JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATIONS-2022

B.Tech-I Semester (CS/IT/ECE/Civil)

COURSE CODE (CREDITS): 18B11PH111 (4)

MAX. MARKS: 25

COURSE NAME: ENGINEERING PHYSICS-1

COURSE INSTRUCTORS: PBB, SKK, VSA, RRS, SKT, HAZ, SBD_

MAX. TIME: 1.5 Hr

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

- Q1. (a) Find the minimum attainable pressure for an ideal gas in the process in which temperature is $T=T_0 + \alpha V^2$; where To and α are positive constants and V is volume of 1-mole of gas. Also draw the Pys V plot for this process.
- (b) Using laws of thermodynamics prove in which processes the thermodynamic potentials internal energy (U) and Enthalpy (H) are constants. [2-marks] [CO-4]
- (c) Using first law of thermodynamics prove that PV^{γ} = constant for an adiabatic process, where $\gamma = C_p/C_v$.

 [3-marks] [CO-4]
- Q2. (a) A certain length L_1 of 5% solution causes an optical rotation of 20 degrees. How much length L_2 of 10% solution of the same substance will cause 35 degree rotation. [2-marks] [CO-2]
- (b) Plane polarized light is incident on a plate of quartz cut with faces parallel to optic axis. Calculate the thickness for which the phase difference between two rays is 60 degree, where μ o=1.5442 and μ e=1.5583 and λ =5000Å. [3-marks] [CO-2]
- Q3. (a) Describe using diagram how the elliptically polarized is produced and detected. Also show how the elliptically polarized light can be differentiated from partially polarized light. [3-marks] [CO-1]
- (b) A diffraction grating which has 4000 lines to a centimeter is used at normal incidence. Calculate the dispersive power of the grating in the third order spectrum in the wavelength region 5000Å. [2-marks] [CO-2]
- Q4. (a) Two plane glass surfaces in contact along one edge are separated at the opposite edge by a thin wire. If 20 interference fringes are observed between these edges in sodium light (5890Å) of normal incidence, what is the thickness of the wire?

 [3-marks] [CO-2]
- (b) In a Fresnel biprism experiment, the fringe width is observed to be 0.087 mm. What will it become if the slit to biprism is reduced to ¾ of the original distance? [2-marks] [CO-2]
- (c) A lens of focal length 100 cm forms fraunhofer diffraction pattern of a single slit of width 0.04 cm in its focal plane. The incident light contains two wavelengths λ_1 and λ_2 . It is found that the fourth minimum corresponding to λ_1 and fifth minimum corresponding to λ_2 occur at the same point 0.5 cm from the central maximum. Calculate λ_1 and λ_2 . [2-marks] [CO-1]