JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION - 2022

B.Tech. VII Semester (CSE, IT)

COURSE CODE (CREDITS): 19B1WCI731 (2)

MAX. MARKS: 35

COURSE NAME: Computational Data Analysis

COURSE INSTRUCTORS: Dr. Ekta Gandotra

MAX. TIME: 2 Hours

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

- Q1. a. What is a dendrogram in hierarchical clustering? How to get the optimal number [3] CO3 of clusters using a dendrogram?
 - b. Consider the following distance matrix for 6 objects. Using single linkage [3] CO3 Agglomerative hierarchical clustering, show the first two merge steps (to form clusters).

	A	B	C	D	T E	R
A	0.00		 			
В	0.71	0.00		- 1		
C	5.66	4.95	0.00			
D	3.61	2.92	2.24	0.00	-	
E	4.24	3.54	1.41	1.00	0.00	
F	3.20	2.50	2.50	0.50	1.12	0.00

Q2. a. Explain Adaboost algorithm with the help of an example.

[4] CO5

b. Consider the following data pertaining to two books:

[2] CO5

Width (X_1)	Thickness (X ₂)	Weight (Y)
8	1.8	4.4
8	0.8	2.7

Which of the following two linear hypothesis functions results in more over-fitting and why?

$$Y_{pred} = -3.94 + 0.18 X_1 + 0.34 X_2$$
 ----(1)
 $Y_{pred} = 2843 - 957 X_1 + 300 X_2$ ----(2)

- Q3. a. Plot the sigmoid function 1/(1 + e^{-wX}) vs. X ∈ R for the weight w ∈ {1, 5, 100}. [3] CO2
 Use these plots to argue why a solution with large weights can cause logistic regression to overfit. (Note: A qualitative sketch is sufficient.)
 - b. List at least four differences between L1 and L2 regularization.

[3] CO5

- Q4. a. Elucidate a method used to evaluate the quality of clustering models with the [3] CO3 help of an example.
 - b. Consider the following distance matrix for the data points S1, S2... S8. Label [3] CO3 these (as core, border and noise points) to form clusters using DBSCAN algorithm. Take Epsilon = 3.5 and MinPts = 3.

	S1	S2	S3	S4	S5	S6	S7	S8
S1	0.00					_		
S2	4.24	0.00						
S3	4.47	5.10	0.00					
S4	3.16	4.00	1.41	0.00				
S5	2.00	5.83	4.00	3.16	0.00			
S6	1.00	3.61	5.00	3.61	3.00	0.00		•
S7	6.08	3.61	3.61	3.61	6.71	6.00	0.00	
S8	2.00	3.16	2.83	1.41	2.83	2.24	4.12	

- Q5. a. Explain the principle of the gradient descent algorithm using a labeled diagram. [3] CO1
 - b. What are the objectives of feature selection methods? Consider the following [3] CO4 dataset of training examples:

A	В	Class Label
T	T	C0
T	T	C0
T	F	C1
F	F	C0
F	T	C1
F	T	C1

Find the information gain of attribute B relative to these training examples?

- Q6. a. Give the importance of eigen values and eigen vectors in PCA? Suggest a method [3] CO4 to calculate the variance captured by each principal component.
 - b. Suppose 1,000 patients get tested for flu; out of them, 900 are actually healthy and [2] CO1 100 are actually sick. For the sick people, a test was positive for 62 and negative for 38. For the healthy people, the same test was positive for 18 and negative for 882. Construct a confusion matrix for the data and compute the accuracy.