
Dynamic Ready Queue Based Process Priority
Scheduling Algorithm

Raghav Dalmia, Aryaman Sinha, Ruchi Verma, P. K. Gupta
Department of Computer Science & Engineering

Jaypee University of Information Technology, Solan, 173 234, India
Email: {raghudalmia1712, aryan040501, ruchiverma612}@gmail.com, pkgupta@ieee.org,

Abstract—CPU scheduling is the reason behind the per-
formance of multiprocessing and in time-shared operating
systems. Different scheduling criteria are used to evaluate
Central Processing Unit Scheduling algorithms which are
based on different properties of the system. Round Robin
is known to be the most recurrent pre-emptive algorithm
used in an environment where processes are allotted a unit
of time and multiprocessing operating systems. In this paper,
a reformed variation of the Round Robin algorithm has
been introduced to minimise the completion time, turnaround
time, waiting time and number of context switches that
results in the better performance of the system. The proposed
work consists of calculation of priority on the basis of the
difference between time spent in ready upto the moment
and arrival time of the process, to ease up the burden on the
ready queue. We have also evaluated the performance of the
proposed approach on different datasets and measured the
different scheduling criteria

Index Terms—Burst Time, Arrival Time, CPU Scheduling,
Time Quantum, Priority, Context Switches

I. INTRODUCTION

The allocation and deallocation of system resources is
performed by portion of the operating system known as
scheduler and this mechanism is referred as CPU Schedul-
ing [1]. Priority of the process is identified by a Scheduler,
among multiple executable processes which are waiting
for allocation of CPU for execution. CPU Scheduling are
of two types, mainly, non pre-emptive, or pre-emptive.
There exists various CPU scheduling algorithms like First
Come First Serve (FCFS), Shortest Job First (SJF) as non
pre-emptive and Shortest Remaining Time First (SRTF),
priority scheduling as pre-emptive algorithm.

In Priority Scheduling, processes with higher priority
are carried out first, the process with lower one is paused
and the higher one is completely executed [2]. Further,
Round Robin is the most common pre-emptive Scheduling
Algorithm, which is widely used due to its simple proof of
work that provides equal chance to all processes and the
expansive theory which can be further modified according
to the user’s need, and not being much competitive [3]
[4]. Here, RR is much simpler to implement and has much
lower runtime overhead [5]. The efficiency of the Round
Robin varies on the time quantum i.e., while the time
quantum is small, a greater number of context switches
takes place, whereas a large time quantum makes, the
algorithm to work like FCFS causing starvation occurring
to processes [6].

In this paper, we have devised an algorithm, which
mainly focusses on the reduction of different scheduling

criteria, such as average turnaround time, average waiting
time and number of context switches. Median of all the
burst times is used as the time quantum for fulfilling
the dynamic needs of the algorithm. Even the problem
of priority which arises due to the large amount of time
spent in ready queue is solved with the priority method
of the algorithm. It is based on the difference of arrival
time and time spent by the process in the ready queue. A
threshold condition is also implemented to check whether
the process is on the verge of completion and exit the
queue. Terminating shorter processes early in the cycle to
avoid the problem of starvation.

Many objectives are needed to be fulfilled for the
better implementation of the algorithm. These objectives
determine the overall performance of the algorithm over
existing algorithms.

• Reduces waiting time, which is the total time a
process was in ready queue.

• Reduces turnaround time, which is the total time
between the arrival and completion of a process.

• Reduces number of context switches, which refers to
transition from one process to another due to expiring
of time quantum, the process got interrupted, etc.

• Overheads of added context switches which results
from choosing small time quantum, and starvation
which results from choosing large time quantum
should be exempted.

Scheduling of processes is one of the important tasks.
There have been many algorithms over the course of time,
but Round Robin is the most simple and effective of all.
The efficiency of algorithm based on RR depends on time
quantum, whereas the accurate time quantum is which
minimizes the number of context switches and avoids
starvation. The proposed algorithm focussed on achieving
many objectives for improved results over the existing
algorithms. The performance of the algorithm largely
varies upon different scheduling states which inspects the
algorithm in different criteria. Fig. 1 represents the process
of scheduling.

II. RELATED WORK

SRR Algorithm is widely administered in majority of
the OS for better CPU performance. The search of an
algorithm which improves and optimizes the performance
of CPU by maximizing utilization and minimizing average
waiting time and turnaround time, led to the proposal of
many variants of SRR.

ar
X

iv
:2

20
5.

07
31

4v
1

 [
cs

.O
S]

 1
5

M
ay

 2
02

2

Fig. 1. Representation of Scheduling Process.

A. Dynamic Time Quantum techniques

In [1], Mostafa and Amano have proposed a version
of Standard Round Robin (SRR) by using clustering
techniques to group similar processes in clusters. The clus-
tering metrics are Burst Time (BT), Process Weight (PW),
and Number of Context Switches (NCS). In subsequent
rounds, the time slice of each cluster is calculated using
the weight of each cluster with a threshold condition in
consideration. If a new process arrives, it is added to the
end of the queue. In [10], Tithi et al. have implemented
a dynamic version of SRR which focuses on progressive
time quantum which needs to be consistently adjusted
according to the remaining burst time of currently running
processes. Like Lipika’s and Sulalah’s [7] [11] algorithm,
processes are sorted in ascending order in this algorithm
too. In [8] Alsheikhy et al. have proposed a dynamic way
to keep the time quantum comparatively smaller than the
value where the algorithm acts as FCFS by computing
average of two highest burst times and later the average
of two lowest arrival times which were estimated value
for single use only; later, the average of arrival time
for only lowest process are subtracted. In [12], Tajwar
and Nuruddin have presented a version of Round Robin
in which time quantum is dynamically adjusted in the
starting of subsequent rounds which is equal to the mean of
remaining burst times of processes in every round. In [13],
Samir and Shahenda have proposed a SRR and SJF based
mix scheduling algorithm known as SJF and RR based
dynamic time quantum (SRDQ). In their approach, two
separate queues Q1 and Q2 have been divided from the
major ready queue; for processes shorter than the median
and for processes longer than the median, respectively.
Further, in subsequent rounds allocations of new time
quantum is done depending on the burst time and median
to the processes. This algorithm is a combination based
algorithm with a basis of dynamic time quantum.

B. Threshold based techniques

In [11], Samkit and Sulalah have presented a version
of SRR where “Smart Time Quantum” and “Delta” are
introduced and computed. These criteria let processes with
less burst time to terminate rather than to wait for an entire
round to execute. Thus, these two provide flexibility to
the processes and reduce waiting time by providing extra
CPU time. In [9], Samih and Hirofumi have suggested a
better version of SRR to tackle the low-scheduling cost
and short processes known as Adjustable Round Robin

(ARR). A threshold condition is checked for determination
of interruption of the running process due to completion
of its time slice considered under SRR or execution until
termination.

C. Priority based techniques

In [7], Lipika came up with dynamic scheduled round
robin algorithm by reinitialising the time quantum at the
beginning of every round. The time slice is calculated
using the remaining burst times in the following rounds.
Precedence factor is the ratio of the remaining CPU
burst of a process and the relative waiting time which is
calculated for every process in the starting of each round.
It is therefore, used in determining the priority order of
processes for that particular round. In [14], Pawan et al.
have proposed a variant of Pre-emptive scheduling to avoid
starvation by prioritising processes with short burst time
or remaining burst time over processes with long burst
time. Initially priority is given according to the inverse of
burst time. Afterwards priority is directly proportional to
waiting time and inversely proportional to remaining burst
time.

III. PROBLEM FORMULATION

In FCFS, there arises the problem of starvation due to
the first come first serve nature of the priority queue as
for the completion of a process, it runs for the complete
burst time till that time all the processes wait in the
queue, whereas, in SRR, the process can only run for a
number of time quantum till a process with higher priority
arrives, even time quantum cannot adjust according to
the processes. Therefore, when the time quantum is too
small, then context switches count increases which lead
to starvation and if it is too long, the algorithm works like
FCFS.

If we have n processes
The completion time for the nth process in FCFS =∑n
n=1(BTn)

whereas that in Round Robin =
∑n−1

n=1(TQ)
and,
Turnaround time for nth process in FCFS =∑n
n=1[(BTn)− (ATn)]

whereas in Round Robin = X
∑n−1

n=1[(yn)− (ATn)]
where X is dynamic number of rounds and yn =

TQn∀TQ if RBTn > TQ or TQn = RBTn if RBTn <
TQ

It is analysed that FCFS is poor in terms of performance
criteria, whereas RR performs better when there is accu-
rate time quantum. Accurate time quantum can result in
reduced completion time and turnaround time.

IV. PROPOSED APPROACH

The proposed work is an advanced interpretation of
the RR scheduling algorithm. Focusing on enhancement
of time quantum and priority of processes entering the
ready queue leads to better scheduling states, which are
calculated in the following subsection. The proposed tech-
nique consists of two steps: Calculation of Dynamic Time
Quantum and finally a priority order for the processes.

A. Calculation of Dynamic Time Quantum

Time Quantum for the ith round, TQi, is calculated
from (1):

TQi = Med(BTn) =

{
BT

[
n
2

]
, if n even

BT
[
n+ 1

2

]
, if n odd

(1)

where BTn is the burst time of the nth process, and
[X] is the greatest integer function which represents the
largest integer value smaller than or equal to X. Median is
preferred over any other measure of central tendency, as
the value of median does not depend on all the values of
the dataset. Thus, when the data is skewed, the effect on
the median is smaller as it is not affected by unsymmetrical
values.

B. Calculation of Priority Order

In the second step, priority order of processes, the time
spent in ready queue by a process, TRQn, is calculated
from (2):

TRQn =

i−1∑
i=1

(TQ)i(k − 1)i (2)

where, TQi is the Time Quantum for ith round, and ki
is equivalent to number of processes in ready queue in ith

round. The priority to processes in the ith round, Pi, is
calculated using (3):

Pi =

{
↑ ATn, if i=1 & k < n/2

↑ [TRQn −ATn] , if i 6= 1
(3)

where, ATn and TRQn are the Arrival Time and Time
spent by the nth process in the ready queue, respectively.
Priority order of processes is reinitialized at the beginning
of every round for the exit of smaller processes accord-
ingly.

Each process in the queue executes for TQi. It is
dynamically calculated at the beginning of each cycle
using (1), on the basis of remaining burst time till the
current round. Moreover, there is an opportunity for the
processes which are on the verge of completion to get
advanced in the queue to conclude and exit the queue.
Threshold value is computed to permit the processes with
remaining burst time equal to or less than 4% of the
original burst time to resume execution and terminate. As
a result, the number of processes will reduce within the
ready queue with the termination of short processes fairly
faster, which might result in comparatively less average
TAT and WT. The remaining burst time of the nth process,
RBTn, is computed by (4):

RBTn = BTn −Med(BTn) (4)

When RBTn is equal to zero or the threshold condition
is satisfied, the process exits the queue. Arrival of new
processes is marked by them being placed at the tail of the
queue to be scheduled and execute in subsequent rounds.
Here, Fig. 2 represents the flowchart of the proposed
algorithm.

Fig. 2. Representation of Scheduling Process.

C. Illustration

For understanding the better functioning of the proposed
algorithm, let’s consider and example as per Table 1.
Further, to demonstrate the concept consider the dataset
used in the experimental implementation and consist of 6
processes with constant time quantum of 3tu.

TABLE I
DATASET

ID Arrival Time Burst Time
P1 5 5
P2 4 6
P3 3 7
P4 1 9
P5 2 2
P6 6 3

The Gantt chart as shown in Fig. 3, represents when the
processes are scheduled according to the SRR.

Fig. 3. Representation of SRR [2].

The waiting time for the 6 processes are 19tu, 17tu,
23tu, 22tu, 2tu and 9tu, respectively. Thus, resulting in
average waiting time of 15.34tu, and average turnaround
time of 20.67tu. On the contrast, suppose TQ and Priority
are calculated according to (1) and (3) mentioned.

TABLE II
DYNAMIC TIME QUANTUM FOR EACH SUBSEQUENT CYCLE

CYCLE 1 CYCLE 2
ID TQ = 6tu TQ = 3tu

BT RBT
P1 5 -
P2 6 -
P3 7 1
P4 9 3
P5 2 -
P6 1 -

The Gantt chart as shown in Fig. 4 has been prepared
for the proposed algorithm as per following:

Fig. 4. Representation of Proposed Algorithm.

The waiting time for the 6 processes are 7tu, 14tu, 23tu,
0tu, 30tu and 10tu, respectively. Thus, resulting in average
waiting time of 12.84tu, and average turnaround time of
18.17tu. The subsequent cycles are shown in Table 2.

V. EXPERIMENTATION

TABLE III
TESTBED FOR PERFORMANCE EVALUATION

Processor Intel core i5-8250U (1.60 GHz)
RAM 8GB

Memory 256GB SSD, 2TB HDD
Operating System Windows 10

Simulation Python 3.9.7 (Google Colab)

A. Dataset

Simulated dataset as shown in Table 4 is used for
the experimental purposes and to test the performance
of proposed algorithm. Even for the one with which
comparison is to be made. Each dataset contains randomly
generated processes with separate arrival time and burst
time. Therefore, the dataset distinguish all the factors.

B. Performance Evaluation

The algorithm is performed using the multiple set of
randomly generated dataset on a system with specifications
mentioned in Table 3. The authors compared the proposed
algorithm with SRR for the compilations of accurate
results. For the efficiency of results, dataset with varying,
number of processes, arrival time and burst time are used.
The resulting criteria depends upon the number of pro-
cesses, therefore, number of processes vary from as small
as 4 to as large as 20, so that there is no discrepancy in
results. More number of processes in ready queue results

TABLE IV
DATASET VS. NUMBER OF PROCESSES.

Dataset ID Number of Processes
1 4
2 5
3 5
4 6
5 6
6 10
7 10
8 15
9 15

10 20

in increase in total runtime of processes thus, affecting the
average turnaround and waiting time in a negative way.
Runtime is also affected by long burst times and delayed
arrival of processes. Here, Table 5 represents the compar-
ison of the proposed approach and the Standard Round
Robin in terms of Average TAT, Average WT and NCS.
Fig. 5 and Fig. 6 are pointing towards the supremacy for
proposed approach over Standard Round Robin. Whereas,
Fig. 7 manifest the percentage improvement in the all the
scheduling states in every dataset.

Fig. 5. Comparison of Algorithms on the basis of Average Turnaround
Time and Average Waiting Time.

VI. CONCLUSION

The paper proposes a variant of Dynamic Round Robin
for multiprocessing and time-sharing machines. Reduction
of scheduling duration and increase the processing speed is
the main purpose of these machines. This algorithm works
on dynamic time quantum, as compared to SRR which
has a fixed time quantum till the scheduling continues.
The proposed algorithm benefits from the method of
calculating time quantum and calculating priority for the
processes. The features are updated after every subsequent
round till all the processes terminate and exit the queue.
The processes which are close to termination are even
given a chance to exit in that particular round instead of
the next round, this in turn reduces the processes in the
queue thus, affecting the scheduling states.

TABLE V
PERCENTAGE EVALUATION OF THE PROPOSED ALGORITHM WITH SRR [2]

Dataset Proposed SRR % Improvement
ID TAT WT NCS TAT WT NCS TAT WT NCS
1 6 3 4 7.25 4.25 6 17.24 29.41 33.33
2 8.2 4 6 9.4 5.2 10 10.63 23.07 40
3 14 7.4 6 18.4 11.8 17 23.91 37.16 64.7
4 41.5 28.58 7 42.33 29.41 12 1.96 2.83 41.66
5 18.17 12.84 9 20.67 15.34 13 14.86 19.81 46.15
6 493.3 353.1 17 664.5 529.5 72 25.76 33.31 76.38
7 235.7 196 15 275.8 236.1 50 14.53 16.98 70
8 1929.67 1706.47 26 2424.2 2204 167 20.39 22.57 84.43
9 2076.2 1827.87 23 2799.6 5249.6 187 25.84 28.3 89.61
10 1951.6 1758.05 3 2908.75 2699.5 165 32.9 34.48 81.21

Average 677.43 589.73 14.4 917.09 828.47 69.9 18.80 24.79 62.74

Fig. 6. Comparing Algorithm’s NCS.

REFERENCES

[1] Samih M. Mostafa; Hirofumi Amano. Dynamic Round Robin CPU
Scheduling Algorithm Based on K-Means Clustering Technique.
Appl. Sci. 2020.

[2] Silberschatz, A.; Galvin, P.B.; Gagne, G. Operating System Con-
cepts, 10th ed.; Wiley Publ.: Hoboken, NJ, USA, 2018.

[3] Sunil, J.G.; Anisha Gnana, V.T.; Karthija, V. Fundamentals of
Operating Systems Concepts; Lambert Academic Publications:
Saarbrucken, Germany, 2018.

[4] Alaa Fiad; Zoulikha Mekkakia Maaza; Hayat Bendoukha. Improved
Version of Round Robin Scheduling Algorithm Based on Analytical
Model, International Journal of Networked and Distributed Com-
puting, 2020.

[5] Yue Tang; Nan Guan; Zhiwei Feng; Xu Jiang; Wang Yi. Response
Time Analysis of Lazy Round Robin. Automation & Test in Europe
Conference & Exhibition, 2021.

[6] Tajwar, M.M.; Pathan, N.; Hussaini, L.; Abubakar, A. CPU
Scheduling with a Round Robin Algorithm Based on an Effective
Time Slice. J. Inf. Process. Syst. 2017.

[7] Lipika Datta. Efficient Round Robin Scheduling Algorithm with
Dynamic Time Slice. I.J. Education and Management Engineering
2015.

[8] Ahmed Alsheikhy; Reda Ammar; Raafat Elfouly. An Improved
Dynamic Round Robin Scheduling Algorithm Based on a Variant
Quantum Time. Conference Paper, 2015.

Fig. 7. Percentage Improvement of different Scheduling States.

[9] Mostafa, S.M.; Amano, H. An Adjustable Round Robin Scheduling
Algorithm in Interactive Systems. Information Engineering Ex-
press, 2019.

[10] Tithi Paul; Rahat Hossain Faisal; Md. Samsuddoha. Improved
Round Robin Scheduling Algorithm with Progressive Time Quan-
tum. International Journal of Computer Applications, 2019.

[11] SamkitMody; SulalahMirkar. Smart Round Robin CPU Schedul-
ing Algorithm ForOperating Systems. International Conference on
Electrical, Electronics, Communication, Computer Technologies
and Optimization Techniques, 2019.

[12] Mohammad M. Tajwar; Md. Nuruddin Pathan; Latifa Hussaini;
Adamu Abubakar. CPU Scheduling with a Round Robin Algo-
rithm Based on an Effective Time Slice. Journal of Information
Processing Systems, 2017.

[13] Samir Elmougy;Shahenda Sarhan; ManarJoundy. A novel hybrid of
Shortest job first and round Robin with dynamic variable quantum
time task scheduling technique. Journal of Cloud Computing:
Advances, Systems and Applications, 2017.

[14] Pawan Singh; Amit Pandey; Andargachew Mekonnen, Varying
Response Ratio Priority: A Pre-emptive CPU Scheduling Algorithm
(VRRP). Journal of Computer and Communications, 2015.

	I Introduction
	II Related Work
	II-A Dynamic Time Quantum techniques
	II-B Threshold based techniques
	II-C Priority based techniques

	III Problem Formulation
	IV Proposed Approach
	IV-A Calculation of Dynamic Time Quantum
	IV-B Calculation of Priority Order
	IV-C Illustration

	V Experimentation
	V-A Dataset
	V-B Performance Evaluation

	VI Conclusion
	References

