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Abstract
Computational approaches have provided new biological insights into the chemical mechanism of action of cellulases, which are
used in the industrial production of bioethanol. Fine-grained methods, such as molecular dynamics and quantum mechanics, as
well as coarse-grained methods, such as elastic network models, were used to investigate how the chemistry and structural
dynamics of these enzymes contribute to their function. In this review, we highlight recent computational studies to understand
this crucial biofuel enzyme class’s chemistry and structural dynamics, as well as their significance in revealing enzymatic
mechanism of action. Computational methods can complement and amplify the findings of experimental methods, which can
be used in tandem to create more efficient industrial enzymes.

Keywords Cellulases . Molecular dynamics simulations . Multiscale modeling . Coarse-grained simulations . All-atom
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Introduction

Cellulases are a class of enzymes found in microbial life forms
that break down cellulose and polysaccharides to obtain
shorter (and sometimes, monomeric) polymer sugars.
Cellulases play an important role in organisms, as they are a
critical part of the metabolic pathways that confer the ability to
obtain and use energy that sustain life. Without cellulases, life
on Earth would not have existed.

In addition to their role in the cellular processes, driven by
the search for new non-fossil-based alternative energy re-
sources, cellulases are used in industrial ethanol production
for fuel, as sugar molecules that are broken down by cellulases
can be chemically converted into ethanol. Therefore, improv-
ing our understanding of the enzymatic mechanism and action
of these amazing enzymes would not only satisfy our intellec-
tual curiosity but also will help develop alternative energy
resources for the humanity.

Cellulases and their associated proteins are, by itself, an
exciting and active area of research. For example, the database
Carbohydrate-Active enZymes (CAZy) is a niche database
that has curated information for enzymes such as glycosyl
hydrolases, glycosyl transferases, polysaccharide lyases, car-
bohydrate esterases, and auxiliary activity enzymes [1]. The
role of cellulases is not limited to degradation of cellulose, but
it also extends to plant energy storage, plant’s life cycle, and
others. Industrially, cellulases are widely used in paper and
textile industries for processing recycled paper, enhancing
softness of fabrics, and converting hardwood fibers to softer,
malleable fibers for fine paper products [2]. In some deter-
gents, cellulases are used as ingredients to make fabric appear
brighter and relatively whiter. For these purposes, organisms
such as Trichoderma reesei andClostridium thermocellum are
frequently used as a source for obtaining large quantities of
biocatalysts, since their genome harbors multiple and diverse
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cellulases, exo-glucanases, endoglucanases, and other genes
of commercial importance [3].

In the case of biofuels, a diverse set of enzymes needs to be
used during industrial processes, which act synergistically to
break down the polymeric structure of cellulose to simple
sugars. Because cellulolytic enzymes have different and
unique mechanisms of action, a mix of enzymes is sometimes
used industrially for the specific biomass to be degraded.With
the second-, third-, and fourth-generation biomass for biofuel
production, the determination of which enzymes and compo-
sitions will be most effective in converting biomass into sim-
ple sugars is a challenge, and computational methods were
used to determine the optimal composition. Some of these
computational methods include predicting the tertiary struc-
ture of enzyme and analyzing its structural dynamics to reveal
its mechanism of action. Simulations of an enzyme structure,
either by itself or in complex with substrate or another protein,
are performed using a fine-grained (i.e., all-atom model) or a
coarse-grained model. In either case, the trade-off is the level
of details vs. computation time. There are distinct advantages
and disadvantages of using each method, and researchers
make their choice of appropriate details based on the model
system and the hypothesis being tested.

Despite the importance of cellulases, however, our under-
standing into their structure, dynamics, and enzymatic action
is limited, for this enzyme class. In this review, we will pri-
marily focus on computational studies of this rich enzyme
family, which complement experimental investigations and
inform on molecular and structural mechanisms of enzymatic
action. To accomplish this, we will first provide a brief de-
scription of computational methods followed by an introduc-
tion to cellulase enzymes, and then, we will review insights
from computational studies in detail for specific cellulase fam-
ilies. The main objective of this review is to provide the over-
all landscape for the structural and dynamic studies of biofuel
enzymes using computational methods to understand enzy-
matic action and demonstrate how the use of these methods
advances our understanding of specific enzyme families.

Brief Review of Computational Methods Used
in Cellulase Studies

Enzymes function optimally through physical and chemical
arrangement of their structures, where the arrangement can
be local, such as breaking of existing bonds to create new
ones, or global, such as a conformational change causing dis-
tinct apoenzyme and holoenzyme structures. The local and
global changes in a protein structure are usually dynamically
coupled, and the exact coupling between these motions at
different physical and temporal scales is an intense area of
research. For example, some researchers argued that couplings
between different dynamic modes are related to allosteric

behavior of proteins. Some recent computational studies ex-
panded the classical definition of allostery, which is defined as
a massive restructuring of protein shape upon ligand binding,
to include coupled but localized motions of proteins, based on
some experimental evidence, therefore arguing that allostery
is not a behavior that is observed in some proteins, but it exists
in various degrees in all proteins [4–10]. But, such theoretical
interpretations often remain somewhat descriptive and lack
physical and chemical specificity. In contrast, molecular dy-
namics simulations applied with a selective level of molecular
details (fine-grained all-atom models vs. coarse-grained
models) generate results that can be validated against experi-
ments, such as single-molecule force spectroscopy [11] and
small-angle X-ray scattering (SAXS) [12]. In this review, we
will largely focus on computational methods related to molec-
ular dynamics.

Coarse-Grained Vs. Fine-Grained Modeling

Granularity in computations is the extent to which an entity is
divided into smaller groups of separable elements to facilitate
computations. There are two main modeling approaches for
biomolecular systems for granulation that incorporate differ-
ent levels of atomistic details: coarse-grained and fine-
grained.

In general, coarse-grained methods reduce computation
time and can provide insights into molecular mechanisms at
a longer time scales. However, coarse-grained approaches are
limited in yielding details for subtle structural changes. For
example, coarse-grained approaches can be used for studying
cell components and processes for their interdependence,
while atomically detailed simulations and molecular quantum
mechanics can be applied to a region of few atoms.

A commonly used coarse-grained approach is the elastic
network model (ENM) approach. These models use exper-
imentally determined protein structures at equilibrium as
input, and then, the fluctuations are calculated by simple
mode decomposition using normal mode analysis.
Although these models do not often provide atomistic de-
tails, their computational cost is usually much lower than
molecular dynamics simulations [13]. In addition to elastic
network models, other types of coarse-graining are applied
to molecular dynamics in terms of energetics: for example,
Martini force-field partition free energies between polar
and apolar regions of chemical entities are applied to the
studies of formation and fusion of vesicles, lamellar phase
transformations, and membrane protein assemblies [14];
ELNEDIN, which is a physics-based coarse-grained mod-
el, uses a structural Bscaffold^ of protein that reduces the
degree of freedom in the calculations [15].

Fine-grained methods include molecular dynamics (MD)
simulations, quantum mechanics (QM), and quantum
mechanics/molecular mechanics (QM/MM) methods. MD is
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suitable to understand the detail of molecular and atomistic
interactions that confer specificity to proteins. MD was ap-
plied to the simulations of polypeptide folding, biomolecular
association, partitioning between solvents, membrane/micelle
formation, chemical reactions and enzyme catalysis, photo-
chemical reactions, and electron transfer. MD factors in de-
grees of freedom for motions, boundary conditions as to a
system’s temperature and pressure, and force field to generate
dynamic trajectories by solving Newton’s equations of motion
to reveal structural mechanisms of enzymatic function [16].

In some cases, a combination of methods is used concur-
rently regardless of differences in time and space scales. These
multiscale modeling approaches incorporate the application of
both coarse-grained and fine-grainedmethods simultaneously,
and use atomistic details of a small region (e.g., active site of a
protein) and apply coarse-graining to the rest of the system to
obtain the overall dynamics of a large complex to attempt to
harness the advantages of both methods.

Constant-pH Molecular Dynamics

The constant-pH molecular dynamics (CpHMD) method in-
volves determination of the protonation states of titratable
sites in a protein at the specified pH. Detailed mechanistic
studies of pH-dependent conformational processes use
CpHMD to understand pH-coupled dynamical phenomena.
The CpHMD method is capable of predicting experimental
pKa values and the pH-dependent conformational dynamics,
but it is limited in modeling water titration and long-range
interactions [17].

Thermodynamic Integration

The thermodynamic integration method computes free energy
differences and other thermodynamic properties of the system
between two distinct states/conformations. To measure the
change from one state to another, parameters are slowly in-
creased to maintain equilibrium at each stage in the trajectory
[18]. The main requirement of the method is that the path
should be reversible. Due to the chance of employing non-
physical, but plausible paths (for example, allowing moves
that increase free energy), the method confers great flexibility
to molecular simulations. Both Monte Carlo and MD can be
used with this method when only the equilibrium states along
the path are needed to be simulated [18].

Metadynamics

Metadynamics is a sampling technique incorporating an addi-
tional bias potential that acts on multiple but selective number
of degrees of freedom as collective variables. Methods that
use this class include umbrella sampling and steered MD. The
approach pushes the system away from local free energy

minima and therefore allows exploring new reaction path-
ways. Moreover, no prior knowledge of the energetics of a
system is needed to implement metadynamics techniques.
The limitation is that because the model oscillates around
the free energy rather than converging to it, it is difficult to
decide as to when to stop the simulation. Second, identifying a
set of collective variables for describing complex processes is
very difficult to achieve [19].

Continuum-Molecular Dynamics

The continuum-molecular dynamics method generalizes sim-
ulated tempering to a continuous temperature space to provide
a smooth transition from microscale to macroscale [20] by
evaluating a conserved quantity that can be used to validate
a simulation.

Quantum and Molecular Mechanics

The QM andMM are part of quantum chemistry toolbox [21].
Quantum mechanical descriptions are used to model accurate
electronic rearrangements for those parts of a system that are
involved during a chemical reaction, but quantummodeling is
computationally expensive. Though less accurate, MM, on the
other hand, is faster and computationally less costly. For sim-
ulations that do not involve a chemical reaction, the use of a
simple MM force-field model is appropriate, which reduces
the simulation time. To overcome the limitations of a full
quantum mechanical or a full molecular mechanics descrip-
tion, the hybrid QM/MMmethods are an option, in which the
system is treated in part at the level of quantum chemistry
(QM), retaining the computationally cheaper force field
(MM) for the larger part [22].

Monte Carlo Methods

Monte Carlo methods are useful in the study of thermodynam-
ics of the protein over its conformational space and also in
searching for the low-energy conformations. The major limi-
tation of Monte Carlo is that it is a data-intensive method [23].
A broad class of Monte Carlo algorithms, mean field particle
methods, simulates a sequence of probability distribution for a
non-linear evolution equation [24]. In contrast to Monte
Carlo, this technique uses sequentially interacting samples,
in a way that is similar to statistical Markov processes.

Simulated Annealing

Simulated annealing (also known as generalized simulated
annealing) is often used when a large search space with many
local minima needs to be studied by using a probabilistic
approach to approximate the global optimum of a given func-
tion. With respect to enzymes, the approach involves the

852 Bioenerg. Res. (2018) 11:850–867



system to be heated up to a high temperature then gradually
cooling to find the global minima. When the energy landscape
at the needed temperature is smooth, however, this method is
limited, because it cannot identify an optimal solution [25].

Structural and Functional Description
of Cellulase Families and Insights
from Computational Studies

We have divided this section into various subsections in terms
of the enzymes used for studying the protein dynamics. We
have compiled and tabulated the MD parameters used in the
studies cited below in Supplementary Table T1 that the reader
will find useful.

Family 7 Cellobiohydrolase

Most of these enzymes cleave β-1,4-glycosidic bonds in cel-
lulose and β-1,4-glucans, which are its substrates. According
to Koshland [26], there are two classifications based on the
mechanism of action of the enzymes, i.e., retaining and
inverting, out of which the family 7 cellobiohydrolase is clas-
sified as retaining enzymes. The cellobiohydrolase’s end prod-
uct is cellobiose, a disaccharide, which is one step away from
converting the cellulose polymer to glucose units (Figs. 1a, b
and 2a). Computational studies on cellobiohydrolase (Cel7A,
Cel7B) have focused on the overall structural dynamics either
as a free enzyme or in complex with various substrates. For

example, the simulations for Cel7B from Melanocarpus
albomyces were performed at a constant pH to analyze the
dynamic fluctuations of the loop regions [27], because the
loop regions of cellulases, in general, play a major role in
enzymatic function [27]. The CpHMDworks by computation-
ally coupling the protonation states of some amino acids with-
in the framework of classical MD and capturing the residue
pKa shifts and dynamic charge coupling. In the MD simula-
tions of 70 ns with 2-ps steps across various pH levels, the
loops showed differential fluctuations. At active pH, loop II
showed increased flexibility compared to other pH levels.
When CpHMD was performed for T. reesei Cel7A, a well-
studied enzyme of industrial importance, the loop regions
showed flexibility [28] that correlated with the neutron scat-
tering experiments. Interestingly, whereas the presence of
charged residues (Asp and His) in Melanocarpus albomyces
is thought to contribute to the elevated pH profile compared to
T. reesei Cel7A [28], these residues are not present in the loop
region; therefore, the enzymatic function of this protein is an
interplay of amino acid specificity and structural dynamics,
possibly as a result of dynamics of loop regions on the protein
surface. Separate comparisons of tunnel entrance at specific
sites, loops near a specific subsite, loops near the catalytic
center, and comparisons of product binding region with re-
spect to other GH7 cellobiohydrolases revealed significant
structural differences relating to differences in processivity,
endo-initiation, and product inhibition [67]. Comparing
T. reesei’s Cel7Awith Cel7A of Trichoderma harzianum sug-
gests that although they share high sequence homology (81%

Fig. 1 Metabolic pathways and breakdown of crystalline cellulose. a
The enzymes described in this study are present in KEGG as part of the
sucrose and starch metabolic pathway, namely endoglucanase,
cellobiohydrolase, and lytic polysaccharide monooxygenase. Also, GH9
is part of the same metabolic pathway but break downs 1,3-β-glucan.

Similarly, Man5B is part of the fructose and mannose metabolic
pathway, and GH18 is part of the amino sugar and nucleotide sugar
metabolic pathway. b Schematic representation of enzymes involved in
the conversion of cellulose to glucose
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sequence identity), the short side chains of the adjacent resi-
dues in the catalytic tunnel create extra gaps at the side face of
the catalytic tunnel [40].

The dynamics of a substrate-bound enzyme is signifi-
cantly different than the free form. The Cel7A from
Geotrichum candidum strain 3C (GcaCel7A) was subjected
to MD simulation for 100 ns in three different setups: (1)
in the free form, (2) in complex with a long substrate
(cellononaose), and (3) in complex with the microfibril of
cellulose [31]. In these three different MD simulations,
GcaCel7A shows similar structural and functional charac-
teristics to the industrially relevant HjeCel7A (from
Hypocrea jecorina) (Table 1). On the other hand, the
ligand-bound MD simulations on T. reesei Cel7A
(TrCel7A) showed that there exists a competitive binding
in the presence of lignin, which is a known inhibitor and a
by-product of the plant biomass during the pre-processing
step. Successful removal of lignin ensured high turnover for
the enzyme catalyst. Using a mix of crystalline and non-
crystalline fibers and in the presence of 468 lignin

molecules, the 1312-ns-long simulation indicated that the
hydrophobic surface of the cellulose is the preferred bind-
ing site for both lignin and TrCel7A [29]. Lignin also was
observed to bind to the hydrophobic patches of the
carbohydrate-binding module (CBM) attached with
TrCel7A to amplify its inhibitory activity. Similarly, MD
simulation on the PfCBH1 (cellobiohydrolase belonging to
GH7 family) from Penicillium funiculosum with microcrys-
talline cellulose revealed that the binding of substrate is
relatively more accessible due to structural flexibility when
compared with T. reesei and this might have a role in
relatively faster product expulsion, thus a higher tolerance
for product inhibition, i.e., cellobiose [30]. Study on Cel7A
and Cel7B of T. reesei with the help of mutants suggests
the structural differences between both the enzymes around
the catalytic center, at active site tunnel entrances, and
exits, all of which signify the processivity in GH7s [39].
Also, Cel7B catalytic domain of T. reesei with a cellulose
microfibril revealed as to the domain’s complexation on
cellulose chains from a crystal surface [33].

Fig. 2 Compilation of biofuel enzymes studied using computational
methods. Cartoon representation of the structures mentioned in this
review (Table 1), where the helices are colored cyan, beta-strands are
colored red, and loops are colored magenta. a Family 7 cellobiohydrolase
(pdb id: 8cel, 1eg1). The protein corresponding to pdb id: 8cel is prepared

from homology modeling, and we have used the same coordinates of the
modeled structures as used originally for carrying out the simulations. b
Endoglucanase (pdb id: 3qr3 and 3ndy). cMan5B (pdb id: 3w0k). dGH9
(pdb id: 3ez8). e Cel48F (pdb id: 1f9d). f GH18 (4axn). g GH6 (pdb id:
1qk2 and 4avn)
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Table 1 Enzymes used in biofuel application reviewed in this paper, detailing the MD simulation time

Family Enzyme PDB Structure from MD production run References

Family 7
cellobiohydrolase

Cel7B 2RFW Crystallography 70 ns [27]

Cel6A, Cel7A 8CEL Theoretical model 200 ns [28]

Cel7A 8CEL Theoretical model 1312 ns [29]

CBH1 – Homology model from
8CEL

100 ns [30]

Cel7A 4ZZV Crystallography 100 ns × 3 [31]

Cel7A 1CBH and
mutants

NMR spectroscopy 20 ns [32]

Cel7B 1EG1 Crystallography 100 ns [33]

Cel7A 8CEL
5CEL
4C4C

Theoretical model
Crystallography
Crystallography

500 ns [34]

Cel7A 8CEL Theoretical 20–30 ns × 5 (1 for reach binding
position)

[35]

Cel7A (HirCel7A)
Cel7A (HjeCel7A)
Cel7D (PchCel7D)

2YG1, 2XSP
8CEL
1GPI

Crystallography
Theoretical model
Crystallography

250 ns [36]

Cel7A
Cel6A

8CEL
1QK2

Theoretical model 100 ns × 4 [37]

Cel7A
Cel7B

8CEL
1EG1

Theoretical model
Crystallography

250 ns [38]

Cel7A
Cel7B

8CEL
1EG1

Crystallography
Crystallography

250 ns [39]

Cel7A (TrCel7A)
Cel7A (ThCel7A)

8CEL
2YOK

Theoretical model
Crystallography

60 ns [40]

LPMO Cel6A, Cel7A 1QK2 Crystallography 500 ns [41]

GH61D – Homology model from
3EII

100 ns [42]

ScLPMO10B
ScLPMO10C

4OY6
4OY7

Crystallography
Crystallography

8000 ns [43]

GH61D 4B5Q Crystallography 10 ns [44]

Cellulosome Cellulosome 4 IU3 Crystallography 450 ns [45]

Cellulosome 3KCP Crystallography 100 ps [46]

Type I cohesin–dockerin
complex

1OHZ (D39N) Crystallography 6 ns [47]

Type II cohesin–dockerin
complex

2B59 Crystallography 20 ns [48]

Cel48F Cel48F 1KWF Crystallography 10 ns [49]

Cel48F 1F9D mutant
(Q55E)

Crystallography 5 ns [50]

Cel8A 1KWF Crystallography 50 ns [51]

Endoglucanase Cellulase 3QR3 mutant
(E54D)

3AMD
3AXX

Crystallography 500 ns [52]

E1 1VRX Homology model from
1VRX

500 ns [53]

EngD 3NDY Crystallography [54]

Endoglucanase 3 4H7M
1H8V

Crystallography 120 ns (each) [55]

Cel5A – Homology from 3QR3 100 ns [56]

Cel7B 1EG1 Crystallography 15 ns × 3 [57]

Cel8A 1CEM (G283P) Crystallography 4 ns [58]

Cel5A 3QR3 Crystallography 100 ns [59]

EG 1KS4 Crystallography 32 ns [60]

GH46 Cellulase 5E0C
5E09

Crystallography 50 ns [61]
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Similar dynamics on substrate-bound form revealed the
cellulose binding site was highly conserved in three enzymes
when bound with cellononaose: Cel7A from Heterobasidion
irregulare (HirCel7A), H. jecorina (HjeCel7A), and Cel7D
from P. chrysosporium (PchCel7D) [36]. HjeCel7A, this time
in complex with a cellodextrin nanomer chain, was placed at
five different positions around the binding site, and the
cellodextrin chain was observed to spontaneously diffuse into
the catalytic tunnel by a cellobiose unit [35]. Further, it was
suggested by means of potential mean force calculations that
the Cel7A recognizes the free cellulose-reducing chain end
[35]. In one case, it was suggested that the glycosylation re-
action serves as the rate-limiting step in cellulose degradation
[34]. A two-step simulation protocol that was implemented to
observe the binding and interaction of Cel7A’s CBM with the
cellulose Iβ fiber showed the binding preference of CBM
toward the hydrophobic faces of the fiber rather than the hy-
drophilic ones via a 40-ns-long simulation [68]. In a related
study, the flexible, glycosylated linkers of CBM bound to
T. reesei’s TCel6A and TrCel7A were shown to bind non-
specifically to the cellulose surface [37].

To study the interactions between the important residues of
T. reesei Cel7A CBM and cellulose, a thermodynamic inte-
gration method was used to calculate the cellulose–Cel7A
CBM binding free energy changes caused by Y5A, N29A,
Y31A, Y32A, and Q34A mutations (pdb id: 1cbh) to demon-
strate that interactions between residues and cellulose are
dominated by the electrostatic changes [32]. The Cel7A from
T. reesei was studied with MD to understand the structure–
function relationships that glycosylation imparts to linkers.
The enzyme is an intrinsically disordered protein most likely
due to the absence of ordered secondary structure for the link-
er, as validated via 360-ns-long simulations. It was reported
that the Cel7A linker is comparatively more disordered than
other linkers in T. reesei cellulases [69].

MD simulations were used to examine the binding of cel-
lobiose to the TrCel7A cellobiohydrolase and the effects of
mutations that reduce cellobiose binding without affecting the
structural integrity of the enzyme. The results showed that the
binding site of the product demonstrates a specific flexibility

that can hinder the cellobiose release sterically, though many
point mutations can still maintain the structural integrity of the
enzyme. It was suggested that there is a trade-off between
inhibition of the product and the efficiency of the catalyst [70].

The unique Cel7B from the marine wood borer, Limnoria
quadripunctata’s ability to operate in saline conditions was
investigated with a 250-ns-long MD simulation that showed
high flexibility of the exo-loops at the tunnel. The tolerance to
high salt concentration is probably due to acidic charge distri-
bution on its surface, and the aromatic residues at the entrance
of the tunnel may be involved in substrate binding [38].

Endoglucanases

Endoglucanases were broadly studied with respect to two
types: those that contain CBM domains and the ones that
do not. Endoglucanase D (EngD) from Clostridium
cellulovorans consists of a catalytic domain linked via a flex-
ible linker to a CBM domain (Figs. 1a, b and 2b). While
computational methods were not used to study the enzyme’s
structural dynamics, SAXS experiments revealed the flexibil-
ity of the linker that allows an extended conformation of
EngD in the solution, which proved the importance of the
CBM module. The cellotriose-bound EngD structure has an
extended active-site cleft, which contains Trp162, a residue
that is absent in few other variants of the enzyme with a
significantly reduced activity [54]. Endoglucanase 3 of
T. reesei (TrEG3) and T. harzianum (ThEG3), a member
of GH12 enzymes, does not contain the CBM domain, and
yet it catalyzes cellulose hydrolysis [55]. The tertiary struc-
ture of ThEG3 (at 2.07 Å resolution) was determined by X-
ray crystallography, and then, MD simulations were used to
investigate enzyme–substrate interactions to understand the
role that certain aromatic residues play in recognizing and
binding to the substrate. The study showed that due to the
significant spatial distance of this CBM-like cluster region
from the catalytic site, the productive substrate binding and
catalytic efficiency require longer oligosaccharide chains to
simultaneously bind to the catalytic triad and the aromatic
CBM-like cluster for efficient hydrolysis. The study

Table 1 (continued)

Family Enzyme PDB Structure from MD production run References

GH18 Chitinase 3IAN
4AXN

Crystallography
Crystallography

250 ns [62]

GH9 Cel9A-68 1TF4 Crystallography 50 ns [63]

Cel9A 3EZ8 Crystallography 10 ns [64]

GH6 Cel6B 4AVO
4AVN

Crystallography
Crystallography

260 ns [65]

Man5B Hexaose–Man5B complex 1GB1
1L2Y
3W0K

NMR
NMR
Crystallography

40 ns [66]
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highlighted the reason as to why shorter oligosaccharides
have inefficient hydrolysis by Cel12A [55].

To understand how ionic liquids (ILs) interact with en-
zymes at the molecular scale, endoglucanase (E1) from
Acidothermus cellulolyticus was simulated in aqueous 1-
ethyl-3-methylimidazolium chloride ([Emim]Cl) to study
potential inactivation mechanisms. The study showed that
the utility of ionic liquids is highly restricted by the en-
zyme incompatibility and the interactions that are crucial to
activation or inactivation of the results are unique. For
example, [Emim]Cl interacts with higher specificity to
E1’s binding site and disrupts native hydrophobic contacts,
leading to inactivation of E1 [53]. A similar study on GH5
family of endoglucanases from Trichoderma viride,
Thermogata maritima, and Pyrococcus horikoshii in the
presence of 1-ethyl-3-methyl-imidazolium acetate
([EMIM][OAc]) with water at various temperatures was
carried out [52]. The results did show that structural chang-
es that happen at a long time scale (500 ns) cause deacti-
vation of the enzymes. For example, in GH5 of T. viride,
the deformation of binding pocket is correlated with the
deactivation at low concentrations of the IL. Similarly,
the deactivation of GH5 of T. maritima is due to changes
in secondary structures that correlate with experimental
data. However, the GH5 of P. horikoshii did not show
any deactivation at low concentrations of IL [52].

A trimodular endoglucanase (CelB) with a CBM46 domain
and a rigid CBM_X domain sandwiched between them was
identified in Bacillus sp. BG-CS10, where the CBM46 do-
main interacts both with the catalytic domain and CBM_X
domain. The resulting structure is labeled as an L-shaped cel-
lulase. MD simulations for 50 ns indicated that the loop re-
gions of the catalytic domain that contain the aromatic resi-
dues involved in substrate binding undergo relatively large
structural changes, facilitating product release [61].

The computational studies for the BGLI gene include ho-
mology modeling for prediction of its tertiary structure from
multiple sequence alignment with three selected templates of
β-glucosidase. MD simulations were performed on the
docked structure of BGLI with cellulose ligand to identify
the ligand-binding domain of the enzyme. Stable conforma-
tions that were observed were in agreement with the structural
flexibility of the free enzyme [71].

A 3D model for VpEXPA2, an α-expansin involved in the
softening of Vasconcellea pubescens fruit, was built by com-
parative modeling strategy based on the structure of Phlp1 as
template, a β-allergen from Timothy grass (Phleum pratense).
Docking studies were performed to predict the putative bind-
ing of different octasaccharides to the protein: two different
hemicellulose octasaccharides and one cellodextrin 8-mer that
resembles a water-soluble cellulose molecule. MD simula-
tions were carried out for each substrate inside VpEXPA2
for 20 ns which showed a strong interaction to cellodextrin

8-mer polymer and, in contrast, a low interaction with hemi-
celluloses octasaccharide polymers. It is reasonably hypothe-
sized that the function of domain D1 of VpEXPA2 is highly
dependent on the binding of cellulose microfibril to domain
D2 [72].

The atomistic simulations based on classical interaction
potentials were used to examine the interactions of Cel5Awith
cellulose fibrils with amorphous-like and non-crystalline re-
gions. The analysis of the catalytic domain suggests that the
enzyme actually alters the cellulose structures and the charge
around the catalytic cleft in the domain plays a significant role
in enzymatic function [56].

Another structural study involved the prediction of the pu-
tative hydrogen bonds formed between the enzymes and
cellohexaose using homology models of NfEG12A from
Neosartorya fischeri P1 and endoglucanase from Aspergillus
niger. MD simulations were carried out to examine the effect
of loop 3 on the catalytic efficiency of GH12 endoglucanases.
Overall, the analysis through molecular mechanics/Poisson–
Boltzmann and surface area continuum salvation (MM/
PBSA) demonstrated that the hydrogen network interactions
between protein and the substrate are enhanced by loop 3,
resulting to an increase in the turnover rate, thereby improving
the catalytic efficiency [60].

From a created library of consensus mutation using the
sequence alignment of homologs of family 8 glycoside hydro-
lases, one of the mutants of Cel8A from Clostridium
thermocellum showed a higher thermal stability without any
loss of catalytic activity, possibly due to an increase in con-
formational rigidity of the protein backbone in unfolded state
that was observed in an MD simulation of the enzyme’s mu-
tant (G283P) [58].

The sequence and structural comparison studies were per-
formed for the CBMof three endoglucanases (EG1, EGO, and
EGV) modeled from T. reesei cellobiohydrolase CBHI. All
the structures were found to be similar in their cellulose-
binding domains, and disulfide bridges seem to stabilize the
polypeptide fold [73].

A TrCel5A cellulose complex was simulated with MD
using TrCel5A-catalyzed phosphate acid-swollen cellulose
(PASC) hydrolysis as a model system. The slowdown of hy-
drolysis was studied by kinetic measurements, and it was
found that the hydrolysis slowdown is correlated with the
adsorption. The simulations significantly helped in identifying
the potential residues involved in binding. The results from
the comparative analysis of the complex with the wild type
further showed that catalytic ability affects the slowdown of
endoglucanase [59].

The structure, dynamics, and behavior of the Cel7B from
Fusarium oxysporum were analyzed at 80 °C through MD
simulations. The dynamical factors for analysis involved hy-
drogen bonds and fluctuations in the turn regions, which in-
fluence the activity and stability of the enzyme [74].
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Another study using MD simulations identified the regions
in proteins that trigger the partial unfolding for denaturation
(also known as Bweak spots^). These regions were identified
in T. reesei Cel7B by calculating the distances between Cα in
contact and their capability of forming disulfide bonds [57].

Lytic Polysaccharide Monooxygenases

Lytic polysaccharide monooxygenases (LPMOs) are recently
discovered enzymes (Fig. 1a) that show immense industrial
application for degrading crystalline form of cellulose, as they
boost the degradation process significantly [75]. Their impor-
tance and their relevance were described in detail in the fol-
lowing reviews [41, 76, 77]. It is now well established that
LPMOs can be classified into three subtypes based on the site
of attack, namely (1) LPMO1 when oxidation occurs at C1
carbon, (2) LPMO2 when oxidation occurs at C4 carbon, and
(3) LPMO3 if either C1 or C4 carbons are attacked (Fig. 3).
Additionally, there are four CAZy families to which LPMOs
are classified as auxiliary activity enzymes (AA9, AA10,
AA11, and AA13) on the basis of their potential abilities to
help the originally classified enzymes, the glycoside hydro-
lases (GHs), the polysaccharide lyases (PLs), and the carbo-
hydrate esterases (CEs), in gaining access to the carbohydrates
encrusted in the plant cell wall [78].

Molecular insights into LPMO’s mechanism of action were
significantly improved by computational studies ranging from
QM/MM models to multiscale models (Fig. 3). The QM/MM
models that were built using the density functional theory on

LPMO belonging to the AA9 family from Thermoascus
aurantiacus shed light on the geometry and coordination
chemistry of the reactive oxygen with Cu(II) atom. The results
indicated that the formation of the complex (copper–oxyl re-
active oxygen species) drives the catalytic activity with a re-
bound step for oxygen to complete the cycle [79].

Another study informs us about the four-coordinate tetrag-
onal structure of T. aurantiacus in an oxidized state and a
three-coordinate T-shaped structure in a reduced state [80].
The O2 reactivity of the Cu(I) site was evaluated computation-
ally using experimentally calibrated DFT calculations. To de-
termine the number and type of coordinating ligands in Cu-
AA9, extended X-ray absorption fine structure (EXAFS) ex-
periments, which allows gathering information about atomic
energy-level structures and the metallic center coordination,
were performed on the oxidized and reduced enzyme forms to
demonstrate that the structure of the enzyme site is suitable for
rapid inner-sphere reductive activation of O2 by Cu(II)–super-
oxide formation [80].

MD simulations of LPMO from the AA9 family revealed that
the loop regions undergo conformational changes that make the
enzyme flexible during substrate binding. These findings are in
agreement with the QM/MM results where the distance between
the active site copper and C1 carbon is around 5 Å, where a
superoxide intermediate of the reaction (a product of the reactive
oxygen with Cu(II) atom) can be easily accommodated. The
tyrosines (Y28, Y75, and Y198) were computationally observed
to form local hydrophobic interactions, stabilizing the active site
during substrate binding [42].

Fig. 3 Schematic
representation of C1 (type 1)
and C4 (type 2) mechanism of
action identified in lytic
polysaccharide
monooxygenases (LPMOs).
LPMOs oxidize on either C1 or
C4 carbon, giving rise to specific
products, lactone or ketoaldose,
respectively

858 Bioenerg. Res. (2018) 11:850–867



In order to accurately capture the enzyme dynamics using
MD simulations, the use of accurate force fields for a given
system is required. A recent study probed potential energy
landscape for the AA9 family to create a specific set of
force-field parameter [44]. The use of such accurate force
fields that can represent metallo-proteins consists of single-
point energy evaluations over a rectangular grid involving
selected internal coordinates that incorporate the generation
of energy profiles for the bond stretch, angle bend, and tor-
sions for more realistic simulations. In recent years, the meth-
od of multiscale modeling was applied to study the large-scale
dynamics of proteins and their interactions with substrates.
The advantage of using multiscale modeling is that it gives
the big picture of the interactions between the different com-
ponents of a system. In the case of cellulases, the global level
dynamics of cellulases on the surface of cellulose can shed
light into how the complex synergistic activities of different
enzymes help in degrading cellulose. A multiscale modeling
of LPMO with Cel7A (non-reducing end specific exo-cellu-
lase) and Cel7B (reducing end specific exo-cellulase) of
T. reesei showed that LPMO decrystallizes the cellulose crys-
talline surface by forming new chain termini within the fibril,
rather than at the ends of the fibril. It also has higher affinity to
the reducing end of the fibril [41]. This multiscale modeling
study emphasizes the possible synergistic interaction between
LPMO and other enzymes for faster degradation of crystalline
cellulose.

The reduction of the LPMO active site of AA9 enzyme
from T. aurantiacus from states 1 (resting state) to 2 (reduced
state) and two isomers of state 3 (copper–superoxide interme-
diate) was recently investigated (Fig. 4a) [81]. The results of
combined QM/MM simulations provided evidence that the
computational protocols that were followed in this study could

reproduce the observed decrease in the coordination number
when Cu(II) is reduced to Cu(I). Using QM for this system as
opposed to full MM was a necessity because MM cannot
model reactions. Among the two isomers that were observed
in the Cu–superoxide complex, the multiscale modeling re-
vealed that there is a preference for one isomer over the other
for energetic stability. Further work on the enzyme–substrate
complex from the same group led to the validation of four
enzyme–substrate intermediate models based on bond-
dissociation energy (BDE) [82]. BDE calculations are time
consuming in an experimental setup, and thus, the alternative
method of calculating BDEs from computational methods is
quicker and sensitive. Specifically, in the LPMO studied (pdb
id: 2yet [83]), the bond-dissociation energy for the four inter-
mediates, [Cu–OH]3+, [Cu–OH]2+, [Cu–O]2+, and [Cu–O]+,
is comparable; however, the intermediate [Cu–OH]3+ is not
favorable compared to the other three. The study also
highlighted the non-dependency of the aromatic residue in
the active site, as many LPMOs have either a Tyr or a Phe at
the same position [82].

The MD simulations once again prove their worth in iden-
tifying key areas that deviate from the crystal structures of
ScLPMO10B and ScLPMO10C LPMOs to identify surface
charge modifications to increase stability in ILs. The MD was
performed for 250 ns in three ILs at 0 wt%, 10 wt%, and
20 wt% in water. The IL effects of dynamic fluctuations for
specific regions of the enzyme on exposure to ionic liquid, on
enzyme’s overall structure, as well as on the structure of en-
zyme’s active site were comprehensively and comparatively
studied for both the LPMOs. The results clearly indicate that
they both show structural similarity, and the fluctuations in IL
and water are nearly the same. Therefore, both the LPMOs are
unaffected by the influence of ionic liquids [43].

Fig. 4 Compilation of biofuel enzymes studied using computational
methods. Cartoon representation of the structures mentioned in this
review (Table 1), where the helices are colored cyan, beta-strands are
colored red, and loops are colored magenta. a LPMO (pdb id: 2yet,

4b5q, 3eii, 4oy6, 4oy7). b Cellulosome (pdb id: 4iu3, 3kcp, 1ohz,
2b59). The protein corresponding to pdb id: 3EII is prepared from ho-
mology modeling, and we have used the same coordinates of the modeled
structures as used originally for carrying out the simulations
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To study the functional aspects of CBP21, a chitin-active
member of carbohydrate-binding module family, NMR, and
isothermal titration calorimetry were used to map surface
binding based on pH dependency, which showed that
CBP21 is a compact and rigid molecule except at its catalytic
metal binding site. CBP21 depends on Cu ion for catalysis,
and binding of cyanide to the metal indicates that it is involved
in the oxidative cleavage of the substrate. The comparisons
with GH61 LPMO further showed that their metal binding
sites are significantly different despite the fact that both cata-
lyze the same reaction. An approach that uses the pH depen-
dency of both the chitin–CBP21 interaction and the 1H ex-
change rate led to the identification of the residues involved in
binding CBP21 to the chitin surface based on the first NMR
structure ever resolved for an LPMO [84].

Cellulosome

Cellulosomes are macromolecular complexes that are spe-
cialized in cellulose degradation. The flexible linkers that
connect dockerins and cohesins in the cellulosome gained
much attention due to their contribution to the structural
dynamics of the enzyme. The cellulosome dynamics was
studied by generalized simulated annealing (GSA) on a frag-
ment of C. thermocellum CipA (Fig. 4b) scaffolding in com-
plex with the SdbA type II cohesion module. The study
revealed that the CohI9 module (CipA’s ninth type I cohe-
sion) has only two possible conformations (two thirds of
occurrences of native form and one third of alternate form),
despite the fact that the linker is highly flexible. Further MD
simulation analysis showed that the small difference in the
average potential energy between the two conformations can
be overcome by the small changes in thermal energy, there-
fore affording the module the ability to easily switch be-
tween both conformations [46].

The X-modules-dockerin and cohesin complex (XMod-
Doc:Coh) was studied to characterize the ligand–receptor
complex responsible for substrate anchoring and inter-
domain stabilization in Ruminococcus flavefaciens whereby
single-molecule force spectroscopy and steered molecular dy-
namics simulations examine the mechanical unbinding of the
complex. The mechanical dissociation of XMod-Doc:Coh
was probed by single-molecule force spectroscopy, the results
of which show that xylanase fusion domain on XMod-Doc
and CBM fusion domain on Coh show identifiable unfolding
patterns. This allowed screening of large datasets of force-
distant curves. The XMod-Doc:Coh ruptures reported there
fell in a range from 600 to 750 pN at loading rates ranging
from 10 to 100 nN s−1, which were among the highest of their
kind ever reported. The steered molecular dynamics results
indicated that the force increased with distance continuously
until the complex was ruptured. The analysis for the
interacting residues and the contact surface area suggested that

the mechanism of such stability is remarkable while still
allowing fast assembly and disassembly of the complex at
equilibrium [45].

MD simulations were performed to probe both the type I
and type II coh-Xdoc interactions in C. thermocellum. They
involve the simulations and free energy calculations of both
wild type and D39N mutant of the type I coh-Xdoc from the
same organism, the results of which are a clear indication that
comparatively, the mutant shows significant flexibility caused
by the change in hydrogen-bonding network in the conserved
loop regions. The energy differences demonstrate that though
dynamic changes are small, the conformational changes per-
sist [47].

In another study for the type II, hot spots, i.e., the amino
acid residues responsible for drastic decrease in binding affin-
ity upon mutation, were mutated to examine their effect on
binding. The study concluded that the rigid cohesion–
dockerin interface is maintained by means of bulky and hy-
drophobic residues and their contacts with the protein inter-
face [48].

C. thermocellum was studied for capturing the physical
characteristics of three cellulosomal enzymes (Cel5B, CelS,
and CbhA) and the scaffoldin (CipA) byMD simulations. The
results showed that shape and modularity dominate the
cellulosomal enzyme complex. Comparative insights about
the abovementioned enzymes indicated that CbhA binds more
frequently to CipA than the other two because of its flexible
nature multimodularity [85].

Coarse-grained and MD were performed on many
cellulosomal linkers of different lengths and compositions,
which indicated that the linker’s stiffness depends on the
length, and not the specific amino acid. The study showed that
the short and stiff linkers are the cause of significant rearrange-
ments in the folded domains of the mini-cellulosome com-
posed of endoglucanase Cel8A in complex with scaffoldin
ScafT (Cel8A-ScafT) of C. thermocellum as well as in a
two-cohesin system derived from the scaffoldin ScaB of
Acetivibrio cellulolyticus [86].

Man5B

In the MD computational analysis of Man5B (Figs. 1a and 2c),
the enzyme from thermophilic bacteria Caldanaerobius
polysaccharolyticus, molecular docking studies followed by
principal component analysis were performed on the catalytic
site bound with cellohexaose and mannohexaose to understand
the mechanism by which Man5B hydrolyzes cello-
oligosaccharide and manno-oligosaccharide substrates. The re-
sults showing Man5B binding to cellohexaose as tightly as
mannohexaose were significant because the experimental assays
showed that Man5B is relatively more efficient in hydrolyzing
manno-oligosaccharides than on gluco-oligosaccharides [87].
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Applying coarse-grained simulation on protein–oligosac-
charide complex, where glucose is approximated to one bead
(an approach similar to commonly used approximation of
representing one amino acid as one bead), Poma et al. [66]
constructed coarse-grained models for three different
hexaoses and then tested it on a Man5B–hexaose complex.
The predicted structural models correlated well with all-atom
models reported earlier for the same system, and the analysis
suggested that the interaction of Man5B with hexaose is four
times stronger than the other oligosaccharides.

Another coarse-grained (CG) method application involved
the use ofMartini force field, which applied a mapping of four
heavy atoms to one CG interaction site and was parameterized
with the aim of reproducing thermodynamic properties. To
overcome the barrier of unbreakable harmonic bonds control-
ling unfolding and folding processes, the ELNEDIN protein
model [88] was based on theMartini CG force field, where the
harmonic bonds were replaced with Lennard–Jones interac-
tions on the contact map of the native protein structure as is
done in Go̅-like models. This model revealed the structural
motion linked to a particular catalytic activity in the Man5B
protein, the details of which agreed with those of all-atom
simulations. The approach made use of the contact map,
which identified the key pairs of contacts between residues
required to preserve the native structure of the protein without
the need for using adjustable parameters [88].

In another study, two coarse-grainedmodels of three hexaoses
were studied. One of the models was based on centers of mass
and C4 atoms. The second one was based on Cα atoms, and
found more appropriate to analyze protein interactions. The cor-
responding stiffness constants were calculated by all-atom simu-
lations and two statistical methods (Boltzmann inversion and
energy-based). It was found that the energy-basedmethod shows
a better agreement with other theoretical and experimental deter-
minations of non-bonded parameters. The contact energies were
then calculated in the hexaose–Man5B complex, and the inter-
actions of C4–Cα atoms were found to be stronger than the
hydrogen bonds [66].

GH9

The cleavage of sugar chains from cellulose at high tempera-
tures by the thermoresistant Cel9A-68 (Figs. 1a and 2d) from
Thermobifida fusca is catalyzed by the cooperative action of
two important domains of the cellulase: CBM and a catalytic
domain connected by a Pro/Ser/Thr-rich linker. Based on this,
the temperature dependence of the dynamics of Cel9A-68 was
analyzed in detail at three temperatures: 300 K, 325 K (opti-
mal temperature for activity), and 350 K. Using quasi-
harmonic analysis, principal component analysis (PCA), and
subsequent essential dynamics (ED) analysis, the conforma-
tional space and the collective motions were examined, and

the CBM domain was observed to be highly flexible than the
catalytic domain as observed in experiments [63].

The Ig-like domain in GH9, if deleted, causes the loss of
enzymatic activity, though there is no evidence of any direct
relation with the active site. MD simulations were used to
investigate the role of Ig-like domain in Cel9A. The results
show that the residues of the domain are correlated dynami-
cally with the residues of carbohydrate-binding pocket, with
few of them being related to the important catalytic residues of
Cel9A. Further, it was shown that the catalytic domain is
significantly stabilized by the Ig-like domain, possibly en-
hancing the thermostability of Cel9A [64].

Cel48F

The processive endocellulase, Cel48F of C. cellulolyticum,
was studied for its hydrolysis mechanism when it forms a
complex with the sugar chains by MD simulations (Fig. 2e).
The computational approach for examining the structure of
Cel48F involved metadynamics, which computed free ener-
gies expeditiously and allowed the study of statistically rare
events. Metadynamics simulations usually follow standard
MD simulations to stabilize protein–polysaccharide struc-
tures. Metadynamics proved its utility in investigating the de-
tails of sugar chain I entering and chain II leaving the Cel48F
tunnel through a 5-ns-long simulation [50].

For the study of water control mechanism in enzymatic
hydrolysis of cellulose, MD simulations were carried out for
the two conformations of the Cel48F [hydrolyzing (H) and
sliding (S)]. These two conformations were compared after
repeating the MD simulations thrice with the same starting
conformations. The hydrolysis seemed to begin when a water
molecule is present for every glycosidic linkage, suggesting a
water control mechanism for hydrolysis. During the shifts
between conformation from S to H, the water molecule that
is initially bound to D230 in S (known as site a) turns toW417
and M414 (known as site b) in H and performs a nucleophilic
attack on the anomeric carbon, causing the hydrolysis product
to be excluded from the cleft and water control system to
return to site a. The simulations revealed the roles of other
certain key residues through their ability to form hydrogen
bonds. Key residues involved the most probable candidates
for inverting anomeric carbon, the ones that could help
converting one conformation to the other and those that could
provide a hydrophobic environment preventing the water mol-
ecules from entering the active site. It was proposed that in
addition to Cel48F, the method can be applied to study the
reaction mechanisms in other processing enzymes [49].

MD simulations were carried out for imidazole in an aque-
ous solution of glucose in order to investigate the interactions
that take place between the two co-solutes and also between
the neutral imidazole molecules. This study showed the role of
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histidine side chains in the binding and hydrolysis in cellu-
lases, including Cel48F [89].

The simulations showed the possible catalytic role of an
unusual conserved water-filled pore structure in another mem-
ber of the family, Cel48A from T. fusca, suggesting that the
pore provides a pathway to the active site for the water mol-
ecules used in processive hydrolysis of the cellulose substrate
[90].

Catalytic activity was studied in C. cellulolyticum by MD
in combination with steered MD and binding free energy cal-
culations, which gave insights about the important regions of
the Cel48F that are involved in hydrolysis and the release
process of the leaving group. The probable residues responsi-
ble for hydrolysis, which affect the catalytic activity signifi-
cantly, were predicted [51].

A study for analyzing the mechanisms of cellulosomes
usedMD and normal mode analysis to refine the protein com-
plex and investigated the dynamical differences between the
domains. After determining the structure experimentally using
SAXS, normal mode analysis confirmed that both the free
dockerin and the dockerin–cohesin complexes undergo a rigid
body motion with respect to the catalytic module [91].

GH18

A study reported the crystal structure and dynamics of the
catalytic domain of the GH family 18 non-processive
endochitinase, ChiC, from Serratia marcescens (Fig. 2f) with
other processive enzymes, ChiA and ChiB from
S. marcescens [62]. The study demonstrated that the dynamics
of the processive enzymes is similar to that of a non-
processive chitinase from Lactococcus lactis (pdb id: 3IAN;
a structural homolog of ChiC’s catalytic module). All four
proteins were docked with the chitin substrate to study the
processivity of the chitinase. Each simulation was run for
250 ns, for a total simulation time of 1 μs. The overall struc-
ture of ChiC2 (the catalytic domain of ChiC) was studied in
terms of energy difference, hydrogen bonding, and root-mean-
square distance.

The catalytic residue in ChiC2, i.e., E141, was observed
to be in a different orientation in the crystal structure and not
bonded with D139, which would be crucial for optimal cat-
alytic activity. In order to understand the interactions of
E141 and whether the side chain conformations change in
the active site, MD simulations were performed and showed
that E141 is indeed flexible and there are three distinct con-
formational states for E141 and D139. Similarly, between
the processive and non-processive chitinases, there were
structural dynamics differences shown through the free
energy-based calculations to confirm the conformational
flexibility of Glu141, the loop regions, and in the active site.
These simulations showed that the ChiC2 is highly flexible,
and the dynamic on and off ligand binding processes

associated with non-processive endochitinases correlate
well to the experimentally derived processivity data in the
S. marcescens’s chitinases [62].

GH6

The simulations reveal new structural details of GH6 CBHs
(Fig. 2g). Two mutant structures of Thermobifida fusca’s
Cel6B were characterized that allowed the analysis of their
hydrolysis mechanisms. Using the wild-type Cel6B structure,
three complexes were constructed. Two complexes were
bound to cellobiose, and the remaining with cellohexaose. In
addition, a Cel6B complexed with crystalline cellulose Iβwas
also constructed. These complexes were built to study the
tunnel-shaped active site. Specifically, the process of product
expulsion was identified by the dynamic action of two loops,
i.e., the exit loop (residues 185–197) and the bottom loop
(residues 501–510). The simulations suggest that driven by
their flexibility, these loops open up to create space to expulse
the product from the active site. These two loop regions fluc-
tuate the largest and are not correlated with the fluctuations of
other parts of the protein. Multiple SMD simulations showed
the exit loop opening up to 14 Å and the bottom loop up to
16 Å, creating a large enough gap for allowing product trans-
port. The simulations show the flexibility of the loops to open
and allow release of the product with equal probability in
solution or when bound to cellulose [65].

Discussion

Enzyme design is one of the most complex engineering areas
in chemical engineering. Multiple steps are necessary for an
enzyme to be modified in order to become an industrially
useful product. In addition, temperature and pressure values
in different processing stages influence each enzyme’s stabil-
ity, activity, and conversion rate. Each step is complicated
enough to require extensive experimental testing, starting
from small-scale experiments on the bench to testing in pilot
plants. Success in the lab does not always translate into suc-
cess in chemical plants. Many initially exciting products fail to
reach to the production line. In multistep enzyme design and
production stages, candidate enzymes are extensively and ex-
perimentally tested to demonstrate their superior performance
against specific industrially meaningful conditions.

Given the importance of experiments in providing a realistic
view of enzymatic performances, computational methods will
not replace the experimental testing that provides dependable
measures for enzymatic behavior in the near future.
Computational methods, however, can be as useful as imperfect
theoretical models which provide practical approximations that
can guide experimental approaches. Although experiments are
the ultimate touchstone to judge the performance of a novel
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enzyme product, simulations and theoretical methods are im-
portant parts of engineers’ toolsets to shape design approaches
and optimize enzymatic behavior in industrial settings.

As we have discussed in this review, several computational
methods are available to understand the molecular basis of
enzymatic activity in cellulases. Different methods have dif-
ferent strengths and weaknesses. Given the computational
cost of fine-grained atomistic simulations, coarse-grained ap-
proaches are preferentially used to speed up the simulations,
but increased speed comes with a lower information content,
sometimes as unrealistically as at the expense of lack of
atomistic-level modeling of chemical reactions. Ultimately,
before starting a research project, engineers and scientists
need to determine critical parameters to optimize for, so that
they can choose the most appropriate combination of tools
from available experimental, theoretical, and computational
methods to achieve their design goals.

When multiple approaches are used simultaneously, deciding
on the effectiveness of each method individually is not an easy
task. Obviously, experimental methods provide the most clear-
cut product enhancements, especially for first few generations of
enzymes. For example, randomly mutating enzymes and
assessing their properties is a well-tested means for product de-
velopment. For the development of later generation of enzymes,
however, more sophisticated approaches are necessary, and a
wider range of tools and a deeper understanding of enzymatic
mechanisms are desired. Therefore, although computational
methods often lack clear-cut success stories, their critical role
by being a part of a larger engineering toolset when creating
newer generation of enzymes is usually understood.

Conclusions

In this review, we surveyed how various computational
approaches were used to understand how the structural
dynamics and chemical specificity of cellulases contrib-
ute to enzymatic function. Complementary to experi-
mental methods, computational methods, such as MD
simulations and/or QM/MM method, and other methods
were successfully used for many cellulases to under-
stand the molecular underpinnings of their functions.
By reviewing the recent scientific literature for the cel-
lulase enzymes, we provided the latest computational
research in structural and dynamics studies of these in-
dustrially important enzymes.

Numerous studies have demonstrated that computation-
al methods are fast and reliable and provide the level of
detail required to understand the enzymatic function of
cellulases (Fig. 5). While the prerequisite for any such
computational study is the availability of high-resolution
structures, solved via NMR or X-ray crystallography, we
do not perceive this as a limitation; because the speed at
which even the low-resolution new protein structures are
being deposited in structural databases, this would in-
creasingly enable better computer simulations and analy-
ses. As more computational studies will be performed in
the future, a better understanding of mechanism of enzy-
matic action for cellulases will be developed, enabling
scientist and engineers to make more informed design
decisions for more efficient use of cellulases in biofuel
applications.

Fig. 5 Computational methods
to understand dynamics in
cellulases. Brief summary of the
various fine-grained and coarse-
grained methods employed to
understand the structural dynam-
ics of various families of cellu-
lases as reviewed in this paper
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