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Abstract

Background: Signalling systems that control cell decisions allow cells to process input signals by apprehending the
information of the cell to give one of these two feasible outputs: cell death or cell survival. In this paper, a well-
structured control design methodology supported by a hierarchical design system was developed to examine
signalling networks that control cell decisions by considering a combinations of three primary signals (input
proteins): the pro survival growth factors, epidermal growth factor (EGF), insulin, and the pro death cytokine, tumour
necrosis factor-α (TNF), for AKT/protein kinase B. The AKT actions were examined by using the three input proteins
for cell survival/apoptosis for a period of 0–24 h in 13 different slices for ten different combinations.

Results: Experimental analysis was performed to consider the reactions that were essential to explain the action of
AKT. Furthermore, pre-processing and data normalization were performed by using standard deviation, plotting
histograms, and scatter plots. Feature extraction and selection were performed using correlation matrix. Radial basis
function (RBF) and multiple-layer perceptron (MLP) were used for cell survival/death classification. For all the ten
combinations of the three input proteins, 42.85, 347.22, 153.13 were obtained as the minimum value, maximum value,
and mean value, respectively, and 126.11 was obtained as the standard deviation for 5-0-5 ng/ml combinations of TNF-
EGF-Insulin. The results obtained with MLP 10-8-1 were found to outperform other techniques.

Conclusion: The results from the experimental analysis indicate that it is possible to build self-consistent compendia
cell-signalling data based on AKT protein which were simulated computationally to yield important insights for the
control of cell survival/death.
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Background
Computational biology has recently emerged with a sys-
tem-level understanding of biological processes. Bio-
logical signalling networks process extracellular cues to
control the cell divisions such as growth-quiescence, sur-
vival/death, and proliferation-differentiation [1]. There
are different profound and exciting issues which can be
considered. These include robustness of network struc-
tures, biological systems and dynamics, and applications

to drug discovery. Bioelectronics is a field of electronics
that encompasses a range of biology and electronics
topics. One aspect of bioelectronics is processing bio-
logical systems in electronic applications (e.g., processing
novel electronic components from DNA, nerves, or cells)
[2]. It also focuses on physically interfacing electronic
devices with biological systems such as cell-electrode,
brain-machine, or protein-electrode. Applications in this
area include supportive technologies for individuals with
brain-related disease or injury, namely: paralysis, artifi-
cial retinas, and new technologies for protein structure-
function measurements.
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In recent years, protein kinase small cell inhibitors
have been considered as a new area of interest in the
diagnosis of cell survival/death [3, 4]. Many such kinases
are used by clinicians for the treatment of cancer,
chronic inflammatory disease, etc. Cancer can be charac-
terized as a genetic disease [5]. There are three types of
genes that are affected: tumour suppressor genes, onco-
genes, and stability genes. The classical tumour suppres-
sor genes “RB1” play a major role in controlling cell
cycle. Informally, they are present in the retinoblastoma
and other tumours. Apoptosis and necrosis are two dif-
ferent forms of cell death. Necrosis is an early disruption
of the cell membrane and is associated with organelle
swelling, while apoptosis activates the energy required
for intracellular interaction which is tightly regulated
and conserved throughout evolution. The progressive
series of biochemical and morphological changes on cell
surfaces of phosphatidylserine, to proteolytic cleavage of
numerous intracellular proteins, to nuclear condensation
and fragmentation, and the cleavage of DNA into nucleo-
somal fragments are known as apoptotic cell death [6–8].
One of the important researches in apoptotic cell death is
cancer [9]. All the strategies used for killing the tumour/
cancer cells are called anticancer strategies and have been
used in clinical oncology, for example, gamma-irradiation,
chemotherapy, or immunotherapy. Intrinsic and extrinsic
pathways are associated with the stimulation of cell death
signal pathways in cancer cells [10].
This paper therefore considered the AKT protein

pathways that control cell death/survival decisions using
a combination of three input proteins, namely tumour
necrosis factor-α (TNF), epidermal growth factor (EGF),
and insulin. There are three isoforms of AKT: AKT1,
AKT2, and AKT3. For mouse studies, AKT1 is used for
cell survival; AKT2 is primarily used for glucose homeo-
stasis, while AKT3 is mainly used for brain development
and has a more preponderant role in triple negative tu-
mours. The over-activation of AKT is generated with a
myristoylation sequence leading to myrAKT1 or myr-
AKT2 which maintain the constitutively active protein
at the cell membrane. Down-regulation of AKT is gener-
ated with shRNA constructions (shAKT1 or shAKT2).
The serine PKB/AKT/Rac are the initial identified onco-
gene and kinase with similar properties as of PKC/PKA.
They also play a major role in coordinating the progres-
sion of survival, metabolism, and death using the three
input proteins (signalling pathways). PI3K/AKT signal-
ling cascade is activated by three signalling pathways
through respective tyrosine kinase-like neurotrophin
receptors (TrK’s). After dimerization, PI3K gives phos-
phoinositide phosphates (PIP2 and PIP3) at the inner
side of the plasma membrane. Phosphoinositide-
dependent protein kinase 1 (PDK1) later works together
with PIP2 and PIP3 to phosphorylate to activate AKT.

In order to perform various functions in the cell, AKT
was able to phosphorylate a wide variety of substrate
protein. Synthesis peptides with a sequence related to
the phosphorylation of GSK3 acts as substrate of AKT
kinase activity. AKT is the major factor in different types
of cancer. AKT signalling network have diverse down-
stream effects on cellular metabolism, through either
direct regulation of nutrient transporters and metabolic
enzymes or the control of transcription factors that
regulate the expression of key components of metabolic
pathways. It regulates cell growth, survival, and metabol-
ism from exogenous growth stimuli. The molecular
events controlling cellular metabolism downstream of
PI3K and AKT which represent two major hallmarks of
cancer are: growth factor independence through onco-
genic signalling and metabolic reprogramming to sup-
port cell survival and proliferation. AKT activates NFκB
by regulating IKB kinase which results in transcription
of pro-survival genes.
This paper examines the cell death/survival decisions

for AKT protein pathways. Different parameters were cal-
culated for all the ten different combinations of three in-
puts proteins. Out of which the best combination was
selected using correlation matrix and the results were vali-
dated by calculating their Eigenvalues. The selected con-
centrations were classified using artificial neural networks
(ANN). A time series 3D plot was generated for all the
best combinations and validated with the training and
testing accuracies. The training and testing results yield
the same results as that of the neural network (NN) model
which accurately predicts cell survival or otherwise cell
death. The hallmark of this work is in the description of
the predictive model of a cytokine-signal-response com-
pendium used to investigate the regulation of cell fate with
the combination of the input proteins for AKT protein.
The rest of this paper is organized as follows. In the

“Methods” section, the materials and methods employed
for modeling and experimental analysis for the diagnosis
of cell survival/death for AKT protein were described in
detail. The “Results” section explains the results ob-
tained, and thereafter the results were discussed. This is
followed by conclusion and recommendation for future
work in the “Conclusion” section.

Methods
In this section, experimental analysis was performed on
HT carcinoma cells. A heat map was obtained from the
analysis of ten different concentrations of the three in-
put proteins. Later, features were extracted and selected
using a correlation vector. The selected features were clas-
sified using different neural network techniques, namely:
multiple-layer perceptron (MLP) and radial based function
(RBF). The block diagram of the proposed methodology is
shown in Fig. 1. The prediction model for cell death/
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survival was implemented with the proposed method
using Statistica Software. In total, we obtained 300 values
for each combination of input proteins.
Studies of signalling pathways are focused on depicting

downstream and upstream interactions, and then sys-
temizing these interactions into linear cascades that bal-
ance information from cell surface receptors to cellular
effectors. A bottom-up approach was used for the hier-
archical model as shown in Fig. 2.
The bottom-up hierarchical approach starts with the

proteins/genes as biological components analogous to
the physical layer which consists of active and passive
components from electronic elements. In the hierarchy,

the next layer is the device layer which comprises of bio-
chemical reactions that regulate the flow of information
and manipulate physical processes. The biochemical re-
actions are equivalent to logic gates which perform com-
putations in a computer. At the module layer,
a synthetic biologist could use quiet a number of bio-
logical devices to assemble complex pathways that func-
tion like integrated circuits. The connection of these
modules to each other and their integration into host
cells allows the synthetic biologist to extend or modify
the behaviour of cells in a programmatic fashion.
HT carcinoma cells are considered for the analysis of

cell survival/death by using AKT as a marker protein.

Fig. 1 Proposed methodology for cell death/survival decision for AKT protein

Fig. 2 Proposed hierarchical model of electronic and biological elements
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The experimental analysis was performed by considering
different concentrations of TNF such as 0, 0.2, 5, and
100 ng/ml. Similarly, different concentrations of EGF,
such as 0, 1, and 100 ng/ml, and insulin, such as 0, 1, 5,
and 500 ng/ml, for making different cultures were ana-
lysed for a period of 24 h by adding 1/20 of diluted
stimulus. The 0–24 h time frame was divided into 0, 5,
15, 30, 60, and 90min, and 2, 4, 8, 12, 16, 20, and 24 h.
The cells were exposed to ten cytokine treatments so as
to explore systematically the relationship between activa-
tion of intracellular signalling cascaded as cytokine re-
ceptor interaction and survival death cell fate decisions.
All the observations were monitored for a period of 48
h. To explore systematic relationships between the acti-
vation of intracellular signalling cascades, cytokine re-
ceptor interaction, and apoptosis-survival cell fate
decisions cells were exposed to a set of ten different
treatments of input proteins. At the 13 time point after
cytokine addition, three replicate dishes of cells were
harvested to measure kinase activities. Altogether, ten
distinct protein signals were examined, namely, (a)
assayed in vitro using microtiter-based immuno-
complex kinase activity assays: ERK, JNK1, AKT, MK2,
and IKK; (b) antibody arrays: phospho-to-total (pt) and
phospho total measures of EGFR and AKT; and (c) im-
munoblotting: five phosphorylation sites on four pro-
teins. Out of the different proteins, AKT signals were
examined. Each protein signal was integrated by 12-h,
24-h, and 48-h time frame and then analysed with a set
of three input protein treatment. This analysis generated
a heat map in which the positions of ten protein signals
were defined in comparison to the TNF, EGF, and insu-
lin stimuli. The heat map was prepared for the marker
protein of ten different concentrations of input proteins.
The ten different concentrations of input proteins (TNF-
EGF-insulin) are: 0-0-0, 5-0-0, 100-0-0, 0-100-0, 5-1-0,
100-100-0, 0-0-500, 0.2-0-1, 5-0-5, and 100-0-500.
Histograms, standard deviation, and scatter plots were
calculated to pre-process the data. Different features like
mean, maximum, minimum, and standard deviation for
training, testing, validation, and overall data were calcu-
lated for all ten different concentrations of the input
combinations. Correlation vectors were calculated as
feature selection techniques and were used to select the
best concentrations of input combinations [11]. The
results were validated using Eigenvalues and vector cal-
culations. With the help of Eigenvectors, linear trans-
formation is easy to understand. An eigenvector ν of a
matrix A is independent of the linear transformation: Aν
= λν ⇒ λ(Bu) = A(Bu). Eigenvectors are a set of basic
functions that help in describing data variability. The Ei-
genvalues of our data were calculated from the best
combinations of three input proteins which were used to
classify cell death/survival for AKT protein. For

classification of the proteins, we have employed artificial
neural network (ANN) techniques such as MLP and
RBF for cell death and cell survival decisions. ANN is a
special nonlinear model for classification, clustering as
well as regression. There are at least three layers of
nodes for a MLP, namely: input layer, hidden layer, and
output layer. The input layer consist of input variables
which are numeric. Non-numeric data is converted to
numeric before it can be used in an ANN technique.
This layer is sometimes called the visible layer. The hid-
den layers consist of layers of nodes between the input
and output layers; there may be one or more of these
layers. The output layer is a layer of nodes which pro-
duce the output variable. Our proposed ANN model for
the detection of cell survival/death for AKT is shown in
Fig. 3.
ANN techniques are fast becoming a useful approach

for signal-processing technologies. In engineering, neural
networks serve two important functions: as nonlinear
adaptive filters and as pattern classifiers. They are most
often adaptive nonlinear systems that learn to perform a
function (an input/output map) from data. Adaptive im-
plies that the system parameters change during oper-
ation, normally called the training phase. After the
training phase, the ANN parameters are fixed and can
be deployed to solve problems.

Results
The experimental observation of cell death/survival from
cells treated with ten cytokine combinations of TNF,
EGF, and insulin by using AKT was presented in this
section. AKT proteins form signalling networks which
lead to cell survival/death as shown in Fig. 4 [12].
Futhermore, a similar experimental analysis was carried

out as performed in [13, 14]. The results obtained show
high similarity. The experimental analysis shows that it is
possible to build self-consistent compendia cell-signalling
data based on AKT protein which were simulated compu-
tationally to yield important insights into the control of
cell survival/death. For the purpose of analysis, different
experiments were performed with ten different concentra-
tions of three input proteins for 0–24 h in 13 different
slices of AKT protein. The novelty of this work lies in
the threefold marker protein selection technique; the
first stage includes pre-processing techniques, followed
by extraction of different features like minimum, max-
imum, mean, and standard deviation values to select
the best combinations of TNF-EGF-Insulin, and lastly,
detection was performed using ANN in the third stage
to provide a high detection accuracy and low complex-
ity. The proposed method when tested on AKT protein
shows that the MLP provides better results with the
least run-time complexity for cell survival/death detec-
tion. Since ANN techniques are adaptive to complex
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problems, by changing the networks topology, they are
able to handle different levels of complexity and predict
the desired output of a system when adequate experi-
mental data is provided. One of the advantages of
ANNs is it allows the modeling of physical phenomena
in complex systems without requiring exhaustive exper-
iments or without requiring explicit mathematical
representations.
A nonlinear ANN was employed in this study to un-

cover important aspects of biological cue-signal-response
systems using TNF-, EGF-, and insulin-mediated response
of HT-29 human colon carcinoma cells. Although several
analyses were performed, the hallmark of this work is in
the description of the predictive model of a cytokine-
signal-response compendium used to investigate the regu-
lation of cell fate with the combination of the input

proteins for AKT protein. The compendium contains
more than 10,000 biochemical measurements based on
the states and activities of cell-signalling proteins and
apoptotic responses in human cells. Experimental data-
bases are common in genomics, majorly because sequence
data are structured and homogeneous, with clear start and
finish points, and the ease to fuse data. In contrast, cell-
signalling data are unstructured and heterogeneous and
depend on biological content.

Discussion
After analysis, four output cellular responses (phosphati-
dylserine exposure (PE), membrane permeability (MP),
nuclear fragmentation (NF), and caspase substrate cleav-
age (CC)) were obtained and used to predict cell death/
survival with the consideration of three input proteins

Fig. 4 Pathway for cell survival/death for AKT

Fig. 3 Proposed ANN model for the detection of cell survival/death for AKT
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(TNF, EGF, and insulin) using a system biology approach
(hierarchical model). Ten different concentrations of three
inputs and an average of four outputs were analysed and
then normalized giving a final result of 10 inputs and 1
output. Furthermore, a heat map in form of an image was
prepared and pre-processed by plotting histograms and
scatter plots as shown in Fig. 5. The features like mean,
maximum, minimum, and standard deviation for train-
ing, testing, validation, and overall data were calculated

for the ten different concentrations which are presented
in Table 1.
Table 1 shows the mean training, mean testing, mean val-

idation, mean overall data, maximum training, maximum
testing, maximum validation, maximum overall data, mini-
mum training, minimum testing, minimum validation,
minimum overall data, standard deviation training, stand-
ard deviation testing, standard deviation validation, and
standard deviation overall data for all the ten different

Table 1 Various extracted features for AKT proteins

Samples Data statistics (AKT data)

0-0-0 5-0-0 100-0-0 0-100-0 5-1-0 100-100-0 0-0-500 0.2-0-1 5-0-5 100-0-500 AKT

Minimum (train) 140.62 164.91 83.77 161.62 81.72 151.16 140.69 143.92 42.85 110.21 0.47

Maximum (train) 188.99 188.99 155.71 205.55 156.59 178.01 217.53 200.24 346.22 323.42 0.54

Mean (train) 161.66 177.72 108.54 182.22 122.48 165.65 176.99 173.12 160.28 221.72 0.51

Standard deviation (train) 13.77 6.03 26.16 12.19 28.25 6.73 24.66 18.02 128.77 80.89 0.02

Minimum (test) 140.79 166.35 83.79 162.51 82.19 151.19 141.25 143.80 42.98 110.72 0.47

Maximum (test) 188.78 188.91 154.21 205.73 154.65 178.10 215.79 198.38 347.22 323.40 0.53

Mean (test) 162.04 176.50 108.68 182.80 119.59 166.54 177.30 170.44 171.75 230.53 0.51

Standard deviation (test) 14.74 6.22 27.11 11.85 28.08 7.24 24.91 18.61 132.39 80.82 0.02

Minimum (validation) 141.43 165.88 84.12 161.86 83.01 151.83 142.93 143.87 42.98 110.81 0.46

Maximum (validation) 188.35 188.74 155.17 203.85 153.44 176.94 211.48 199.64 336.94 315.43 0.53

Mean (validation) 164.25 179.94 119.00 179.56 134.49 164.93 166.15 180.60 101.12 195.40 0.50

Standard deviation (validation) 18.16 4.80 28.95 5.78 4.96 6.67 18.30 5.65 16.63 38.47 0.02

Minimum (overall) 140.62 164.91 83.77 161.62 81.72 151.16 140.69 143.80 42.85 110.21 0.46

Maximum (overall) 188.99 188.99 155.71 205.73 156.59 178.10 217.53 200.24 347.22 323.42 0.54

Mean (overall) 162.11 177.87 110.13 181.91 123.84 165.68 175.41 173.84 153.13 219.09 0.51

Standard deviation (overall) 14.31 6.15 26.88 11.84 27.40 6.74 24.24 17.86 126.11 79.95 0.02

Fig. 5 Pre-processing of AKT
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combinations of three input proteins for AKT protein. For
all the ten concentrations of the three input proteins,
42.85, 347.22, 153.13 were obtained as the minimum value,
maximum value, and mean value, respectively, and 126.11
as the standard deviation for 5-0-5 ng/ml combinations of
TNF-EGF-Insulin. In addition, the best combinations were
selected by using the correlation matrix as presented in
Table 2. This matrix is used to describe the dependency be-
tween different data sets. In cases of analysis dealing with
numerous secondary variables, the correlation matrix is
used to describe this dependency effectively.
From Table 2, it is observed that the 0-0-500 concen-

tration is less correlated with each other. Therefore, this
concentration can be neglected for the classification of
the cells. To validate the results, Eigenvalues of the cor-
relation matrix were also calculated as shown in Fig. 6.

Eigenvalues are a measure of the data variance which are
used to reduce the dimension of large datasets by selecting
only a few modes with significant values and are also used
to find new variables that are uncorrelated. The selected
concentrations were used for the classification of the cells
using ANN.
An ANN model was developed for the prediction of cell

survival/cell death considering ten different combinations.
The authors have implemented the propsed neural net-
work model using STATISTICA 2016 data miner soft-
ware. The proposed ANN model was developed for the
prediction of cell survival/cell death considering ten differ-
ent concentrations of three input proteins. The NN con-
sists of one input layer with ten nodes, where each node
corresponds to the different concentrations. It consists of
one hidden layer with different hidden nodes and one

Fig. 6 Plot of Eigenvalues for the correlation matrix

Table 2 Correlation matrix for AKT protein

Variable P < 0.050, N = 300

Means Std. Dev. 0-0-0 5-0-0 100-0-0 0-100-0 5-1-0 100-100-0 0-0-500 0.2-0-1 5-0-5 100-0-500

0-0-0 162.11 14.31 1.00 0.09 0.85 0.14 0.04 0.57 − 0.53 − 0.02 − 0.07 0.40

5-0-0 177.87 6.15 0.09 1.00 0.31 − 0.49 0.53 -0.16 − 0.47 0.50 − 0.53 − 0.44

100-0-0 110.13 26.88 0.85 0.31 1.00 − 0.23 0.45 0.38 − 0.84 0.37 − 0.48 0.01

0-100-0 181.91 11.84 0.14 − 0.49 − 0.23 1.00 − 0.87 0.45 0.62 − 0.84 0.87 0.86

5-1-0 123.84 27.40 0.04 0.53 0.45 − 0.87 1.00 -0.37 − 0.81 0.95 − 0.99 − 0.87

100-100-0 165.68 6.74 0.57 − 0.16 0.38 0.45 − 0.37 1.00 − 0.03 − 0.38 0.35 0.61

0-0-500 175.41 24.24 − 0.53 − 0.47 − 0.84 0.62 − 0.81 -0.03 1.00 − 0.74 0.83 0.48

0.2-0-1 173.84 17.86 − 0.02 0.50 0.37 − 0.84 0.95 -0.38 − 0.74 1.00 − 0.95 − 0.87

5-0-5 153.13 126.11 − 0.07 − 0.53 − 0.48 0.87 − 0.99 0.35 0.83 − 0.95 1.00 0.87

100-0-500 219.09 79.95 0.40 − 0.44 0.01 0.86 − 0.87 0.61 0.48 − 0.87 0.87 1.00
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output layer with 2 nodes. When the predicted output in
the second neural network is > 0.5 it will lead to cell sur-
vival; otherwise, it leads to cell death.
In comparison with the statistical analysis, ANN is a

nonlinear model which is easy to use and understand
and is mostly used for solving various classification and
forecasting problems. The results reveal that the pro-
posed ANN model is most adequate to estimate the
physiological functions from intracellular protein expres-
sions. Figure 7 shows the time series plot of the 10 re-
sults obtained from the analysis using MLP and RBF
techniques. A time series graph or plot is a graphical
representation of time series data on the x-axis (time in-
crements/cases) and on the y-axis, the corresponding

measured values are plotted. Time series plots are very
useful as they illustrate how the values of the measured
variable changes over time. In Fig. 7, the x-axis defines
the different 300 cases which were considered and the y-
axis defines the AKT values. Figure 7 further shows the
ten different combinations of MLP and RBF. MLP 10-
12-1 indicates the input-hidden layer-output.
Out of the ten results, MLP 10-8-1 (10 signifies ten

different combinations of three different input proteins,
8 hidden layers, and 1 output cell survival/death result)
outperforms all other results. The three-dimensional
plot for MLP 10-8-1 is shown in Fig. 8 for residual, tar-
get, and output. Different threshold values were consid-
ered resulting in cases of cell survival/death. Figure 8

Fig. 8 3D plot of MLP 10-8-1 for final output of residual, target, and output

Fig. 7 Time series plot using MLP and RBF techniques to obtain the best 10 results. Note: 10 signifies ten different combinations of three
different input proteins, 8 hidden layers, and 1 output cell survival/death result

Salau and Jain Journal of Genetic Engineering and Biotechnology           (2020) 18:11 Page 8 of 10



also shows the threshold values which are expressed
with different colours.
The results were also validated by calculating the

training and testing perfections. Table 3 shows the train-
ing and testing accuracy of ten different neural networks
using MLP and RBF. The table shows that MLP 10-8-1
gives 99.89% for both the training and test accuracies
Results obtained in Table 3 validate the values ob-

tained after generating the time series plots as shown in
Fig. 7. In addition, the training and testing accuracies
yields the same results with the neural network model
which accurately predicts cell survival or otherwise cell
death. In Table 4, we present a comparison of the results
of the proposed method with existing works. The results
show that the proposed method outperforms the existing
methods for the analysis and determination of cell sur-
vival/death.

Conclusion
Biological systems can create complex structures from
very simple systems. In this paper, a series of experimen-
tal analysis were performed with ten different concentra-
tions of three input proteins for a period of 0–24 h in 13
different slices. Based on the experimental analysis, a

heat map (in the form of an image) was generated for
different marker proteins. Initially, the data was pre-
processed, and subsequently different features were
extracted and selected based on the correlation matrix
method. The selected features were then validated by
calculating their Eigenvalues. Furthermore, RBF and
MLP techniques were applied for the cell death/cell
survival decisions. A time series 3D plot was gener-
ated for all the best combinations and validated with its
testing accuracy. In the future, different optimization tech-
niques will be applied for the selection of features.
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1. GLCM + k-NN [15] EGFR, IRS, ERK,
MK2, JNK, FKHR

75.60

2. GLDS + k-NN [6] AKT 76.90

3. DWT (Bior 4.4) + SSVM [7] ERK, MK2, JNK 80.00

4. GLDS + SVM [6] AKT 84.60

5. GLCM + SVM [15] EGFR, IRS, ERK,
MK2, JNK, FKHR

85.80

6. Proposed technique
(MLP ANN)

AKT 99.89
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