Jasmonic acid (JA) is also considered as a global regulator of inducible
defense gene expression in plants [43]. It has been reported that JA significantly
increases the production of taxol and paclitaxel in Taxus sp. cell suspensions cultures
[44], hypericin in Hypericum perforatum cell suspension cultures [45, 46], ginsenoside
in Panax ginseng adventitious root cultures [47], triterpenes in Jatropha curcas cell
suspension cultures [48] and terpenoid indole alkaloids in Catharanthus roseus cell
suspension cultures [49]. Despite the proven role of JA in enhancing the production of
secondary metabolites in in vitro cultures, such studies have never been applied to
R. imbricata cell cultures.

Therefore, keeping in view the medicinal and commercial value of R. imbricata, the aim of
the present study was to optimize the culture media components (basal media, carbon source,
sucrose concentration and PGRs) for the sustainable production of medicinally important
phenolic compounds by CCA suspension cultures of R. imbricata. Furthermore, the present
study also investigated the time-course effect of Jasmonic acid (JA) on biomass accumulation,
production of phenolic compounds (phenylethanoids (salidroside and tyrosol), total phenolics
and total flavonoids), ascorbic acid, and antioxidant (DFRSA and TAC) and antimicrobial
activity in CCA suspension cultures of Rhodiola imbricata.
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Material and Methods

Plant Material and Chemicals

Rhodiola imbricata plants were collected from Khardungla pass of trans-Himalayan Ladakh
region (18,380 ft., 34.282° N and 77.597° E) in July 2015. The plants were identified by the
Botanical Survey of India, Dehradun (Accession number – 117062).

All authentic standards were obtained from Sigma-Aldrich. All solvents (methanol and
acetonitrile) were of high-performance liquid chromatography (HPLC) grade and were ob-
tained from Merck. MilliQ water was used for HPLC analysis. The other chemicals used in
this work were of analytical grade purchased from Sigma-Aldrich.

Establishment of CCA Suspension Cultures

Callus cultures were established according to the previously developed method [50]. Briefly,
callus was induced from the leaf explant and then propagated on modified Murashige and
Skoog (MS) medium supplemented with 30 g/l sucrose, 8 g/l agar, 3 mg/l NAA and 3 mg/l
BAP. After 3 weeks, the cellular clumps consisting of small compact callus aggregates (CCA)
were carefully selected and excised.

To establish CCA suspension culture of R. imbricata, 20 g fresh weight of CCA was
transferred to 500 ml Erlenmeyer flask containing 250 ml of modified MS medium [51]
supplemented with 30 g/l sucrose, 3 mg/l NAA and 3 mg/l BAP. The culture flasks were
placed on a gyratory shaker (110 rpm) at 25 ± 1 °C in continuous light. The pH of the medium
was adjusted to 5.75 before autoclaving at 121 °C for 15 min. The cultures were maintained by
regular sub-culturing at 10 days interval.

Effect of Culture Media Components

To investigate the effect of different strength of basal media on biomass (FW and
DW) and phenylethanoids (Salidroside and Tyrosol) production, 1 g fresh weight of
CCA was transferred to 100 ml Erlenmeyer flask containing 20 ml of different basal
media (MS, 1/2 MS, B5 [52] and 1/2 B5) supplemented with 30 g/l sucrose, 3 mg/l
NAA and 3 mg/l BAP. The culture flasks were placed on a gyratory shaker (110 rpm)
at 25 ± 1 °C in continuous light. The biomass and phenylethanoids accumulation was
determined after 10 days.

To investigate the effect of different carbon sources on biomass and phenylethanoids
production, 1 g fresh weight of CCA was inoculated in modified MS medium containing
3 mg/l NAA, 3 mg/l BAP and 30 g/l of different carbon sources (sucrose, glucose, fructose and
maltose). Further, the effect of different sucrose concentrations (10, 30, 50, 70 g/l) was
investigated in the same media composition. The biomass and phenylethanoids accumulation
was analyzed after 10 days.

To investigate the influence of different PGRs on biomass and phenylethanoids
production, 1 g fresh weight of CCA was inoculated in modified MS medium
containing 30 g/l sucrose and different concentrations and combinations of NAA
(0.1, 0.5, 1, 1.5, 3 mg/l) and BAP (0.1, 0.5, 1, 1.5, 3 mg/l). The time course of
biomass and phenylethanoids accumulation was accomplished with an interval of 2 days
for 10 days period.
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Effect of JA Treatment

For elicitation experiments, Jasmonic acid was dissolved in 95% (v/v) methanol and filter
sterilized through 0.22 μm PVDF filter. Subsequently, 1 g fresh weight of CCAwas transferred
to 100 ml Erlenmeyer flask containing 20 ml of modified MS medium supplemented with
30 g/l sucrose, 3 mg/l NAA, 3 mg/l BAP and different concentrations of Jasmonic acid (5 and
100 μM). MS basal medium containing 3 mg/l of NAA and BAP without Jasmonic acid was
used as control. The pH of the medium was adjusted to 5.75 before autoclaving at 121 °C for
15 min. The culture flasks were placed on a gyratory shaker (110 rpm) at 25 ± 1 °C in
continuous light. The time course of biomass accumulation, phenolic compounds production,
and antioxidant activity was done at an interval of 2 days for 6 days period.

Analytical Methods

For fresh weight (FW) determination, the CCA suspension cultures were harvested, washed
with distilled water and filtered through vacuum driven filter and then weighed. Subsequently,
CCA suspension cultures were oven dried to constant weight at 40 °C for dry weight (DW)
determination. The fresh weight and dry weight of CCA suspension cultures was expressed in
grams per liter of medium (g/l).

The dried CCA suspension samples were extracted according to the previously established
method [50]. Briefly, the samples were pulverized with a mortar and pestle and then suspended
in methanol at a sample-to-solvent ratio of 1:15 (w/v). Subsequently, the samples were
extracted by ultrasonication for 3 × 30 min at room temperature. After sonication, extracts
were centrifuged at 5000g for 5 min at 4 °C, and the supernatant was collected and filtered
through 0.22 μm PVDF filter. The filtered extracts were stored at − 20 °C till further analysis.

The quantification of phenylethanoids were performed according to the previously devel-
oped method [50]. Briefly, phenylethanoids (Salidroside and Tyrosol) were quantified by RP-
HPLC using an Agilent 1260 infinity chromatographic system equipped with diode array
detector. The separation of salidroside and tyrosol was achieved on a reverse phase column
(Agilent Zorbax eclipse plus C18 (4.6 × 100 mm, 3.5 μm)). The mobile phase consisted of
acetonitrile (A) and water (B) at a flow rate of 1 ml/min. The temperature of the column was
maintained at 25 °C, sample injection volume was 5 μl and detection was done at 225 nm. The
separation was done in an isocratic manner with 15% A/85% B for 6 min followed by a 4-min
wash with 100% A and an equilibration period of 4 min with 15% A/85% B. The data was
analyzed using Agilent OpenLAB CDS (EZChrom edition, version A.04.04). The absorption
spectra and retention time of authentic standards were used to identify phenylethanoids in the
extracts. The linear regression equation was used for the quantification of phenylethanoids and
the results were expressed as mg/g DW.

The yield of phenylethanoids was calculated by using the following formula and the results
were expressed as mg/l.

Phenylethanoids yield mg=lð Þ ¼ Dry weight g=lð Þ � Phenylethanoids content mg=gð Þ
The total phenolic content and ascorbic acid content were simultaneously determined by the
method of Sánchez-Rangel et al. [53]. The absorbance of the reaction mixture was determined
at 765 nm using a multi-mode microplate reader (SpectraMax M5, Molecular devices, USA)
and the data was processed and analyzed by SoftMax Pro 6.1 software. Ascorbic acid (0.02–
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0.1 mg/ml; (AA)) and Chlorogenic acid (0.02–0.125 mg/ml; (CHA)) were used for plotting
standard calibration curve. The total phenolic content and ascorbic acid were calculated using
the following equation based on the calibration curve (y = 0.0012x + 0.0103, r2 = 0.990 (CHA)
and (y = 0.0006x – 0.0064, r2 = 0.998 (AA)). The total phenolic content of different methanolic
extracts was expressed as mg CHA/g DWand the ascorbic acid content was expressed as mg/g
DW.

The total phenolic production (TPP) was determined by using the following formula and
the results were expressed as mg/l.

Total phenolic production mg=lð Þ ¼ Dry weight g=lð Þ � TPC mgCHA=gð Þ
The ascorbic acid production (AAP) was determined by using the following formula and the
results were expressed as mg/l.

Ascorbic acid production mg=lð Þ ¼ Dry weight g=lð Þ � AAC mg=gð Þ
The total flavonoid content was determined according to the method of Zhishen et al. [54]. The
absorbance of the reaction mixture was measured at 510 nm with a UV-Visible spectropho-
tometer (Genesys 10S UV-Vis, Thermo scientific). Rutin (0.025–0.125 mg/ml) was used for
plotting standard calibration curve. The total flavonoid content was calculated using the
following equation based on the calibration curve (y = 0.0007x + 0.0011, r2 = 0.998) and the
results were expressed as mg RE (rutin equivalent)/g DW.

The total flavonoid production (TFP) was determined by using the following formula and
the results were expressed as mg/l.

Total flavonoid production mg=lð Þ ¼ Dry wieght g=lð Þ � TFC mgRE=gð Þ
The DPPH free radical scavenging activity was determined according to the method of Yesmin
et al. [55], with slight modifications. Briefly in 0.2 ml of different methanolic extracts
(0.125 mg/ml), 3 ml of methanolic DPPH solution (0.004% w/v) was added. The reaction
mixture was left in the dark at room temperature for 30 min and the absorbance of the solution
was measured at 517 nm with a UV-Visible spectrophotometer. The DPPH free radical
scavenging activity (DFRSA (%)) of different methanolic extracts was calculated as follows:

DFRSA %ð Þ ¼ Abs Control−Abs Sampleð Þ � Abs Sample½ � � 100

where Abs Control is the absorbance of DPPH radical and methanol and Abs Sample is the
absorbance of DPPH radical with sample extract.

The total antioxidant capacity was determined by using phosphomolybdenum method as
described by Prieto et al. [56]. The absorbance of the solution was measured at 695 nm with a
UV-Visible spectrophotometer. Quercetin (0.025–0.125 mg/ml) was used for plotting standard
calibration curve. The total antioxidant capacity was calculated using the following equation
based on the calibration curve (y = 0.0019x − 0.025, r2 = 0.995) and the results were expressed
as mg QE (quercetin equivalent)/g DW.

The antimicrobial activities of JA-treated (5 and 100 μM) and untreated (control)
CCA suspension cultures of R. imbricata were tested against Gram-positive methicillin-
resistant Staphylococcus aureus (MRSA) ATCC 43300 and Gram-negative Escherichia
coli ATCC 25922 using agar well diffusion method [57]. Briefly, 100 μl of test bacterial
suspension containing 106-108 cells/ml was poured and uniformly spread over the entire
surface of sterile nutrient agar plates. Then, the wells (5 mm in diameter) were cut from
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the agar using a sterile-cork borer, and 50 μl of 40 mg/ml extract solution was loaded in
the wells. Gentamicin (50 μg/ml) was used as a positive control. Methanol was used as a
negative control. The extract solution and control were allowed to diffuse for 1–2 h at
room temperature and subsequently, the plates were incubated at 37 °C for 18–24 h.
After incubation for 18–24 h, the antimicrobial activity was assessed by measuring the
diameter of the growth-inhibition zone in millimeters. The minimum inhibitory concen-
tration (MIC) and minimum bactericidal concentration (MBC) were determined by CLSI
guidelines [58, 59]. For determination of MIC, a twofold dilution (50 μl) of CCA
suspension cultures extracts (0.15, 0.31, 0.62, 1.25, 2.50, 5, 10, 20, 40 mg/ml) were
prepared in brain heart infusion (BHI) liquid growth medium and dispensed in a sterile
96-well microtiter plate. Then, each well was inoculated with 50 μl of test bacterial
suspension (106-108 cells/ml). The microtiter plates were then incubated at 37 °C for 18–
24 h. After incubation for 18–24 h, the microtiter plates were examined for turbidity
which corresponds to the growth of bacterial cells. The MIC was determined as the
lowest concentration of the compound that completely inhibit the visible bacterial
growth. The MBC was determined by inoculation of test samples (100 μl) from the
96-well microtiter plates on sterile nutrient agar plates. The plates were incubated
overnight at 37 °C. After overnight incubation, the plates were observed for cell viability.
The MBC was defined as the lowest concentration of the compound that kill 99.5% of
bacteria in the original inoculum.

Statistical Analysis

The experiments were conducted in a completely randomized design (CRD). All analyses
were performed in triplicate and the results were presented as mean ± standard error (SE). One-
way ANOVA was used to evaluate the difference between group means and pair-wise
comparison among group means was assessed using the Bonferroni post hoc test at p ≤
0.05. Pearson’s correlation coefficient was used for correlation analyses at p ≤ 0.01. All
statistical analyses were performed using SPSS software (SPSS version 21.0, USA).
Figures were generated using Microsoft office (Windows version 2016, USA).

Results and Discussion

Effect of Basal Media

The present study investigated the effect of different strength of basal media on biomass and
phenylethanoids accumulation in CCA suspension cultures of R. imbricata. As shown in
Fig. 1a, CCA suspension cultures showed maximum biomass accumulation (FW: 221.59 ±
0.71 g/l, DW: 8.43 ± 0.01 g/l) and highest salidroside production (3.37 ± 0.03 mg/g DW) in
full strength MS media, followed by 1/2 MS, B5 and 1/2 B5 media. These findings demon-
strated the superior role of full strength MS medium on biomass accumulation as well as
salidroside production in CCA suspension cultures of R. imbricata. This increase might be
attributed to the higher ionic strength and nitrogen content of the MS medium [60]. Similar to
our results, full strength MS medium was found to be most suitable for biomass accumulation
and secondary metabolite production in cell suspension cultures of Withania somnifera [61]
and Gymnema sylvestre [62].
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Effect of Carbon Source and Sucrose Concentration

Sugar acts as an important energy source as well as signaling molecule that affects growth and
metabolism of cultured cells [63, 64]. Therefore, the present study investigated the effect of
carbon source on biomass and phenylethanoids accumulation in CCA suspension cultures of
R. imbricata. As shown in Fig. 1b, the CCA suspension cultures showed maximum biomass
accumulation (FW: 221.59 ± 0.71 g/l, DW: 8.43 ± 0.01 g/l) and highest production of
salidroside (3.37 ± 0.03 mg/g DW) in MS medium supplemented with sucrose, followed by
glucose, fructose and maltose. The variations in the effect of different sugar might be due to the
differential signaling levels of sugar [61]. Similar to our results, sucrose-induced enhanced
biomass accumulation and secondary metabolites production in cell suspension cultures of
Withania somnifera [61] and Artemisia absinthium [65]. This might be attributed to the
efficient uptake of sucrose across the plasma membrane [66]. These findings demonstrated
the superior role of sucrose on biomass accumulation as well as salidroside production in CCA
suspension cultures of R. imbricata.

We further investigated the effect of different concentrations of sucrose on biomass
accumulation and phenylethanoids production in CCA suspension cultures of R. imbricata.
As shown in Fig. 1c, the fresh weight, dry weight and salidroside content decreased when the
initial sucrose concentration was increased from 30 g/l to 50 g/l and 70 g/l, respectively. The
maximum fresh weight of 221.59 ± 0.71 g/l, dry weight of 8.43 ± 0.01 g/l and salidroside
content of 3.37 ± 0.03 mg/g DW were obtained at an initial sucrose concentration of 30 g/l
(Fig. 1c). These findings suggest that the higher concentrations of sucrose suppressed the
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biomass accumulation as well as salidroside production in R. imbricata CCA suspension
cultures, probably due to high osmotic stress and substrate inhibition. Similarly, Xu et al. [35]
also reported that the higher concentrations of sucrose reduced the salidroside production in
CCA suspension cultures of Rhodiola sachalinensis. Zhao et al. [38] found that the sucrose
regime affected the degree of compaction and differentiation level of the compact callus cluster
cultures of Catharanthus roseus and therefore influenced alkaloid production. Our data
supports the proposition that the effects of carbohydrate concentration were different according
to the plant species and type of secondary metabolites [67, 68]. The results suggest that 30 g/l
of sucrose is optimum for growth and salidroside accumulation in CCA suspension cultures of
R. imbricata.

Effect of Plant Growth Regulators

The effect of different concentrations and combinations of PGRs on biomass and
phenylethanoids accumulation in CCA suspension cultures of R. imbricata is shown in
Fig. 2a–d. Among different concentrations and combinations of PGRs tested, MS medium
supplemented with 3 mg/l NAA + 3 mg/l BAP showed maximum accumulation of biomass
(FW: 221.59 ± 0.71 g/l, DW: 8.43 ± 0.01 g/l) and highest production of salidroside (3.37 ±
0.03 mg/g DW) and salidroside yield (28.45 ± 0.04 mg/l). The fresh weight, dry weight,
salidroside content and salidroside yield reached their respective peak after 6 days of culture
(Fig. 2a–d). NAA and BAP at lower concentrations resulted in significant reduction in the
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Values are mean ± standard error (vertical error bars) of three replicates. Means with similar letters are not
significantly different at p ≤ 0.05 according to Bonferroni post hoc test
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biomass accumulation and salidroside production, as compared to higher concentrations (p ≤
0.05, Fig. 2a–c). It is noteworthy that none of the treatments of NAA and BAP showed the
presence of tyrosol in CCA suspension cultures (Supplementary Fig. 1). This might be
attributed to the conversion of tyrosol into salidroside or some other unknown intermediates.
The pH of the medium declined during the first 6 days and then increased gradually (data not
shown). The time course analysis revealed that the accumulation of salidroside was growth-
dependent, which might be attributed to the differentiated structure of CCA [69]. A similar
growth-associated pattern for secondary metabolites accumulation has been observed in other
plant cell cultures [70, 71]. Our findings, together with the previous reports, suggest that the
synergistic combinations of auxin and cytokinin can significantly alter the production of
secondary metabolites depending on plant species [72, 73]. Plant cell cultures are required
to be maintained in empirically optimized auxin/cytokinin composition to obtain high pro-
ductivity [74]. In this study, we have optimized that the full-strength MS medium supple-
mented with 3 mg/l NAA + 3 mg/l BAP is suitable for the obtention of maximum biomass
accumulation and salidroside production in CCA suspension cultures of R. imbricata.

Effect of JA on Growth

As shown in Fig. 3a, b, the growth of CCA suspension cultures was inhibited by the addition
of JA to the culture medium. Supplementation of 5 μM JA to R. imbricata CCA suspension
cultures showed a significant decrease in biomass accumulation (FW: 191.71 ± 0.79 g/l, DW:
7.30 ± 0.01 g/l), as compared to control cultures (FW: 221.59 ± 0.70 g/l, DW: 8.43 ± 0.01 g/l).
Moreover, this effect was accentuated with the increase of JA concentration (Fig. 3a, b). An
addition of 100 μM JA to the medium led to a substantial decrease in biomass accumulation
(FW: 177.95 ± 1.51 g/l, DW: 7.05 ± 0.02 g/l), as compared to 5 μM JA-treated cultures and
control (p ≤ 0.05, Fig. 3a, b). The results suggest that the fresh weight and dry weight of the
CCA suspension cultures of R. imbricata decreased with increasing jasmonic acid concentra-
tion. Similar phenomenon has also been observed in cell cultures of Panax ginseng [47] and
Hevea brasiliensis [75]. JA has long been associated with the inhibition of plant growth [76].
JA affects the cell proliferation and cell cycle progression by downregulating the expression of
the CYCB1;1, cyclin-dependent kinase CDK-B and mitotic phase genes, largely in a COI1-
dependent manner [77–79]. A recent study by Yang et al. [80] demonstrated that JA induced
growth inhibition by interfering with gibberellin signaling cascade via COI1–JAZ–DELLA–
PIF signaling module.

Effect of JA on Production of Phenylethanoids

JA is a well-established signal transducer in plant defense responses and an effective inducer of
secondary metabolite accumulation in plant cell cultures [42, 81]. It has been reported that JA
signaling triggers genome-wide alterations in gene expression [82]. Therefore, the present
study investigated the effect of JA on the production of phenylethanoids in CCA suspension
cultures of R. imbricata. As shown in Fig. 3c, the JA-treated CCA suspension cultures showed
an exponential increase in accumulation of salidroside during the first 4 days and then a
gradual decrease until day 6. After 4 days of treatment with 100 μM JA, the CCA suspension
cultures showed maximum accumulation of salidroside (5.25 ± 0.01 mg/g DW), which was
1.11-fold and 1.55-fold higher than 5 μM JA-treated cultures (4.72 ± 0.01 mg/g DW) and
control (3.37 ± 0.03 mg/g DW), respectively (Fig. 3c). As shown in Fig. 3d, 100 μM JA-
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treated cultures demonstrated maximum salidroside yield (37 ± 0.15 mg/l) after 6 days of
treatment, which was 1.34-fold higher than the control (27.49 ± 0.25 mg/l). It is noteworthy
that the tyrosol was absent in all the cultures (Supplementary Fig. 2). These findings suggest
that CCA suspension cultures of R. imbricata were amenable for elicitation with JA as evident
by increased accumulation of salidroside. It is plausible that this stimulation is mediated by
enhanced transcription of JA-responsive genes encoding key enzymes involved in salidroside
biosynthesis. Yu et al. [83] found that methyl jasmonate (MJ; 250 μM) treatment upregulated
the expression pattern of UDP-glycosyltransferases (UGTs) involved in salidroside biosynthe-
sis in cell cultures of Rhodiola sachalinensis. Similarly, Bhat et al. [84] also observed that MJ
treatment (100 μM) induced a rapid increase in the transcript level of UGTs in Picrorhiza
kurrooa. These findings indicate that the addition of JA to the culture medium increased the
accumulation of salidroside in a concentration and time-dependent manner. The results suggest
that the treatment with 100 μM JA is an effective way to enhance the biosynthesis of
salidroside in CCA suspension cultures of R. imbricata.

Effect of JA on Total Phenolic Content and Total Flavonoid Content

Jasmonic acid is considered to be involved in the signal transduction pathway that induces the
production of defense compounds in plants, such as alkaloids, terpenoids and polyphenols
[85]. Therefore, the present study investigated the influence of JA on TPC, TFC, TPP and TFP
in CCA suspension cultures of R. imbricata. The time course analysis of JA-treated CCA
suspension cultures showed an exponential increase in TPC and TFC during the first 4 days
and then a gradual decrease until day 6 (Fig. 3 e, g). After 4 days of addition of 100 μM JA, the
CCA suspension cultures displayed maximum TPC (14.69 ± 0.06 mg CHA/g DW) and TFC
(4.95 ± 0.02 mg RE/g DW), which was 1.50-fold and 1.68-fold higher than the control (TPC:
9.74 ± 0.06 mg CHA/g DW and TFC: 2.93 ± 0.02 mg RE/g DW). In contrast, 5 μM JA
induced low accumulation of TPC (11.53 ± 0.04 mg CHA/g DW) and TFC (3.95 ± 0.02 mg
RE/g DW), as compared to 100 μM JA-treated cultures (p ≤ 0.05, Fig. 3 e, g). As shown in
Fig. 3 f, h, 100 μM JA-treated cultures showed maximum TPP (103.59 ± 0.67 mg/l) and TFP
(34.89 ± 0.25 mg/l) after 6 days of treatment, which was 1.26-fold and 1.49-fold higher than
the control (TPP: 82.14 ± 0.52 mg/l and TFP: 24.74 ± 0.19 mg/l). These findings clearly
demonstrated a concentration and time-dependent response to JA treatment. Similar responses
have been previously reported in other plant cell cultures [86]. Gadzovska et al. [46] reported a
6-fold increase in phenolic compounds and flavonols in Hypericum perforatum suspensions
cultures after addition of JA to the culture medium. This enhancement in phenolic compounds
is usually associated with a transient increase in activities of key enzymes of the
phenylpropanoid pathway such as phenylalanine ammonia lyase and chalcone isomerase
[42, 87]. Jasmonates are considered as conserved elicitors of plant secondary metabolism
[88]. Several researchers have reported that in different plant species, such as, Arabidopsis,
tobacco and periwinkle, JA trigger a transcriptional cascade, consisting of primary inductive
wave, which regulate the primary members of JA signalling (COI1 (CORONATINE INSEN-
SITIVE 1), MYC2 (bHLH transcription factor) and Jasmonate ZIM-domain (JAZ) repressor
proteins), followed by several other waves that include members of other transcription factor
family (AP2/ERF), which eventually regulate the species-specific secondary metabolic path-
ways [89–91]. In primary inductive wave, JA-Ile complex stimulates the recruitment of JAZ
repressor proteins (negative regulator of JA-responsive genes) by SCFCOI1 complex for
ubiquitination and subsequent degradation by 26S proteasome. Subsequently, MYC2 can
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activate transcription of early JA-responsive genes [92]. Therefore, in case of CCA suspension
cultures of R. imbricata, genome-wide transcript profiling studies are warranted to elucidate
the JA-induced biosynthesis of phenolic compounds. In this study, the phenolic compounds
production profile indicated that 4th day is the optimum time for the harvest of the CCA
suspension cultures to obtain maximum phenolic compounds production. The results demon-
strated the suitability of JA-elicited CCA suspension cultures of R. imbricata for the biotech-
nological production of phenolic compounds, which have high medicinal and commercial
value [27]. The JA-elicited CCA suspension cultures of R. imbricata could be used as a
potential model system to expand and enhance our understanding on the biosynthesis of
phenolic compounds.

Effect of JA on Ascorbic Acid Content

As shown in Fig. 3 i, the JA-treated CCA suspension cultures of R. imbricata showed an
exponential increase in AAC during the first 4 days and then a gradual decrease until day 6.
After 4 days of treatment with 100 μM JA, the CCA suspension culture showed maximum
AAC (17.93 ± 0.03 mg/g DW), which was 1.12-fold and 1.35-fold higher than the 5 μM JA-
treated cultures (16.08 ± 0.04 mg/g DW) and control (13.20 ± 0.13 mg/g DW), respectively
(Fig. 3 i). As shown in Fig. 3 j, 100 μM JA-treated CCA suspension cultures demonstrated
maximum AAP (126.47 ± 0.19 mg/l) after 6 days of treatment, which was 1.13-fold higher
than the control (111.35 ± 1.10 mg/l). A similar increase in de novo synthesis of ascorbic acid
has been observed in jasmonate-elicited BY-2 cells of tobacco, which involves the induction of
late-jasmonate responsive GDP-Man 3″,5″-epimerase and L-gulono-1,4-lactone dehydroge-
nase genes [93, 94]. A rapid synthesis and regeneration of ascorbate in response to JA
treatment has been associated with the protection of tissue against increased ROS levels
[95]. Nishikawa et al. [96] found that the expression of key enzymes responsible for ascorbate
regeneration, MDAR and DHAR was increased upon methyl jasmonate treatment. The results
suggest that the JA-treated R. imbricata CCA suspension cultures could be considered as a
promising alternative source of ascorbic acid, which is a powerful water-soluble antioxidant
with multiple health benefits [97, 98].

Effect of JA on Antioxidant Activity

The DFRSA and TAC antioxidant assays were performed to assess the therapeutic potential of
JA-treated CCA suspension culture of R. imbricata. As shown in Fig. 3 k, l, the JA-treated
CCA suspension cultures of R. imbricata showed an exponential increase in DFRSA and TAC
during the first 4 days of culture. After 4 days of addition of 100 μM JA, the CCA suspension
cultures displayed maximum DFRSA (56.32 ± 0.06%) and TAC (60.45 ± 0.31 mg QE/g DW),
which was 1.04-fold and 1.03-fold higher than the control (DFRSA: 53.90 ± 0.04% and TAC:
58.31 ± 0.13 mg QE/g DW). In contrast, 5 μM JA-treated CCA suspension cultures showed
low DFRSA (54.70 ± 0.10%) and TAC (59.49 ± 0.13 mg QE/g DW), as compared to 100 μM
JA-treated cultures (p ≤ 0.05, Fig. 3 k, l). The correlation analysis showed a positive correlation
between the phenolic compounds (Salidroside, TPC, TFC), AAC and antioxidant activity of
JA-treated CCA suspension cultures of R. imbricata (Supplementary Table 1). Similar corre-
lation pattern has also been observed in other plant cell cultures [99, 100]. The difference in the
antioxidant activities at different time intervals could be due to the variations in the quantity of
phenolic compounds as shown in Fig. 3c–g. The results suggest that the JA-elicited
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R. imbricata CCA suspension culture is an effective alternative source of natural antioxidants
for pharmacological preparations. These natural antioxidants have protective effects against
oxidative stress-related disorders like cancer and coronary heart disease [101].

Effect of JA on Antimicrobial Activity

Jasmonic acid has been implicated in the production of multifarious array of plant chemical
defenses, such as pathogenesis-related molecules, including antimicrobial secondary metabo-
lites, proteinase inhibitors and toxins [95]. Therefore, the present study investigated the effect
of JA-treated CCA suspension cultures of R. imbricata against the Gram-negative Escherichia
coli and Gram-positive Staphylococcus aureus. Well diffusion assay postulates a potent
antimicrobial activity of JA-treated CCA suspension cultures (Table 1). As shown in
Table 1, the JA-treated (5 and 100 μM) CCA suspension cultures exhibited highest antimi-
crobial activity against Gram-negative E. coli with MIC – 2.5 mg/ml and MBC – 5 mg/ml,
which was 2-fold lower than the control (p ≤ 0.05). However, the JA-treated and control
cultures showed moderate antimicrobial activity against Gram-positive S. aureus (MIC –
10 mg/ml, MBC - 20 mg/ml; Table 1). These variations in the susceptibility of test microor-
ganisms might be attributed to the differences in their cell wall structures [102]. The high
antimicrobial activity of JA-treated CCA suspension cultures of R. imbricata against E. coli
could be due to the presence of high amount of phenolic compounds (Fig. 3c–g). A similar
positive correlation between the phenolic compounds and antimicrobial activity has been
previously reported in cell cultures of several medicinal plants [103, 104]. The antimicrobial
activity of phenolic compounds could be due to its ability to deform the structure and
functionality of membrane proteins [105]. The phenolic compounds can also interfere with
the membrane functions (nutrient uptake and electron transport) and alter the microbial cell
permeability [105]. Banasiuk et al. [106] have also proposed that the secondary compounds
have a substantial effect on antimicrobial properties. The results suggest that the JA-treated

Table 1 Antimicrobial activity of jasmonic acid-treated CCA suspension cultures of Rhodiola imbricata

Treatments Zone of inhibition (mm)* Minimal inhibitory
concentration (mg/l)

Minimal bactericidal
concentration (mg/l)

Escherichia
coli

Staphylococcus
aureus

Escherichia
coli

Staphylococcus
aureus

Escherichia
coli

Staphylococcus
aureus

100 μM
JA-treated

cultures

12 ± 1a 7 ± 1a 2.5 10 5 20

5 μM
JA-treated

cultures

11 ± 1a 7 ± 1a 2.5 10 5 20

Control
(untreated

cultures)

8 ± 1b 7 ± 1a 5 10 10 20

*Diameter of inhibition zone (including diameter of well 5 mm). Values are mean ± standard error. Mean values
followed by the similar letters within a column are not significantly different at p ≤ 0.05 according to Bonferroni
post hoc test

830 Applied Biochemistry and Biotechnology (2019) 187:817–837



CCA suspension cultures of R. imbricata could be used as an effective antimicrobial agent
against potent pathogenic bacterial strains.

Conclusion

In this study, we have successfully optimized the culture media components (MS medium
supplemented with 30 g/l sucrose, 3 mg/l NAA and 3 mg/l BAP) for sustainable, eco-friendly
and economical production of medicinally important phenolic compounds by CCA suspension
cultures of R. imbricata. Elicitation of CCA suspension cultures with 100 μM JA further
increases the yield of phenolic compounds (Salidroside (5.25 mg/g DW), TPC (14.69 mg
CHA/g DW) and TFC (4.95 mg RE/g DW)) with concomitant enhancement in antioxidant
(DFRSA: 56.32% and TAC: 60.45 mg QE/g DW) and antimicrobial activities. Thus, the JA-
elicited CCA suspension culture of R. imbricata could be considered as a promising alternative
source of phenolic compounds and natural antioxidants with potential applications in phar-
maceutical and nutraceutical industry. The principal findings of this study could be highly
beneficial for bioprocess engineers for potential large-scale production of bioactive com-
pounds for commercial applications. Based on our findings, future studies can be prospectively
directed towards industrial-level production of phenolic compounds of Rhodiola imbricata in a
bioreactor.
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