JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT T-3, EXAMINATION- 2022

B. Tech. III Semester (CE)

COURSE CODE (CREDITS): 18B11MA311 (03)

MAX. MARKS: 35

COURSE NAME: NUMERICAL METHODS

COURSE INSTRUCTORS: MDS

MAX. TIME: 120 Minutes.

Note: All questions are compulsory. Marks are indicated against each question in square brackets. Scientific calculator is allowed.

Quest.(1) Prove that:

(CO-3)[2

$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$

Quest.(2) Perform three iteration of the Gauss-Jacobi iteration method for solving the system of equations (CO-2)[4]

$$\begin{bmatrix} 6 & 1 & 1 \\ 1 & 4 & -1 \\ 1 & -1 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 20 \\ 6 \\ 7 \end{bmatrix}$$

Quest.(3) Find a real root of $3x + \sin x = e^x$, correct to four decimal places using the Newton-Raphson method. (CO-1)[4]

Quest.(4) (a) Evaluate $\int_0^2 \int_0^2 f(x,y) dx dy$ by Trapezoidal rule for the following data:

(CO-5)[3+3]

	Carlos Carlos Carlos			an analy medicine substituti
y - 0	0.5		1.5 1.5	2 2 2 2
0 2	3	4	5	5
1 3	4	6	9	11
4	6	8	11	14

(b) The distances (x cm) traversed by a particle at different times (t seconds) are given below

	1							
Į	** †	0.0	0.1	0.2	0.3	0.4	0.5	0.6
			•		1	I .		
,	x	3.01	3.16	3.29	3.36	3.40	3.38	3.32
	, ,			L	<u> </u>	<u> </u>	L	L

Find the velocity of the particle at t = 0.5 seconds.

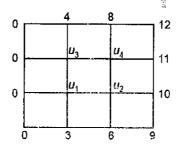
Quest.(5) (a) Solve the initial value problem $\frac{dy}{dx} = x(y-x)$, y(2) = 3, in the interval [2, 2.4] using Runge- Kutta fourth order method with step size h = 0.2 (CO-6)[6+3]

(b) A boundary value problem is defined by

$$\frac{d^2y}{dx^2} = x - y,$$

subject to the boundary conditions

$$y(0) = 0, y(1) = 2.$$


With h = 0.5, use the finite-difference method to determine the value of y(0.5).

Quest.(6) By using the method of least squares, fit a second degree parabola to the following data:

x	-3	-2	-1	0	1	2 / 3
у	1.1	1.3	1.6	2.0	2.7	3.4 4.1
						* (00 a)/=

(CO-4)[5]

Quest.(7) The function u(x, y) satisfies Laplace's equation $u_{xx} + u_{yy} = 0$, at all points with in the square given below and has the boundary values as indicated. Perform three iterations and compute a solution by using Jacobi's methods. (CO-6)[5]

