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ABSTRACT Duplicate bug report detection is a process of finding a duplicate bug report in the bug tracking
system. This process is essential to avoid unnecessary work and rediscovery. In typical bug tracking systems,
more than thousands of duplicate bug reports are reported every day. In turn, human cost, effort and time
are increased. This makes it an important problem in the software management process. The solution is to
automate the duplicate bug report detection system for reducing the manual effort, thus the productivity
of triager’s and developer’s is increased. It also speeds up the process of software management as a result
software maintenance cost is also reduced. However, existing systems are not quite accurate yet, in spite of
these systems used various machine learning approaches. In this work, an automatic bug report detection
and classification model is proposed using deep learning technique. The proposed system has three modules
i.e. Preprocessing, Deep Learning Model and Duplicate Bug report Detection and Classification. Further,
the proposed model used Convolutional Neural Network based deep learning model to extract relevant
feature. These relevant features are used to determine the similar features of bug reports. Hence, the bug
reports similarity is computers through these similar features. The performance of the proposed system is
evaluated on six publicly available datasets using six performance metrics. It is noticed that the proposed
system outperforms the existing systems by achieving an accuracy rate in the range of 85% to 99 % and
recall@k rate in between 79%-94%. Moreover, the effectiveness of the proposed system is also measured on
the cross training datasets of same and different domain. The proposed system achieves a good high accuracy
rate for same domain data sets and low accuracy rate for different domain datasets.

INDEX TERMS Duplicate bug report detection, Siamese networks, natural language processing, deep
learning, bug tracking system, software maintenance, software development, convolutional neural network,
software engineering.

I. INTRODUCTION
The bug reporting is the important part of software main-
tenance, testing and development process. In today’s agile,
the bug tracking system (BST) is used by the tester or user
to keep the track record on a bugging which is encountered
during the usage of particular software [1]. The input to
the BTS is a bug report. It also upholds the master list of
bug reports. Usually, natural language is used to write the
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bug reports. The same bug report can be written in various
ways by tester, developer and user who encounter the bug.
It is because the vocabulary varies among tester, user and
developer on their level of technical knowledge. The content
of the bug report is later analyzed by the expert who has
complete knowledge of the software called triager. The triager
has two main tasks. Firstly, triager translates the wording of
bug report into more technical language for a better under-
standing of the developer. Secondly, triager carries out the
search process in the bug repository for potential duplicated
bugs having the similar signature. Further, if the new bug
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report is not duplicate then it is added to the master bug report
list else, it is considered as a duplicate bug report. However,
the filtering process of duplicate bug report requires extensive
amount of manual effort, time and complete knowledge of
bugs [2]. Previously study showed that near about 220 bug
reports are submitted in BST per day in which 25-30% reports
are duplicates [3]. The duplicate bug reports are assigned to
different developers for resolving the bug, that results wasting
of effort and time of developer. Therefore, to automate the
duplicate bug report detection process is very productive.
It reduces the human cost, effort and time. The reduction in
the manual effort also increases the triager’s and developer’s
productivity. It also speeds up the process of software man-
agement as a result the cost of software maintenance is also
reduced. Further, triager need not to entertain the multiple
bug reports on the same issues and have more information
about every bug report, hence each bug can be fixed faster [4].
An example of duplicate bug report is illustrated in Figure 1.
A bug report has two types of information i.e. structured and
unstructured. The structured information contains the infor-
mation about the component, severity, product, reported to
date etc. of the bug. The unstructured information contains a
natural language description of the bug, conservation between
many developer and user to know the root cause and resolve
the bug [5]. The description or conservation may be long or
short. Therefore, the main challenges of automatic duplicate
bug report detection are described below [6]:

FIGURE 1. An example of duplicate bug reports.

• The content of the bug report is in natural language
text. These bug reports may describe the same bug with
different words. So, inherent variability of natural lan-
guage to write the same bug report due to the vast and
ambiguous nature of language, that results the difficulty
in finding the similar bug report 7].

• The quantity of a bug report is huge and writing qual-
ity is very poor, mostly presence of noise text, incor-
rect information, inadequate and missing of important
information that produce further technical challenges in
resolving the bug [8], [9].

A. MOTIVATION
The basic aim of duplicate bug report detection and classifica-
tion systems is to detect the similar bug report. The detection
of duplicate bug report can be considered as problem of clas-
sification. The dataset of duplicate bug report is created utiliz-
ing the bug report content. The semantic relationship between

the content of the bug report is identified and this relationship
is used to determine the relevant (important) features for
detecting the duplicate bug report. In literature, the various
machine learning and feature extraction techniques are used
to extract the relevant features for developing an automatic
duplicate bug report detection and classification system [10]–
[12]. In spite of the substantial volume of work, the accuracy
of existing duplicate detection system is comparatively low
because of the following reasons: -

• Ignore the semantic relationship between the bug report
content.

• All latent features are not captured due to linear equation
and fixed length of polynomial terms.

• Not understand the interpretation of slightly variant sen-
tences.

• Sentences of bug reports are examined as word stacks
with unordered word sequence.

For example, in Figure 1, the sentence in Bug ID 85502 reads
‘‘does not work in dialogs’’ and in Bug ID 85819 ‘‘no longer
works as expected’’. Both sentences have same meaning
but the way of writing is different. The previous machine
learning and feature extraction techniques do not capture the
latent features, semantic relationship of text, ignore the word
sequence and consider these sentences as different sentences.
Therefore, there is still much room for improvement in the
automatic duplicate bug report detection system. To over-
come the above mentioned issues, a deep learning [13] based
feature learning structure is used to identify the important
features for predicting the duplicate bug. Deep Learning (DL)
techniques have gained too much attention from the last
few years. Many researchers have found, deep learning has
been established successfully in many other domains like text
and image classification [14], [15], speech recognition [16],
extracting raw signals [17] and natural language processing
(NLP) [18]. In the NLP domain, the deep learning techniques
work better than traditionalmachine learning techniques [19].
Further, DL based on Convolutional Neural Network (CCN)
technique is widely utilized in the NLP field [22]. CNN
technique has the ability of capturing the nonlinear mapping
of features between the input and output. It can also learn
the sematic relationship between the text and extract the
relevant features automatically via the multi-layer structure
of network. It is better than predefined sets of features and
manual feature extraction.

B. CONTRIBUTION
The basic aim of this paper is to leverage the deep learning
technique to examine the bug repositories for extracting the
relevant features that are useful in classifying the duplicate
bug reports. The Siamese variant of CNN is employed to
extract relevant features from structured and unstructured
information (content of bug report) [20]. The generality of the
proposed system is also improved by using different kernel
with various filters. The proposed system is also self- capable
of learning the representation of features to compute the bug

200750 VOLUME 8, 2020



A. Kukkar et al.: Duplicate Bug Report Detection and Classification System

reports similarity and categorize the duplicate bug report from
non-duplicate bug report without the interference of manual
feature engineering. This paper addresses the following sig-
nificant contributions:

1. The CNN based deep learning model is proposed for
recognizing the duplicate or similar bug reports by
means of textual content available in the bug repository.

2. The proposed system employed Siamese structure,
trained on cross-entropy loss objective function to com-
pute the bug reports similarity.

3. The detailed experimental results on six large published
datasets are presented [21], [32]. The average accuracy
of the proposed system is in the range of 85% to 99
%, and recall @20 is in between 79% to 94%, Hence,
the performance of the proposed system outperforms
the previous reported systems.

4. The proposed system is also tested on cross training
datasets and achieves a good high accuracy rate for
same domain datasets whereas, low accuracy rate for
different domain datasets.

This research paper is organized as follows. The related
work is illustrated in Section 2. The proposed duplicate bug
report detection and classification system is described in
Section 3. Experimental results and discussions are repre-
sented in Section 4. The conclusion and future work are
discussed in Section 5.

II. RELATED WORK
The duplicate bug report detection is very time consuming
and boring job because of different writing style of the large
number of reported bug reports. Thus, there is a need to
automate the process of duplicate bug report detection to
avoid the manual effort. The challenging issue is to train
the discriminative model for verifying the new reported bug
report is duplicate or not. From the past few years a variety of
approaches have been proposed on automatic identification of
duplicate bug report [5], [11], [22]–[40]. The detail of these
approaches is presented below:

To find the duplicity, in 2007, Kim et al. [22] designed a
duplicate bug report approach using the vector space model
for feature vectors and cosine similarity parameter to mea-
sure the similarity between the features of new and existing
bug reports. The results showed that about 40% duplicate
bug reports are found. The another duplicate bug detection
approach is implemented by Jalbert et al. in 2008 [23],
by utilizing the knowledge of surface feature like severity,
summaries and daily comments. These features are fed into a
proposed graph clustering based classifier to find the textual
bug reports similarity. The proposed approach minimizes the
development cost by detecting the 8% duplicate bug reports.
Jalbert et al. [24] measured the similarity between natural
language content and execution traces of bug reports using
the vector space model (VSM) and cosine similarity function.
It is noticed from the experimental results that the hybrid
information detects more duplicate bug rather than only

using natural language content by achieving the improvement
of 25% on Firefox project. Further, in 2009, Wang et al. [5]
proposed a duplicate bug detection model using information
techniques and information of natural language to extract and
calculate the textual similarity in bug repositories. The exper-
imental results demonstrated that proposed model improves
the result of existing by 58% on Open office dataset.

To address the effort of triager or developer for manu-
ally identifying the similar bug reports, Wang et al. [25]
deeply studied various software projects. These projects are
Eclipse, Bugzilla and SeaMonkey. The studied showed that
a single triager can detect the 50% duplicate bug reports
in 24 hours. A duplicate bug classificationmodel is developed
by focusing this study. The proposed model achieves 68%
accuracy rate and 60% recall rate on all datasets. To study the
performance of various information retrieval and topic based
model for detecting the duplicate bugs, Bettenburg et al. [26]
conducted an experiment by applying Log Entropy, LDA,
LSI and Random Projections approaches. These approaches
are tested on Firefox and Eclipse project using recall perfor-
mance parameter. Authors claimed that information retrieval
models achieve the higher recall rate i.e. 60% for Eclipse and
58% for Firefox rather than topic based models. Developers
also suggested that characteristics and domain of project
show a significant role in improving the information retrieval
models.

In 2010, Kaushik et al. [11] implemented a discriminative
model based on supervised learning. The working of the
proposed model is categorized into two modules. In the first
module, the idfsum, idfdesc and idf weights are calculated
to find the text similarity of bug reports. In the second
module, computes a similarity score fed into the support
vector machine to classify the bug report into duplicate or
non-duplicate classes. The proposed approach is tested over
eclipse and open office datasets. These datasets are divided
into three parts. The first part contained the summaries;
the second contained the description and third one contained
the collection of summaries and description of bug reports.
It is noticed that performance of the proposed model outper-
forms the existing model by achieving 65% recall rate for all
datasets. In the continuation of their work, Sun et al. [27]
improves recall rate by extending a REP method with the
help of BM25F similarity measure approach. The proposed
method calculated the similarity between textual and non-
textual information like comments, component, version and
product details. The performance of proposed method is eval-
uated on the OpenOffice, Mozilla and Eclipse bug reposi-
tories. It is observed that proposed method detected more
duplicate bug reports rather than SVMbased detectionmodel.
To detect the duplicate bugs, Sun et al. [28] applied the exten-
sion of BM25F in REP method on the hybrid information
dataset. Author also represented a new documentation of rel-
ative similarity to find the significance of similarity between
bug reports. The accuracy rate of proposed method improves
by 160% over Sun et al. model. A new text representation
is presented by Tian et al. [29] in 2010 called character

VOLUME 8, 2020 200751



A. Kukkar et al.: Duplicate Bug Report Detection and Classification System

level representation. They designed an n- gram character
model to capture the discriminating features of bug report
for detecting the duplicate bugs. The proposed approach is
applied on 213000 reports of Eclipse project and achieves
the recall rate for randomly selected bug reports is up to
66.00%. In 2012 Sureka et al. [30] extended the work of
Sun et al. by combining Latent Dirichlet Allocation (LDA)
with BM25F. The objective of this work is to calculate the
similarity between the text and topic of bug reports. It is
noticed that proposed model increased the recall rate by 20%
from Sun et al. model on Eclipse and Open office dataset.
To identify the stack traces in bug reports, Nguyen et al. [31]
proposed a duplicate bug detection approach. The proposed
approach is divided into three parts. In first part, stack traces
of bug report is transformed into set of methods. In second
part, the term frequency is used to measure the similarity
between these sets. In third part, sets are ranked accord-
ing to their frequency scores. The effectiveness of proposed
approach is validated using Eclipse dataset. It is observed
that proposed approach can provide better results with fewer
requirement. To identify the duplicate bugs in the bug repos-
itory, Lerch et al. [32] designed an approach based on crash
graph. In proposed approach, the graph of same bug reports
stacks traces is created to combine the multiple stack traces.
Further, these graphs are compared with new bug report
graphs for detecting the duplicates using graph similarity
functions. The effectiveness of proposed approach is evalu-
ated on Firefox andGnome projects using precision and recall
parameters. It is observed that the recall rate of proposed
approach is 67.65% and 71% for Firefox and Gnome project
respectively. To compute the similarity between textual and
categorical bug report text, Alipour et al. [33] created six-
word list from bug reports. The word lists contained the
words based on usability, portability, functionality, maintain-
ability, reliability and efficiency. Author also developed a
duplicate bug report detection model. This model has two
parts. In first part, BM25F is applied to measure the textual
similarity score. In second part, various machine learning
algorithms such as Logic Regression, Naive Bayes, K-nearest
neighbor and C4.5 are used to classify the duplicate bugs.
perform the detection task. It is observed that the C4.5 algo-
rithm outperforms the other machine learning algorithms by
achieving 92% recall rate for Android ecosystem project.
Author claimed that domain knowledge plays an important
role in detecting the duplicate bugs. In the continuation of
their work Hindle et al. and Hindle et al. [34] extended
the work of Sun et al. by adding the comparison of soft-
ware contexts such as topics of software (extracted by LDA
approach), non-functional requirements and software archi-
tecture. The proposed approach is tested over four soft-
ware projects such as Open office, Mozilla, Eclipse and
Android. It is noticed that the proposed approach outper-
forms the Sun et al. approach by improving the accuracy
rate between 1.5%-11.5%. Authors also claimed that com-
parison of software contexts improves the performance of
machine-learning classifiers for detecting the duplicate bugs.

In 2015, Aggarwal et al. [35] proposed a new method by
measuring similarity between thewords of software engineer-
ing (SE) textbooks and protect documentation called software
literature content approach using BM25F. This proposed
approach showed the same results as but consume less time
and effort. In the continuation of their work, Aggarwal et al.
extended the previous work by extracting the domain-specific
features with project-specific features [36]. Author also intro-
duced context hierarchy for capturing the SE knowledge to
increase the performance gains. The proposed approach is
tested over Eclipse, Open office and Mozilla datasets using
kappa and accuracy parameters. It is observed from the exper-
imental results that context hierarchy improves the perfor-
mance of proposed approach by achieving 3.8% accuracy rate
and 10.8% kappa score for each dataset. To detect the dupli-
cate bug reports, Deshmukh et al. [37] developed a retrieval
and classificationmodel using deep learning approach. In this
model, Long Short TermMemory (LSTM) is applied on short
description and CNN is applied on long description of bug
report to detect the similarity between the text. The pur-
posed model is tested on Open office, Eclipse and NetBeans
datasets. The proposedmodel achieves 90% accuracy rate and
80% recall rate for all datasets. To identify the duplicate bug
reports, Koopaei et al. [38] designed a model using n-gram
andMarkov approach. In the proposedmodel, the stack traces
of duplicate bug reports groups are collected with n-gram
and Markov approach. Further, the automaton of stack traces
of duplicate group is compared with the stack traces of new
bug report. The proposed approach achieved better results
than state of art approaches. To detect the duplicate bugs,
Sabor et al. [39] utilized name of package in stack traces in
Eclipse dataset. The objective of this paper is to minimize
the computation time for large stack traces. The working of
proposed approach is divided into three parts. In first part,
n–grams features are extracted from orders of name pack-
ages. In second part, extracted features are used to measure
the similarity between stack traces of new and historical
bug reports. Author claimed that proposed approach mini-
mizes the computation time for large stack traces. In 2019,
Ebrahimi et al. [40] improved the automata using Hidden
Markov Model. The effectiveness of proposed approach is
tested over Firefox and Gnome projects using recall parame-
ter. it is observed that the recall rate of proposed approach is
76.43% for Firefox and 71.57% for Gnome dataset.

III. PROPOSED DUPLICATE BUG REPORT DETECTION
AND CLASSIFICATION SYSTEM
The duplicate bug report detection involves variability and
ambiguity of linguistic expression. Bug Report contains sen-
tences, which are further composed of words. The combina-
tion of words, forms, clauses and phrases. The examination
of these sentences helps to understand its meaning. The
deep neural network model helps in capturing the word rela-
tionship from the multiple points of view. A new duplicate
bug report detection model is designed by keeping these
phenomena in mind. Figure 2 illustrates the framework of
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FIGURE 2. Framework of proposed duplicate bug report detection and
classification system.

FIGURE 3. Working of proposed duplicate bug report detection and
classification system based on deep learning technique.

the proposed system. The working of the proposed system
is represented in Figure 3. The proposed system comprises of
three modules:

• Preprocessing: The basic aim of this module is to con-
vert each term of the bug report into more manageable
representation, remove the unwanted terms from the bug
reports.
• Deep Learning Model: In this module deep learning
based model is proposed for extracting the semantic and
syntactic relationship of words for the textual similarity
measurement between bug reports.
• CNN based Feature Extraction Layer: CNN technique
is used to extract the relevant features. It has various
convolution filters that capture the local features and
examines all words of the bug reports from multiple
prospective.
• Similarity Measurement Layer: This layer contains sim-
ilarity measurement metric, which compare the sentence
representation of the bug reports.
• Fully Connected Layer: This layer computes the simi-
larity score of the sentences of bug reports.

• Duplicate Bug report Detection and Classification:
This module classifies the duplicate bug report from
non-duplicate bug report based on the final decision
based on the similarity scores.

A. PREPROCESSING
The input of this module is the bug reports. It has variety of
fields like status, component, title, bug ID description, sever-
ity, version, priority, Summary etc. In this research paper,
the bug report title, bug ID, summary and description are
used for duplicate bug report detection. The unwanted words
like non alpha and numeric characters are removed from
the bug report text. These unwanted words can degrade the
learning performance of the detection system. The objective
of preprocessing module is to reduce the bug report features
space. As, result the effort cost of triager is minimized [15].
Next, the sentences are broken down into the words called
token. After that, each word is mapped to its corresponding
embedding by Word2Vec in the dictionary [41]. The out-
put of this step sets of feature vectors that represent each
word in the bug report. Further, the proposed CNN model
uses pre-trained word embedding for extracting the relevant
features.

B. DEEP LEARNING MODEL (DLM)
This subsection illustrates the proposed DLM for duplicate
bug report detection. DLM is applied to determine the set
of reduced features from given set of bug report features.
The aim of DLM is to identify more relevant (important)
features from the bug report feature set and measure sim-
ilarity between text of bug reports. The deep learning fea-
ture extraction process is consisted of five layers such as
Input, Convolutional, Activation, Max pooling. The textual
similarity measurement process has two layers i.e. Similarity
Measurement and Fully connected layer. The graphic repre-
sentation of deep learning technique based feature extraction
and similarity measurement is illustrated in Figure 4.

1) CNN BASED FEATURE EXTRACTION LAYER
In this layer, CNN model used Siamese structure to generate
the semantic and syntactic relationship of each word of the
bug report content from its preceding and following words.
The structure has two networks, one extract the relevant
feature of one bug report and another extract the features of
other, but the feature weight tied down with each feature.
Further the CNNmodel uses pre-trained word embedding for
this word representation.

The input layer gets the stream of feature vectors (words).
These words interpret as the temporal sequence where close
words are correlated. Let assume, bug report contains n num-
ber of sentences BR = (sbr1, sbr2, . . . .sbrk . . . sbrn). Each
sentence of bug report sbr ∈ S l×d is the sequence with l
word input represented by d - dimensional word embedding’s
and sbrk ∈ Sd represents the embedding of k th word in
the sequence. Further, sbrk:h is the concatenation of word
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FIGURE 4. Proposed deep learning technique based feature extraction
and similarity measurement.

embedding’s from k th to hth words, sbr [i]k represents the k th

word vector with ith dimension and the sbr [i]k:h is the vector of
the k th to hth words having the ith dimension
The convolution layer contains the filter as 〈w, h, b, a〉,

where w is the sliding window, h ∈ Sw×d is the vector weight,
b ∈ S is the bias, a is the tanh activation function. When filter
f is enforced to sentence of bug report sbr then the inner
product is figure out between h and each word embedding
window of length w in sbr , after that the bias value is added
and sigmoid function is applied. This provides an output
vector fout ∈ S1+l−w where ith entry is expressed as

fout [i] = a (h.sbr i:i+w−1 + b) , where i ∈ [1, 1+ l − w]

(1)

This filter matches the word sequence regions and considers
the entirety of each word embedding at each position as
shown in Figure 3. These are called holistic filters. The infor-
mation is also target at finer granularity by the pre-defined
filters which are included separately for every dimension
of input word embedding’s as described in Figure 3. Sup-
pose f k for every dimension k of word embedding’s, where
h ∈ Sw and f k = 〈w, hfk , bfk , afk , 〉 gives the output vector
f kout ∈ S1+l−w for every k dimension where ith entry (for i
∈ [1, 1+ l − w]) is expressed as

f kout [i] = af k
(
hf k .sbr

k
i:i+w−1 + bf k

)
(2)

The utilization of word embedding’s in both ways helps in
extracting richer sentence modeling. Furthermore, by updat-
ing the word embedding in training phase capture more

distinct information. In this research, the convolution layer is
considered as set of filters that share same filter type (holistic
and predefined), activation function andwidth of window size
that is preferred by modeler and filter weights (h and b) are
learned.

FIGURE 5. Block Representation with Holistic and Pre-Dimension Filters
(In Block A, holistic filters match the entire feature vector on the hand in
Block B, pre-dimension filter independently matches each dimension of
word embedding).

Further, the output vector fout is transformed into the scalar
for consequent use by the pooling method. In this study,
the max pooling is operated across the entries of fout and gives
the max value. As shown in Figure 5, the two building blocks
are defined to set the groups, BA and BB. The instance of BA
contains the three holistic convolution layers with same filter,
pooling and window size. For a BA (wa, pooling, sbr) with
the number of filters nf A and convolution layer, the output
poutA is defined as the vector length nf A where h is the entry:

poutA [h] = max_pooling(outfh) (3)

where fh are the filters and output of each filter vector after
applying the pooling function in block the BA (∗).

The blockBB contains the two groups of convolution layers
with the pre- dimensional filters Dim, max pooling and win-
dow size. It operates on the particular dimensions of the word
embedding. The output poutB of block BB ( wb, pooling, sbr)
is defined as Dim×nf B where [k] [h] is the entry:

poutB [k] [h] = max_pooling(outf [k]h ). (4)

where, f [k]h is defined as h filter with k dimensions. There is
no pooling across the multiple filters in the block or layers.
Each pooling layers perform independently on the matches of
single filter.

2) SIMILARITY MEASUREMENT LAYER
This layer computes the similarity between the sentences of
two bug reports by extracting and comparing all the feature
maps of bug reports. The structural comparison is carried on
the representation of sentences of two bug report in parallel
over particular regions as shown in Figure 6. The following
aspect is considered for comparing the local regions: whether
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FIGURE 6. Example of comparison of local region of sentences
representation of two bug reports that uses Block A only. The algorithm 1
(horizontal comparison) is shown with green dotted line and algorithm 2
(vertical comparison) is presented with red dotted lines. Every sentence
representation in the bug report utilizes size of window w1and w2.with
max pooling and nf B = 1 filters.

they belong to same building block and same filter of the
convolution layer. The sentence representation of two local
regions is computes by the cosine similarity metric [42]. The
expression is described below:

Cos (BRnew,BRsrc) =
−−−→
BRnew.

−−→
BRsrc∥∥∥−−−→BRnew

∥∥∥ ∥∥∥−−→BRsrc
∥∥∥ (5)

Let
−−−→
BRnew and

−−→
BRsrc be the representations of vector space

of the new and source sentences of bug reports respectively.
The denominator represents the dot product of Euclidean
norms of these bug reports vectors and numerator repre-
sents the product of these vectors. The two algorithms are
designed to compare the sentences of two bug reports. The
Algorithm 1 works on the BA output and Algorithm 2 works
on both BA and BB outputs, focusing on the regions which
share same blockswith different filters. Given two bug reports
having n sentences sbr1n and sbr2n. The window size of BA
and BB is set to 1. The number of filters nf A by n+1 matrix
is represented as regMatrix∗. Further assume that each group
of block∗ provides the output pout∗ . At last the output features
are accumulated as final output feat .

Algorithm 1 Horizontal Comparison
Step 1: for pooling p = max do
Step 2: for with w = 1 do
Step 3: regMatrix1 [∗] [w] = BA ( w, p, sbr1n)
Step 4: regMatrix2 [∗] [w] = BA ( w, p, sbr2n)
Step 5: end for
Step 6: for i = 1. . . .. nf A do
Step 7: feath = Cos (regMatrix1 [i] , regMatrix2 [i])
Step 8: accumulate feath
Step 9: end for
Step 10: end for

Algorithm 2 Vertical Comparison
Step 1: for pooling p = max do
Step 2: for with w1 = 1 do
Step 3: pout1A = BA ( w1, p, sbr1n)
Step 4: for with w2 = 1 do
Step 5: pout2A = BA ( w2, p, sbr2n)
Step 6: feata = Cos (pout1A , pout2A )
Step 7: accumulate feata
Step 8: end for
Step 9: end for
Step 10: for with w1 = 1 do
Step 11: pout1B = BB ( w1, p, sbr1n)
Step 12: pout2B = BB ( w2, p, sbr2n)
Step 13: for i = 1. . . .. nf B do
Step 14: featB = Cos (pout1B , pout2B )
Step 15: accumulate featB
Step 16: end for
Step 17: end for
Step 18: end for

3) FULLY CONNECTED LAYER
The output similarity feature vectors (featB) of the similarity
measurement layer fed into fully connected layer. In this layer
similarity of the sentences of bug reports is computed. This
layer has stack of two liner layers with the tanh activation
function in between and followed by log softmax function
as final output as similarity score of the sentences of bug
reports.
Example:Two input sentences from the two bug reports are

processed in parallel by identical CNN based feature extrac-
tion layer. The output of the CNN based feature extraction
layer is the sentence representations of the bug reports in
the form of matrix. The sentence representations are com-
pared by the similarity measurement layer using cosine sim-
ilarity metric. The similarity features are then fed into the
fully-connected layer for computing the similarity score. Fur-
ther, the graphical representation of working example is illus-
trated in Figure 7 to show how algorithms 1 and 2 compare
outputs of blockA only. The sentence representations of the
bug reports are arranged into the form of sentence matrices
as in Figures 6 and 7. In Algorithms 1 and 2, local regions of
the two matrices are compared by rows and columns. Each
equal-sized max group is extracted as a vector and is com-
pared to the corresponding one for the other sentence by using
cosine distance d as illustrated in equation 5. This process is
repeated for all rows and comparisons are shown in green
solid lines, as performed by Algorithm 1. In Algorithm 2.
each column of the sentence matrix is compared with the
column of the other sentence after the max pooling operation.
This is shown in red dotted lines in the Figure 7 and listed in
lines 2 to 9 in Algorithm 2.
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FIGURE 7. Example of comparison of local region of sentences
representation of two bug reports that uses Block A only.

C. DUPLICATE BUG REPORT DETECTION AND
CLASSIFICATION
In this module the final textual similarity score of new and
existing bug report is compared with the specific threshold.
Firstly, the similarity scores of all sentences are combined
to get the bug report final similarity score. If the textual
similarity between the new bug report and master bug report
is larger than a specific threshold, then the new bug otherwise
non- duplicate and added to the master set.

IV. EXPERIMENT RESULTS AND DISCUSSIONS
The experiment results of proposed duplicate bug report
detection and classification system is demonstrated in this
section. The proposed system is applied on six public avail-
able datasets such as Mozilla, Eclipse, NetBeans, Gnome,
Open office and Firefox. F-measure, Precision, Accuracy,
Recall@k and Recall metrics are used to evaluate the
performance of proposed system. A system having win-
dow 10, NVIDIA GEFORCE GPU, Intel Core i5 processor,
CPU@ 2.70GHz and 8GB RAM is utilized to implement the
proposed system.

Although, Keras API in TensorFlow is used to implement
deep learning based similarity measure and feature extraction
technique [41].

Algorithm 3 Duplicate Bug Report Detection and Classifi-
cation
Input: Master Bug Report SetMBr, New Bug Report NBr,
Threshold thres
Output A list of Duplicate Bug Reports DRr
Step 1: for each bug report Br in MBr and NBr do
Step 2: Extract the word embedding vectors using

Word2Vecand fed into layer CNN for extracting
the feature vectors of the textual description of
bug reports;

Step 3: end for
Step 4: for each bug report Br in MBr do
Step 5: for local region comparison lrc [horizontal,

vertical] do
Step 6: Compute the cosine similarity between the local

regions ofMBr and NBr and denote as Ss
Step 7: end for
Step 8: if Ss > thres
Step 9: than Br classified as duplicate and add in DRr
Step 10: else
Step 11: Br classified as Non-duplicate and add in MBr
Step 12: end if
Step 13: end for

TABLE 1. Characteristics of duplicate bug report datasets utilized in the
experiments.

A. DATASET
In this work, the Mozilla, Eclipse, NetBeans, Gnome,
Open office and Firefox open source datasets are adopted,
which are created and published by Lazar et al. [21]
and Lerch et al. [32] (https://bugs.eclipse.org/bugs/, https://
github.com/ logpai/bugrepo). The combined bug report
dataset is also created by combining all the datasets and
named as ‘Combined’. The characteristics of these datasets
are illustrated in Table 1.

B. TRAINING
The objective of proposed system is to figure out the sim-
ilarity between the two bug reports. The procedure ought
to be learned in such manner that it gives high similarity
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score for duplicate bug reports and low similarity score for
non-duplicate bug reports. This concept is formulated as
cross-entropy training loss [15] objective expressed as below:

E = −
1
n

∑n

i=1

[
L ilogL io +

(
1− L i

)
log

(
1− L io

)]
(6)

where L io, represents the output result of i-th neuron in the
output layer. L i represents the results of corresponding target.
The back propagation and stochastic gradient decent [42]
is used to minimizing the loss averaged across the training
samples. This supervised training helps in finding the latent
and discriminative features. Further the bug report dataset is
divided into train and test pairs as shown in Table 2.

TABLE 2. Train and test bug report pairs of datasets.

C. PARAMETER SETTINGS
The Word2Vec word embedding is used to represent part
of speech tags and words. It is trained on the Google news
dataset. The number of holistic filters are equal to the input
word embedding. Therefore nf A = 300. The number of
per- dimension filters are nf B = 20, so total filters equal to
20∗Dim. The learning rate and dropout of proposed algorithm
is equal to 0.01 and 0.5. Tanh and softmax are used as
activation function. Further, 4 convolution layers are utilized
with 150 hidden units in the fully connected layer.

D. PERFORMANCE METRICS
In this subsection five performance metrics are used to com-
pute the performance of proposed duplicate bug report detec-
tion and classification system as listed below [43].
• Accuracy: It specifies the correctly classified duplicate
and non-duplicate bug reports. the accuracy of proposed
system is stated using equation 7.

Accuracy =
P+ N

P+ N+ F+ G
(7)

In equation 7, P denotes duplicate bug reports correctly
classified, N represents non-duplicate bug reports cor-
rectly classified, F denotes non-duplicate bug reports
incorrectly classified as duplicate bug reports and G denotes
duplicate bug reports incorrectly classified as non-duplicate
bug reports.
• Precision: It specifies duplicate or non-duplicate bug
reports that can be classified as actually duplicate or non-
duplicate. The another name of precision is Type-1 error.
Precision is computed using equation 8.

Precision =
P

P+ F
(8)

• Recall: This metrics indicates actual duplicate or
non-duplicate bug reports among all bug reports. Recall
metric is also known as Type-2 error and stated as
equation 9.

Recall =
P

P+ G
(9)

• F-measure: It is demonstrated as expression of precision
and recall. It only takes the positive bug reports either
classified as negative or positive. Equation 10 is used to
compute the F-measure.

F−measure =
2P

2P+ P+ G
(10)

• Recall@k: It is presented as the percentage of duplicate
bug reports found in top list size k bug. This metric is
calculated using equation 11.

Recall@k =
Uclassified@k

UTotal
(11)

In the equation 11, Uclassified@k denotes the number of cor-
rectly classified duplicate and no duplicate bug reports and
UTotal is the total number of bug reports in the dataset.

E. RESULTS AND DISCUSSION
This subsection represents the experimental results of pro-
posed system. The results of proposed system are compared
with eight existing duplicate bug report detection systems.
At last research questions are answered to know the effective-
ness of proposed system over existing automated duplicated
bug report detection system.

1) RESULT OF PROPOSED SYSTEM
The experimental results of proposed system are demon-
strated in this subsection. To predict the bug is dupli-
cate or not, the proposed system based on deep learning
model is used. The six datasets and five performance met-
rics are adopted to evaluate a performance of duplicate
bug report detection and classification system as mentioned
above. The proposed system adopted the binary classification
schema. The experimental result of proposed system using
seven datasets is illustrated in Table 3. It can be seen that
proposed system effectively computes the accuracy, preci-
sion, recall@k, recall and f-measure rates for each dupli-
cate and non-duplicate bug report of each dataset. It can
be seen from table, precision of proposed system for Net-
Beans, Eclipse, Open office, Gnome, Mozilla, Combined
and Firefox datasets is 82.90%, 97.23%, 97.44%, 86.16%,
98.70%, 94.35% and 8024% respectively. The recall rate
of NetBeans, Mozilla, Eclipse, Open office, Gnome, Com-
bined and Firefox datasets obtained by proposed system
is 80.23%, 98.42%, 97.04%, 95.34%, 83.35% 96.34% and
81.23% respectively. The F-measure of NetBeans, Eclipse,
Open office,Mozilla, Gnome, Combined and Firefox datasets
is 81.54%, 97.24%, 96.45%, 98.89%, 84.73%, 97.44% and
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TABLE 3. Experimental results of proposed duplicate bug report
detection and classification system using seven datasets.

TABLE 4. Experimental results of proposed system based on recall@20
metric of seven datasets.

83.45% respectively. The accuracy rate of proposed sys-
tem is 99.38%, 85.45%, 98.33%, 95.24%, 83%, 96.34%
and 83.45% for Mozilla, NetBeans, Eclipse, Open office,
Gnome, Combined and Firefox datasets respectively. It can
be seen that Mozilla open source dataset attains greater
f-measure, recall, accuracy and precision rate as compared
to other datasets. Therefore, it can say that proposed detec-
tion and classification system is efficient and capable for
duplicate bug report detection and classification. Further,
recall@1, recall@5, recall@10 and recall@20 metrics are
utilized to determine the performance of proposed sys-
tem as shown in Table 4. The recall@20 rate of proposed
system is higher than recall@5 and recall@10. Further,
the eclipse dataset achieves higher recall@20 i.e. 93.93,
whereas, Gnome dataset achieves low recall@20 i.e. 79.75.
The Mozilla dataset achieves higher recall@10 rate i.e.
91.48 and proposed system gets low recall@10 rate i.e. 80.54
for NetBeans dataset. Eclipse and Gnome datasets exhibits
worst recall@5 rate among all datasets.

2) COMPARISON WITH TRADITIONAL DUPLICATE BUG
REPORT DETECTION SYSTEMS
In this section, experimental results of proposed duplicate
bug report detection system are compared with traditional
systems based on Mozilla, NetBeans, Eclipse, Open office,
Gnome, Combined and Firefox datasets. These systems are
proposed by Sun et al., Nguyen et al., Aggarwal et al.,
Hindle et al., Deshmubk et al., Ebrahimi et al. and Kim et al.
[11], [27], [30], [32], [34], [36], [37], [40]. Sun et al.

TABLE 5. Comparison of proposed duplicate bug report detection and
classification system with existing systems using accuracy metric.

FIGURE 8. The graphical representation of the comparison of proposed
duplicate bug report detection and classification system with existing
systems using accuracy metric.

proposed two duplicate bug report detection system using
discriminative approach and BM25F function with retrieval
function [11], [27]. Nguyen et al. developed detection sys-
tem using the combination of topic modeling and infor-
mation retrieval [30]. Kim et al. designed a duplicate bug
report detection system using crash graph approach [32]
and Ebrahimi et al. developed system using HMM based
approach [40]. Deshmukh et al. proposed a retrieval sys-
tem for detecting duplicate bugs using deep learning tech-
niques [37]. Aggarwal et al. implemented a detection system
utilizing domain knowledge with software engineering [36].
Hindle et al. used contextual approach for ranking and
detecting the duplicate bug reports [34]. The performance
of these systems are evaluated using different performance
metrics. The accuracy results of proposed system are com-
pared with Aggarwal et al., Hindle et al., Deshmubk et al. and
Nguyen et al. as shown in Table 5 and Figure 8. It is stated
that proposed detection and classification system achieves
the better accuracy rate than other traditional duplicate bug
report systems on NetBeans, Eclipse, Mozilla and Open
office datasets. The accuracy rate of proposed system is in
between 85-99% for four datasets. Whereas, the accuracy
rate of Aggarwal et al., Nguyen et al., and Hindle et al.
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systems are in the range of 91-94%, 73-82% and 93-97%
respectively for Eclipse, Open office and Mozilla datasets.
The accuracy rate of Deshmubk et al. is between 72-73% for
Eclipse, Open office and NetBeans datasets. In the conclu-
sion, the classification and detection rate of proposed system
is improved significantly than Aggarwal et al., Hindle et al.,
Deshmubk et al. and Nguyen et al. systems. It is additionally
seen that proposed deep learning based system determines the
relevant features for similaritymeasurement and enhances the
result of classification of bugs as duplicate and non-duplicate.

TABLE 6. Comparison of proposed duplicate bug report detection and
classification system with existing systems using recall@20 metric.

FIGURE 9. The graphical representation of the comparison of proposed
duplicate bug report detection and classification system with existing
systems using recall@20 metric.

Further, Table 6 and Figure 9, illustrate the performance of
proposed system, Sun et al., Kim et al., and Ebrahimi et al.
using recall@20 performance metric on Open office, Eclipse,
Firefox and Gnome datasets. The recall@20 rate of proposed
system is higher than Sun et al., Kim et al et al. and Ebrahimi
et al systems. The recall@20 rate of proposed system for
Eclipse and Open office datasets are 93.93% and 88.21%.
While recall@20 of both Sun et al. systems for Eclipse and
Open office datasets are 62% and 67% respectively. The
recall@20 rate of proposed system is 79.95% and 83.18%
for Gnome and Firefox datasets. Whereas, Kim et al et al.
and Ebrahimi et al. systems achieve the recall@20 rate i.e.
71% and 71.57% for Gnome dataset and 67.65% and 76.43%
for Firefox datasets. Furthermore, it is found that proposed
systems obtains better recall@20 rate utilizing all datasets

i.e. 83-94% andEclipse dataset archives higher recall@20 rate
rather than others datasets. Hence, it is summarized as pro-
posed deep learning approach improves the duplicate bug
report detection and classification rate significantly rather
than other existing approaches.

3) RESEARCH QUESTIONS
The two research questions are answered to know the effec-
tive of proposed system using deep learning technique over
the existing automated duplicate bug report detection systems
using traditional techniques are follows:

RQ1: Is deep learning technique extract the rele-
vant (important) features for automated duplicate bug report
detection and classification system?

Ans. RQ1): In the proposed system, deep learning
approach i.e. CNN is employed with similarity measurement
layer and classification model. Initially bug reports text is
pre-processed and each word is mapped to its corresponding
embedding by Word2Vec in the dictionary. The output of
this step is set of feature vectors that represent each word
in the bug report. These all feature are not equally sig-
nificant and a few of them are irrelevant. These irrelevant
features can be degrading the performance of duplicate bug
report detection and classification system. To enhance the
results of system, previous researchers have utilized vari-
ous feature extraction techniques to determine the important
set of features. In this paper, CNN based feature extrac-
tion technique is adopted to extract the important features
form feature sets. Further, above mentioned feature set are
processed parallel by the identical neural network i.e. CNN
and the output is relevant feature of the bug report text.
The relevant feature of bug reports is compared by the
similarity measurement layer; output is the similar features.
These features are fed into fully connected layer for com-
puting the similarity score. This score is fed into duplicate
bug report detection and classification module to classify
the bug report as duplicate and non-duplicate. It is stated
that CNN based feature extraction technique significantly
extracts the relevant features for all datasets. An exam-
ple of input bug report with bug ID 225169 and result
of detection system result with bug ID 225337 is shown
in Figure 10. It can be seen that the detected bug report
is nearly similar to the input bug report. Tables 4 and
5 showed the experimental results of proposed system. The
proposed system obtains state of art results as compared
to Sun et al., Nguyen et al., Aggarwal et al., Hindle et al.,
Deshmubk et al., Kim et al et al. and Ebrahimi et al. systems.
The experimental results of proposed system show the sig-
nificant improvement due to the relevant features extraction
using CNN based feature extraction technique. Therefore,
it is concluded that deep learning technique extracts rele-
vant features for automated duplicate bug report detection
and classification system and also improve the classification
results.

RQ2. Is deep learning based feature extraction and sim-
ilarity measurement technique enhance the performance of
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FIGURE 10. An Example of input bug report and detected bug report by
the proposed system of Eclipse dataset.

duplicate bug report detection and classification system than
traditional feature extraction and similarity measurement
techniques?

Ans. RQ2): In proposed system, deep learning model is
proposed for feature extraction and similarity measurement
task for detection of duplicate bug reports. The relevant
features are extracted through CNN based feature extraction
model. CNN model has five layers such as Input, Convolu-
tional, Activation, Dropout, Max pooling. These layers have
Siamese structure to generate the semantic and syntactic
relationship of each word of the bug report content from
its preceding and following words. The structure has two
networks, one extract the relevant feature of one bug report
and another extract the features of other, the feature weight
is tied down with each feature. Further, CNN model has
various convolutions filters that capture the local features,
semantic relationship between words and examines all words
of the bug reports from multiple prospective. Further, deep
learning model has two layers i.e. Similarity Measurement
layer and Fully connected layer to calculate the similar-
ity of bug reports. Similarity Measurement Layer contains
similarity measurement metric, which compare the sentence
representation of the bug reports. Fully Connected Layer
calculates the similarity score of the sentences of bug reports.
The experimental results of proposed system are compared
with Sun et al., Nguyen et al., Aggarwal et al., Hindle et al.,
Deshmubk et al., Kim et al et al. and Ebrahimi et al. sys-
tems. These systems consist of tradition feature extraction
techniques for duplicate bug report detection as mentioned in
the section D and subsection 2. The experimental results of
all existing systems are illustrated in Tables 5 and 6. It can be
seen that proposed system provides more significant results
than existing systems.

It is observed that average accuracy rate of pro-
posed system ranges in between 85% to 99 %, whereas
of Nguyen et al., Aggarwal et al., Hindle et al., and
Deshmubk et al. systems are in between 73%-82%, 91%-94%,
93%-97% and 72%-83% respectively. It is also noticed that
average recall@20 rate of proposed system ranges in between

79%-94%, whereas of both Sun et al., Kim et al et al. and
Ebrahimi et al. systems are in between 62%-66%, 67%-69%,
67%-71% and 71%-77% respectively. Hence, it can be said
that proposed duplicate bug report detection and classifica-
tion system outperforms than existing systems. In proposed
system, deep learning based feature extraction and similarity
measurement technique is implemented for detecting the
duplicate bug reports. So, it can be stated that deep learning
based feature extraction and similarity measurement tech-
nique improves the performance of proposed system and also
provides better results than traditional feature extraction and
similarity measurement techniques.

4) CROSS TRAINING RESULTS OF PROPOSED SYSTEM
In reality, many researchers do not have supervised train-
ing bug report data in mostly industrial software projects.
This problem restricts the researchers from using the super-
vised approaches in practice for various software projects.
To address this problem, the proposed system is trained by
bug report samples from other software project. The results
of this experiment is illustrated in Table 7. In this experiment
the proposed system is trained with Eclipse dataset (project)
and tested with NetBeans dataset vice-versa. It can be seen
from the results that the proposed system also provides good
accuracy prediction because both datasets have same domain
and genre i.e. Integrated Development Environment. Further,
the proposed system is trained with Eclipse dataset and tested
with Open office dataset. The accuracy of this cross training
experiment is low due to the different domain of datasets.
it is demonstrated that the proposed system learns the generic
syntactic and semantic relationship of features as well as
latent features of the domain, thus provides the better results
for cross training project with in the same domain.

TABLE 7. Accuracy of proposed system using Cross training datasets.

F. THREATS TO VALIDITY
External Validity: Six datasets are used to evaluate the pro-
posed system. These datasets belong to the different plat-
forms due to this generalization of the proposed system is
not guaranteed. Further, external validity is hampered the data
source as accuracy of duplicate bug report labels or the lack
of labels that depends on developer marking the bug reports
that way.

Internal Validity: In this work, domain specific features
(extracted with CNN based Feature extraction layer) are com-
bined into a duplicate bug report detection.We only have used
one combination style, but there is other different styles or
ways of combining the domain specific features. However,
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the integration of word embedding feature into the CNN
model has been produced more effective results than baseline
methods. The other integration style, pooling functions is
discussed in the future.

V. CONCLUSION
In this paper, a novel automatic duplicate bug report detec-
tion and classification system using deep learning tech-
nique is proposed. The proposed system utilized CNN based
deep learning model for relevant feature extraction. Further,
the CNN model has various convolution filters that capture
the local features and examines all words of the bug reports
from multiple prospective. Further, deep learning model has
two layers i.e. Similarity Measurement layer and Fully con-
nected layer to calculate the similarity of bug reports. Sim-
ilarity Measurement Layer contains similarity measurement
metric, which compare the sentence representation of the bug
reports. Fully Connected Layer computes the similarity score
of two bug reports. After that, bug reports are classified as
duplicate or non-duplicate on the basis of similarity scores.
The performance of the proposed system is tested over pub-
licly available datasets. These datasets are Mozilla, Eclipse,
NetBeans, Gnome, Open office and Firefox. The experimen-
tal results are evaluated using F-measure, precision, accu-
racy, recall@k and recall metrics. The performance of pro-
posed system is compared with existing duplicate bug report
systems such as Sun et al., Nguyen et al., Aggarwal et al.,
Hindle et al., Deshmubk et al., Kim et al. and Ebrahimi et al.
It is observed that the proposed system achieves higher accu-
racy rate in the range of 85% to 99 % and recall@k rate
in between 79%-94% rather than existing systems. The pro-
posed system improves the recal@20 by 19%-31% over both
Sun et al. systems, 8%-16% over Kim et al. and 7%-8% over
Ebrahimi et al. system. The accuracy rate of proposed system
improves by 2%-5%, 4%-6%, 17%-25% and 8%-26% over
Nguyen et al., Aggarwal et al., Hindle et al., Deshmubk et al.
systems respectively. The proposed system does not utilize
hand crafted features like mostly other existing systems for
duplicate bug report detection. Moreover, the effectiveness
of proposed system is also measured on the cross training
datasets of same and different domain. The proposed system
provides good high accuracy rate for same domain datasets
and low accuracy rate for different domain datasets. In future,
other deep learning based feature extraction techniques will
be explored to extract the relevant features for predicting the
similarity score of bug reports. The efficiency of proposed
system is also measured in the absence of structural informa-
tion in a bug report.
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