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Designing FIR Filters with Polynomial
Approach

Sunil Bhooshan and Vinay Kumar*

Abstract— This paper discusses a method for designing
the Finite Impulse Response (FIR) filters based on polyno-
mial approach.

Index Terms— FIR filter, Polynomial.

I. Introduction

The design of FIR filters is a field where an immense
amount of work had been carried out since a long period
of time, and numerous distinctive approaches had been
taken to carry out designs of different types of FIR filters
[12]. FIR filters have the distinction of introducing no
phase distortion and hence are important.

In this paper we will present an approach to realize
FIR filters using polynomials. The polynomial approach
had been discussed in several papers [1-11], but here,
along with the polynomial approach, we will be using a
special type of transformation coupled with a specialized
procedure.

II. Procedure

The procedure to realize an low-pass FIR filter with
linear phase is as follows.

Step 1. Choose a polynomial f (x) which has the
following properties:
a. The chosen polynomial must have real roots,
b. The polynomial should have zeros near the origin;
i.e., 0 ≤ |x| ≤ 1, and let the zeros be at x = xi, i = 1, ..n,
c. The polynomial should increase sharply for real
values of x, far away from x = 1; i.e., x > 1.

Step 2. We will use the following transformation for
mapping x to frequency ω

x = xmcos(ω/2) (1)

Where,
xm represents the maximum value of x, which we will
be using in our approach. At this value the polynomial
has the value b, (see Figure 1) How b and xm are to be
calculated will be clear shortly.
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Fig. 1. Example Polynomial

Step 3. By using the above transformation, the zeros
of the transfer function of the FIR filter are calculated
using Equation (1). Let these zeros be represented by
zi = exp( jωi), i = 1, ..n, where the ωis are calculated using
the transformation equation:

xi = xm cosωi/2 (2)

Note that the xis are the zeros of the original polynomial,
f (x). The FIR filter transfer function is then given by:

H(z) = (z − z1)(z − z2)...(z − zn) (3)

The values of xm and b are related to the bandwidth of
the filter or the ripple in the stop-band as will be clear
through actual examples.

III. Examples
A. Example 1

Let us consider a polynomial where the values of xi’s
are all equal to 0, in this case the polynomial is

f (x) = xn (4)

This polynomial satisfies all the conditions specified
in Step 1 . The value of the function where we want our
stopband to start can be taken to be x = 1. This value is
arbitrary, but x = 1 gives good results. Therefore, at the
start of the stopband:

xn = 1 (5)

Looking at the transformation x = xm cos(ω/2) we ob-
serve that x = 0 tansforms to ω = π, x = 1 tansforms to
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ω = 2cos−1(1/xm) which is where the stop-band starts. xm
transforms to ω = 0. Using these ideas, we want that at
x = xm the function f (xm) is b times its value than that
at the stop band f (xs). So

xn
m = b (6)

xm = b(1/n) (7)

Now, we will use the transform, defined in Step 2 , to
calculate the stop band frequency, ωs. The value of x will
be 1, as discussed above, and xm = b1/n

1 = b1/ncos(ωs/2) (8)

ωs = 2cos−1(1/b(1/n)) (9)

The passband of filter characteristic will occur when
the function is b/

√
2 times its value than that at the

stopband. So,

xn
p = b/

√
2 (10)

xp =
b1/n

21/2n (11)

Using the same transform, discussed in Step 2 , we can
calculate the value of passband, ωp, as follows

b1/n

21/2n = b1/ncos(ωp/2) (12)

ωp = 2cos−1(1/21/2n) (13)

Zeros of f (x) lie at x = 0, so there is no need of
calculation involved in Step 3 in this case.

Calculation of b:
As discussed above the function is b times its value

than that at the stopband. So, if we want our stopband
to be, lets say p dB down than that of maximum value
of passband, then the value of b will be absolute value
of p dB;i.e.,

b = 10p/20 (14)

Suppose in the polynomial discussed above, the value
of n is 6; i.e., our filter is of the order of 6, and we want
our stopband to be 40 dB down; i.e., b = 1040/20 = 100
from Equation 14 and the values of ωs and ωp are
2.17622 and 0.6733 as calculated from the equations
above. The transfer function, as discussed in Step 3 , for
this FIR filter, at ωi = π at i = 1, 2, ...6, is

H(z) = (z − e jπ)6 (15)

The polynomial, frequency response in dB, and phase
response for this FIR filter is shown in Figures (2), (3),
and (4) respectively.
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Fig. 2. Polynomial x6
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Fig. 3. Frequency Response in dB of H(z) of Equation (15)

B. Example 2

Let us consider another polynomial, whose zeros all
do not lie at x = 0. The following polynomial follows the
characteristics discussed in Step 1 as well as it has zeros
at locations other than x = 0 except one.

f (x) = (x− 0)(x− 0.1)(x− 0.2)(x− 0.3)(x− 0.4)(x− 0.5) (16)

In this case the value of n is 6 and suppose we want
our stopband to be 40 dB down; i.e., b=100. Now we
will Follow the Step 2 for the transformation and Step 3
to calculate the position of zeros for this polynomial.

The zeros for this polynomial will lie at:

ω1 = 2cos−1 0
xm
= π,ω2 = 2cos−1 0.1

xm
= 3.0586,

ω3 = 2cos−1 0.2
xm
= 2.9755, ω4 = 2cos−1 0.3

xm
= 2.8921,

ω5 = 2cos−1 0.4
xm
= 2.8083, ω6 = 2cos−1 0.5

xm
= 2.7238

(17)
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Fig. 4. Phase Response of Equation (15)

The value of stopband for the above polynomial will
be calculated by putting f (x) = 1; i.e.,

(x − 0)(x − 0.1)(x − 0.2)(x − 0.3)(x − 0.4)(x − 0.5) = 1 (18)

It will give us six different values of x, here we will
consider only the positive value amongst them. The
positive value we get will correspond to xs and it is
xs = 1.2646.

Now to calculate the value of xm we will equate f (x)
to b = 100; i.e.,

(x− 0)(x− 0.1)(x− 0.2)(x− 0.3)(x− 0.4)(x− 0.5) = 100 (19)

It will also give us six different values of x, here we
will consider only the positive value amongst them.
The positive value we get is xm = 2.4112.

The value of stopband, ωs, can be calculated by using
the transform discussed in Step 2 ; i.e.,

1.2646 = 2.41121cos(ωs/2) (20)

ωs = 2cos−1(1.2646/2.41121) = 2.0374 (21)

Similarily the value of passband can be calculated by
equating the polynomial to b/

√
2; i.e.,

(x−0)(x−0.1)(x−0.2)(x−0.3)(x−0.4)(x−0.5) = b/
√

2 = 100/
√

2
(22)

It will give us six values, but we will consider only
positive value, xp = 2.29069 and then by using the
same transformation as discussed in Step 2 we will get
passband frequency; i.e., ωp

2.29069 = 2.41121cos(ωp/2) (23)

ωp = 2cos−1(2.29069/2.41121) = 0.6350 (24)

So, ωs and ωp comes out to be 2.0374 and 0.6350
respectively.

The transfer function for this FIR filter will be, using
Step 2

H(z) = (z− e jω1 )(z− e jω2 )(z− e jω3 )(z− e jω4 )(z− e jω5 )(z− e jω6 )
(25)

where, ω1, ω2, ... are calculated above from Equations
(17). Figures (5), (6) and (7) shows the polynomial,
frequency response in dB, and phase response for this
FIR filter.
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Fig. 5. Polynomial (x − 0)(x − 0.1)(x − 0.2)(x − 0.3)(x − 0.4)(x − 0.5)
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Fig. 6. Frequency Response in dB of H(z) of Equation (25)

C. Example 3

Figures (8), (9) and (10) are polynomial, frequency
response in dB and phase response for a polynomial
having zero at x = 1; i.e., at the point where we want
our stopband, such a polynomial is

f (x) = x5(x − 0.7071) (26)

The plots shown have stopband at 40 dB down and
the values of xm, xs, xp, ωs, ωp are 2.2911, 1.1677, 2.1715,
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Fig. 7. Phase Response of Equation (25)

2.0720, 0.6492 respectively using Step 2 and by Step 3
we get the transfer function as

The values of zeros in frequency domain is

ω1 = ω2 = ω3 = ω4 = ω5 = 2cos−1 0
xm
= π,

ω6 = 2cos−1 1
xm
= 2.2383 (27)

H(z) = (z− e jω1 )(z− e jω2 )(z− e jω3 )(z− e jω4 )(z− e jω5 )(z− e jω6 )
(28)

where ω1, ω2, ..., ω6 are calculated above.
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Fig. 8. Polynomial x5(x − 0.7071)

D. Example 4

As a last example let us consider a polynomial not
having zeros which are real, but having a complex
conjugate pair of zeros. The following polynomial has
such a pair of zeros but follows the characteristics
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Fig. 9. Frequency Response in dB of H(z) of Equation (28)
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Fig. 10. phase Response of H(z) of Equation (28)

described in Step 1 .

f (x) = x4(x2 + 0.5) (29)

It is a 6th order polynomial and has 40 dB down
stopband; i.e., b=100. Following the steps described
for previous polynomials, we will get xm = 2.1168,
xs = 0.9263, xp = 1.9937, ωs = 2.2357, ωp = 0.6854 and
zeros at

ω1 = ω2 = ω3 = ω4 = 2cos−1 0
xm
= π,

ω5 = 2cos−1 0.707i
xm

= π − 0.6562i,

ω6 = 2cos−1−0.707i
xm

= π + 0.6562i (30)

Following the Step 3 we can write the transfer function
for this filter

H(z) = (z− e jω1 )(z− e jω2 )(z− e jω3 )(z− e jω4 )(z− e jω5 )(z− e jω6 )
(31)

where the values of ω1, ω2, ..., ω6 are calculated above.
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Figures (11), (12), and (13) shows the polynomial,
frequency response in dB and phase response for our
polynomial

It is clear from the Figure (13) that the phase response
of such a system is not completely linear. This leads us to
the conclusion that zeros which are not real or complex
in nature may lead to a non-linear phase FIR filter,
realized using the tranformation discussed in Step 2 .
But the Figure(12) shows that the bandwidth is increased
when compared with previous 6th order polynomial
(Example 3), which has 5 zeros at zero and 6th at the
same point as in this case. So, we can say that if we
can compromise with the phase and need flat frequency
response than we could use the polynomial with non
real zeros as well.
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Fig. 11. Polynomial x4(x2 + 0.5)
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Fig. 12. Frequency Response in dB of H(z) of Equation (31)

IV. Conclusion
In this paper we have discussed the connection of

poynomials and FIR filters. Polynomials could be used
to design user specific pass band characteristics. We are
working in that field.
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Fig. 13. Phase Response of H(z) of Equation (31)
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