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Abstract
Biocatalytic conversion of greenhouse gases such as carbon dioxide into commercial products is one of the promising key 
approaches to solve the problem of climate change. Microbial enzymes, including carbonic anhydrase, NAD-dependent 
formate dehydrogenase, ribulose bisphosphate carboxylase, and methane monooxygenase, have been exploited to convert 
atmospheric gases into industrial products. Carbonic anhydrases are Zn2+-dependent metalloenzymes that catalyze the revers-
ible conversion of CO2 into bicarbonate. They are widespread in bacteria, algae, plants, and higher organisms. In higher 
organisms, they regulate the physiological pH and contribute to CO2 transport in the blood. In plants, algae, and photosyn-
thetic bacteria carbonic anhydrases are involved in photosynthesis. Converting CO2 into bicarbonate by carbonic anhydrases 
can solidify gaseous CO2, thereby reducing global warming due to the burning of fossil fuels. This review discusses the 
three-dimensional structures of carbonic anhydrases, their physiological role in marine life, their catalytic mechanism, the 
types of inhibitors, and their medicine and industry applications.
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Introduction

Oceans are among the richest sources of bioactive mole-
cules used in industrial and medical applications [1–11]. 
In addition to pharmaceutical applications, these bioactive 
molecules are used in the food and cosmetics industries [12, 

13]. The demand for biomaterials from marine sources has 
increased considerably because of their unique properties 
compared to compounds from the terrestrial origin [14–17]. 
Over the past decades, more than 16,000 marine organisms 
have been identified and studied as sources of various criti-
cal biological materials, such as proteins, peptides, glyco-
proteins, polysaccharides, and lipids [18, 19]. In particular, 
marine enzymes, among which carbonic anhydrases, were 
discovered using traditional and metagenomics screening 
approaches [17].

In the nineteenth century, the various enzymes were 
reported for the medical purposes including pancreatic 
enzymes, collagenase, glutaminase, and asparaginase 
which were frequently used for the treatment of gastro-
intestinal disorders [20], skin wounds [21], and leukemia 
[22]. Hyaluronidase has been used to treat heart attacks 
[23], and lysozyme has been reported to produce antibiotic 
drugs [24–26]. Furthermore, bacterial β-lactamase was 
used to inactivate β-lactam antibiotics by hydrolyzing the 
β-lactam ring structure [27, 28]. Various foods rich in ther-
apeutic enzymes also contribute to body health and disease 
resistance [29, 30]. In the twentieth century, crude proteo-
lytic enzymes were used to treat gastrointestinal disorders, 
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which was a turning point for the use of enzymes in the 
treatment of infections, cancer, and many other diseases 
[31]. Mostly, enzymes having medicinal values were iso-
lated from fungi, yeasts, bacteria, and algae [32]. For 
example, agarase was extracted from seaweeds and used 
in the food and medical industries as an emulsifying, gela-
tion, and stabilizing agent [14, 33]. Enzymes, including 
α-amylase [34], lipases [35], esterases [36–38], chitinases 
[39], laccases [40, 41], glycine oxidase [42], glutamine 
synthetases [43–52], and serine hydroxyl methyltrans-
ferases [53], which were stable and retained their activ-
ity at critically higher temperatures and pHs, were widely 
used in the paper, textile, food, and detergent industries 
[33, 53–68]. Another enzyme, pullulanase, isolated from 
marine bacteria, including Archaebacterium and Fervido-
bacterium pullulanolyticum, was widely used in the starch 
industry, as this enzyme can withstand higher temperatures 
(90 °C) [33]. The enzyme cyclomaltodextrin glucanotrans-
ferase (Cgtase) isolated from a deep sea-dwelling Bacil-
lus subtilis was reported for cyclodextrin production [33]. 
Alginate lyase extracted from microorganisms Bacillus 
sp., Alteromonas sp., and Photobacterium sp. was widely 
used to convert brown algae biomass to methane [33]. The 
α-galactosidase reported from marine organisms, includ-
ing photobacteria Alteromonas sp., sponges, red algae 
Polysiphonia sp., mussel Crenomytilus grayanus, and 

scallop Patinopecten yessoensis hydrolyzes the sugar in 
living organisms [33].

Carbonic anhydrases (CAs; EC 4. 2. 1.1) are widespread 
enzymes in bacteria, archaea, and eukaryotes [69]. They are 
only catalytically active when one metal ion bound in the 
active site cavity [70]. Generally, the metal ion is bound 
in a tetrahedral geometry, coordinated by three amino acid 
residues and a water molecule/hydroxide ion (Fig. 1). So 
far, eight evolutionarily independent CA families are known 
(α-, β-, γ- δ-, ζ-, η-, θ-, and ι-CAs) [71, 72] (Fig. 1). Various 
members of these CA classes have been crystallized and 
structurally characterized [73]. The CA families do not show 
significant sequence homology, and their three-dimensional 
structures are also different [74]. However, they all contain a 
catalytically essential Zn2+ ion in their active site, thus offer-
ing good examples of convergent evolution [74]. However, 
in ζ-CAs, Cd+2 can replace Zn+2 [75], and, in γ-CAs under 
anaerobic conditions, Fe2+ is present [76] (Fig. 1). Moreo-
ver, Co2+ is another ion that can substitute the zinc in many 
α-CAs without a significant loss of catalytic activity [74, 
75]. The θ-CAs appear dissimilar to α- and δ-CAs, but are 
similar to β- and ζ-CAs, using cysteine, histidine, and some-
times aspartate for Zn coordination [75]. The ι-CAs from the 
marine diatom Thalassiosira pseudonana have recently been 
reported as a new subclass of CAs, which unusually prefers 
Mn2+ over Zn2+ as a cofactor [77].

Fig. 1   Schematic structure of CAs: α-, γ- and δ-CAs, the coordinat-
ing residues are from the same monomer in the α- and δ-classes, 
whereas in γ-CAs, the third His is from an adjacent monomer; Type I 
β-CAs with opened active site; Type II β-CAs with closed active site 
(An aspartate residues as the fourth zinc ligand); ζ-CAs with Cd2+ 

bound within the active site; η-CAs with different pattern of the metal 
ion coordination than other CAs, with two histidine and one glu-
tamine residue in addition to the water molecule/hydroxide ion bind-
ing the Zn2+
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The metal ion stabilizes a hydroxide ion in the active 
site, which, through physiological pH, forms a hydrophilic 
reaction in the hydroxide ion. At the active site of met-
alloenzymes, not only the metal ion but also the amino 
acid residues modulate the solvent reactivity [78–81]. The 
active site of CA is in the gap near the center of the cone 
with a depth of 15 Å. It contains the hydrophobic binders 
and on the other side with hydrophilic residues contain-
ing Glu-106 and Thr-199 [78, 82]. The zinc ion lies deep 
inside the gap. The second construct is the active site of 
the enzyme, the beta sheets, and the three histidine resi-
dues ligating the zinc ion, are located in the central part 
of the platelet [83, 84]. Zn2+ is coordinated by three resi-
dues, His-49 Nε1, His-96 Nδ2, His-119 nitrogen, and a 
water molecule deep in the active site. His-94 Nδ2 forms 
a hydrogen bond with the oxygen atom of Glu-92, His-
119 Nε1 with Gln-117 Oε1, and His-96 Nδ2 with carbonyl 
oxygen group of Asp-224 [78, 82, 85]. A water molecule/
hydroxide ion completes the quad pole structure of the 
zinc ion. The active site of the enzyme consists of hydro-
phobic ligands. In the absence of substrate, the substrate-
binding site is filled with a network of water molecules 
in direct contact with the carbonic anhydrase. This water 
molecule is replaced by carbon dioxide [78, 82, 86].

Carbonic anhydrase is an effective model for biophysi-
cal studies of ligand–protein interactions. High-resolution 
crystal structures of the various isoenzymes of CAs have 
been reported, allowing protein engineering by site-
directed mutagenesis for enhanced stability and catalytic 
activity for medical and industrial applications [87, 88]. 
CAs high-catalytic efficiency, relative stability, and simple 
process of purification and expression have become them 
as an exciting candidate for use in various applications 
such as biosensors, artificial lungs, CO2 sequestration, 
etc. (Fig. 2). In the marine environment, CA is involved 
in biomineralization. The CA enzyme has recently drawn 
attention for its role in sequestration/capture of CO2 to 
mitigate global warming effects by reducing CO2 released 
into the atmosphere [89–92]. Microbes can form calcium 
carbonate by reacting with CO2, thus helping in converting 
CO2 into value-added products [89–91, 93]. Furthermore, 
CAs are widely studied to treat various diseases such as 
cancer, obesity, and glaucoma.

An overview of previous studies showed the importance 
of CAs as activators and inhibitors for treating various 
disorders [94–100] with a specific focus on α-CAs from 
terrestrial sources. In this work, we provide a comprehen-
sive review of CAs extracted from marine organisms, their 
physiological roles, locations, and recent advances in CAs 
for medical and environmental purposes and their inhibi-
tors' applications. This study may provide new insights 
into CAs from marine sources for future industrial and 
medical applications.

Types of carbonic anhydrase in marine 
organisms, their structure, position in cells, 
physiological roles, and inhibitors

Carbonic anhydrase α

Alpha-carbonic anhydrase is found in vertebrates, bacteria, 
algae, and the cytoplasm of green plants. The presence of 
Zn2+ in the active site is essential for its catalytic action. The 
carbonic anhydrase α are typically monomeric. However, 
some α-CAs from humans and bacteria have been reported 
to be homodimers [69]. α-CAs have a zinc catalyst located 
on the three remaining parts of His [101]. X-ray crystal-
lography data show that the zinc ion is at a depth 15-degree 
below the enzyme's active site (Fig. 1). Histidine clusters 
play an important role in the transferring proton between 
the active site and the environment in some isozymes of this 
family [78, 82, 85].

Mechanism of action of carbonic anhydrases have been 
described in the following reaction (1)

As shown in Fig. 3, the enzyme's active form occurs when 
zinc metal binds to the hydroxide ion (Stage 1). This hydro-
philic OH¯ attacks the CO2 at the hydrophobic site inside the 
active site (Stage 2). These reactions form the Zn2+ bicarbo-
nate complex (Stage 3). The bicarbonate ion is released into 
the solution by a water molecule resulting in the enzyme's 
acidic form (Stage 4). The water molecule is coordinated 
with the zinc ion, which is catalytically inactive (Fig. 3). The 

(2)CO2 + H2O ⇄ HCO
−

3
+ H

+

Fig. 2   Schematic representation of CAs extracted from the different 
marine organisms, their activations to capture CO2 and applications 
in various fields
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proton transfer from the active site to the medium must be 
carried out to achieve the enzyme's active form. This may 
be the residue of His-64 (Fig. 3) or clusters of histidine at 
the active site of the proton shuttle in isozymes (I, II, IV, 
VI, VII, IX, XII, XIV) and buffer in the medium (BH +) 
[82, 102, 103].

This process may take the form of reactions 2 and 3 [82, 
104, 105].

Carbonic anhydrase α is present in vertebrates, especially 
mammals. So far, 16 different isozymes have been identified 
and characterized in these organisms with other catalytic 
activity. Such isozymes demonstrate different sensitivities to 
inhibitors such as sulfonamides. Table 1 shows a variety of 

(2)
E − Zn

2+
− OH

−
CO2

⇆ E − Zn
2+

− HCO
−

3

H2O

⇆ E

− Zn
2+

− OH2 + HCO
−

3

(3)E − Zn
2+

− OH2 ⇄ E − Zn
2+

− OH
−
+ H

+

isoenzymes α-CAs have been extracted from marine organ-
isms including, diatoms, coccolithophore, alga, calcareous 
sponges, corals, tubeworms, euryhaline crabs, oysters, mus-
sels, teleost fishes, and sea lamprey, up to now (Table 1).

The location of α-CAs in marine organisms can vary 
regarding functional roles for the organism (Table 1). In 
diatoms and alga, α-CAs were typically located in the chlo-
roplast stroma, periplasmic space, cytosol, and mitochon-
dria (Table 1). The physiological roles of α-CAs in primary 
marine organisms are mainly carbon concentrating mecha-
nisms, photosynthesis, and global biogeochemical carbon 
cycling (Table 1). These marine α-CAs are mostly inhibited 
by sulfonamides [106] (Table 1). In the sclerocytes of cal-
careous sponges and ectoderm, endoderm, scleroblasts, and 
desmocytes of corals, α-Cas are involved in calcite forma-
tion, pH regulation, and inorganic carbon delivery (Table, 
1). The inhibitors reported for these organisms are sodium 
hypochlorite (NaOCl) and Diamox [107, 108] (Table 1). In 
crustacea and Mollusca, α-CAs are located in gill epithe-
lial cells, muscles, mantle, hepatopancreas, and hemocytes 

Fig. 3   Catalytic (for the physiological reaction) mechanism of α-CAs: 
In step 1, proton shuttle residues play a crucial role in the proton 
transfer processes. Step 2: The substrate CO2 as bound in hydropho-
bic pocket is observed near to the Zn2+ ion. Stage 3: The orientation 
of bound CO2 in this favorable position will result for the nucleo-
philic attack by the zinc hydroxide species of the CAs, and trans-
formation CO2 into bicarbonate coordinated to the Zn2+ ion. Stage 

4: With an incoming water molecule, liberating the bicarbonate into 
solution will make because the rather labile binding of bicarbonate 
to zinc and the acidic species of the CAs, with water as the fourth 
zinc ligand will formed. Generation of the nucleophilically active 
species of the CAs (with hydroxide bound to zinc, stage 1, achieved 
through a proton transfer reaction from the zinc-coordinated water to 
the buffer), is the rate-determining step of the entire process
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(Table 1). They play leading roles in osmoregulation, ion 
transport, acid–base regulation, and regulating shell produc-
tion (Table 1).

Sulfonamide, acetazolamide is inhibitor was reported 
for these organisms [109, 110] (Table 1). In evolutionarily 
higher marine organisms, such as hemichordate and lamprey, 
α-CAs are located in sclerocytes, gill pavement cells, and 
chloride cells responsible for secreting CaCO3 aragonitic 
elements, acid–base ion ad regulation, and metabolic pro-
cesses (Table 1). Ouabain and acetazolamide were reported 
as inhibitors for fishes [111] (Table 1).

In the context of inhibitors acting on α-CA, the research-
ers examined the inhibitory properties of pyrazole com-
pounds (1–8, 9a, b) by IR and NMR. These derivatives were 
identified as effective CA inhibitors and also for the enzymes 
acetylcholinesterase (AChE) [112]. Due to the inhibitory 
ability, these compounds can be used in the pharmaceuti-
cal industry to treat diseases such as glaucoma, leukemia, 
epilepsy, and Alzheimer's disease, etc. [113]. Studies have 
shown that bromophenol are potent inhibitors of CAs [114]. 
Bis-thiomethylcyclohexanone (3a–3j) is a member of the 
hydrolase family that plays an important role in acetylcho-
line's neurotransmission. In general, these compounds have 
effective inhibitory properties for CA, hCA I, hCA II, and 
these are potent anti-Alzheimer's drugs [115].

Rosmarinic acid and 3–4-dihydroxyphenolytic acid are 
present predominantly in plant species belong to Boragi-
naceae and Lamiaceae family. These compounds showed an 
inhibitory effect against the CAs [116]. The nitrile inhibitor 
of the latest benzotropon derivatives has been studied on 
human carbonic anhydride anisoenzymes II (hCA I and hCA 
II). It has been established that these functional benzotropic-
myelothyrin analogs perform inhibition of CA isoenzymes 
in the micromolar range. Capsaicin, the main ingredient of 
bell peppers, is commonly used in sauces, pickles, food addi-
tives, and medical goods, responsible for their spicy flavor. 
The effect of capsaicin's against cytosolic hCA I isoenzymes, 
and hCA II isoenzymes were studied. Capsaicin blocks all 
Cas at a low concentration in the micromolar range [117].

Carbonic anhydrase β

Carbonic anhydrase β is a highly reactive enzyme in organ-
isms, including protozoans, arthropods, nematodes, bac-
teria, fungi, algae, and plants [118–122]. These enzymes 
have also been found in several human pathogens, such as 
fungi, yeasts, and bacteria. Inhibition of β-CAs through a 
variety of inhibitors may help in the treatment of diseases 
caused by these factors. Reactive β-carbonic anhydrases are 
present with α variants in other families. The monomeric, 
oligomeric, and trimeric forms of carbonic anhydrases are 
categorized as α, β, and γ. The crystalline structure of the 

dimeric, tetrameric, and octameric β-carbonic anhydrases 
has not been reported up to date [123–125].

The active site of the β-CAs possesses a zinc atom coor-
dinated by one histidine group, one water molecule, and two 
cysteine residues [125, 126] (Fig. 1). β-Carbonic anhydrases 
have a highly conserved amino acid pair consisting of aspar-
tate and asparagine groups, which appear to be necessary for 
the enzyme's catalytic mechanism. High-mutation residues 
significantly reduce the catalytic activity of the enzyme. 
Aspartate forms a hydrogen bond to the water molecule 
attached to the zinc atom and activates it for the nucleo-
philic attack of the CO2 molecule [125, 126]. As Table 1 
presents, β-CAs were extracted from the pyrenoid structure 
of the chloroplast in diatoms, and chloroplast thylakoid 
lumen and periplasmic space alga, along with other CAs, 
and are involved in carbon concentrating mechanisms and 
photosynthesis similar to α-CAs (Table 1). Sulfonamides 
were reported as the main inhibitors β-CAs [106].

Carbonic anhydrase γ

Gamma class of CAs is the most ancient form of CA, which 
is mostly present in archaea bacteria and exists as a trimer. 
Such carbonic anhydrases take advantage of the presence 
of Fe2+ for their catalytic activity, but when the enzymes 
are attached to Zn2+, Co2+ metals, they still have catalytic 
activity [78, 81]. γ-CAs is an active biocatalyst and is con-
sidered as a critical modifier in various biochemical reac-
tions. Subunit histidine in each monomer will determine 
the metal ions between the monomers [127]. Recently the 
crystalline structure of a γ-CA has been reported [27]. This 
trimeric molecule has an entirely different fold to that of 
α-carbonic anhydrases [128, 129]. There are seven circular 
left β spiral screws in each subunit with three short strings 
per screw. Zinc ions are bound to histidine 81, histidine 122, 
and histidine 117 subunits bound to the neighboring subu-
nit. The disordered tetrahedral coordination is completed by 
a water molecule [130, 131]. In marine organisms, γ-CAs 
were found in stroma and pyrenoid of the chloroplast, peri-
plasm, and mitochondria in diatoms and coccolithophorid 
algae (Table 1).

Carbonic anhydrase δ

To date, the delta class of CA has only been found in marine 
diatom T. weissflogii. Its active site is similar to α-, γ-CAs, 
coordinating the Zn2+ with three histidine residues and a 
water molecule/hydroxide ion (Fig. 1). δ-CAs in marine 
organisms were found in the stroma, periplasm of diatoms, 
coccolithophorid algae, and carbon concentrating mecha-
nisms (Table 1).
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Carbonic anhydrase ζ

This CA, named ζ-CA, was reported in chemolithotrophic 
bacteria, marine diatoms, and coccoliths. In the ζ-CAs, 
the metal ion coordination is similar to β-CAs, except that 
the metal ion may be Cd2+or Zn2+, which metal ions are 
attached to one histidine and two cysteines (X, X + 52, 
X + 62, where X = 263 on CDCA1) [127, 132], as shown 
in Fig. 1.ζ-CA were extracted from stroma and periplasm 
of diatoms Thalassiosira pseudonana and T. weissflogii, 
where they play functional roles in trace-metal geochemi-
cal cycling, carbon concentrating mechanisms and photo-
synthesis (Table 1).

Carbonic anhydrase η

This carbonic anhydrase class was recently discovered in the 
protozoan parasite Plasmodium falciparum [133] (Table 1). 
Besides, in the catalytic cycle, the water molecule and the 
hydroxide ion act as a nucleus. This property is unique to 
other families of carbonic anhydrase [134, 135]. A η-CA has 
three histidines for Zn coordination and is phylogenetically 
related to α-CA [133]. Sulfamide, sulfamic acid, phenylbo-
ronic acid, and phenylarsonic acid are the main inhibitors 
η-CAs [133] (Table 1).

Carbonic anhydrase θ

The θ class of CA has been recently reported in dia-
tom Phaeodactylum tricornutum and green algae Chla-
mydomonas reinhardtii (Table 1). Structurally, θ-CAs are 
similar to β-CAs in the overall fold, zinc-binding motif, 
and especially putative active site architecture [140]. The 
functional roles of θ-CAs are identical to other CAs in CO2 
concentrating mechanisms and photosynthesis for the organ-
ism (Table 1) [138]. Acetazolamide has been reported as an 
inhibitor of θ-CAs [140].

Carbonic anhydrase ι

ι-CA was recently reported from the chloroplast of the 
marine diatom T. pseudonana as a new widespread subclass 
of carbonic anhydrase [77]. ι-CA unusually prefers Mn2+ to 
Zn2+ as a cofactor and plays an essential role in CO2 con-
centrating mechanisms and global biogeochemical carbon 
cycling (Table 1).

Carbonic anhydrase inhibitors

CAs is classically inhibited by compounds with a sulfona-
mide-based zinc (ZBG) bonding group (SO2NH2) or their 
derivatives (sulfamates and sulfamides). Sulfonamides bind 

in a quad geometry, as direct interaction with catalytic site 
containing zinc, so that CA activity is restricted by the dis-
placement with zinc ions and binding to water/hydroxide 
ions (Fig. 4). Several aromatic and heterocyclic sulfona-
mides are active and potent inhibitors of CAs. These inhibi-
tors bind through the sulfonamide groups nitrogen atom 
to metal ions as R-SO2N-OH- or R-SO2NH-anions [157] 
(Fig. 4).

Currently, several sulfonamide-based CA inhibitors 
are clinically used to treat various diseases. However, the 
design of special isoforms of inhibitors have been devel-
oped which is particularly complexed with the active site 
of the isoform CAs. Since the CA inhibitors act systemati-
cally and connect non-specifically, they causes side effects 
and disease [70, 158–160]. Therefore, the development of 
specific inhibitors can result lower side effects [161–163]. 
In the sequence method, a compound and a ZBG with a high 
compound affinity are used [164]. Recently, the tail method 
has been used in the production of specific isoform inhibitors 
designed by SLC-0111, a proprietary CA IX-specific inhibi-
tor, and these isoforms have also been tested in clinical trials 
for the treatment of breast cancer (Table 2) [165].

In studying the metal center characteristics and the rela-
tionship between structure and function of CAs, carbonic 
anhydrase inhibitors (CAIs), including sulfonamide drugs, 

Fig. 4   Schematic representation of binding CAIs to CAs, inactivat-
ing of CAs, and its application in the field of medicine (CAs carbonic 
anhydrases, CAIs carbonic anhydrases inhibitors)
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organic and inorganic anions, are beneficial. Sulfonamides 
are an important class of biologically active compounds 
inhibiting the CAs to prevent pathological and physiologi-
cal abnormalities.

The sulfonamide inhibitors of CAs are used as diuret-
ics, anticoagulants, anti-obesity, and anticancer therapies. 
Several new sulfonamides were synthesized using the raw 
materials imides and tosyl chloride. N-acylsulfonamides are 
used effectively to remove CAs isozymes such as human 
cytosolic I, and II (hCA I, II), and these compounds are 
potent inhibitors of CAs [166]. The researchers studied the 
inhibitory effects of urea and sulfamide, tetrauline scaffolds 
on human CAs (hCA I and hCA II). They found that these 
compounds have high inhibitory power against CA [167].

It was also reported inhibitory effects of heavy metals on 
CAs. In study, the inhibitory effect of different heavy metal 

ions, including Fe2+, Pb2+, Co2+, Ag+ and Cu2+ on the func-
tion of CAs from Black Sea fish Salmo labrax, was studied, 
and a 50% decrease in CA activity was reported [168]. In a 
study, heavy metal ions including Fe2+, Cu2+, Co2+, Pb2+, 
Hg2+, and As3+, as well as certain excretory toxins includ-
ing tiram, clofentzin, propinib, deltamethrin, azoxystrobin, 
and thiophanate from Trachurus trachurus showed a special 
inhibitory effect on the CA [169].

Eugenol is a phenolic compound that inhibits carbonic 
anhydrase. In clinical trials, the researchers have studied 
the effective concentration profile of phenolic inhibitors on 
the hCA1, hCA II, and AChEiso enzymes. Eugenol inhibi-
tors blocking the active site of carbonic anhydrase (CAI) 
are used to treat diuretics, antifungals, antiepileptics, and 
gastric ulcers [170]. Pyrazolesulfamids and sulfamides-
containing carbamide play a significant role in curing 

Table 2   Inhibitors of CAs developed for selective targeting

Inhibitor CA inhibited Application(s) Reference(s)

3,4-Dihydroxyphenyl)(2,3,4-trihydroxy-
phenyl)methanone

hCA I and hCA II Antiglaucoma [196]

NCX250 CA, EC 4.2.1.1 Blood supply to the optic nerve (increas-
ing ocular hemodynamics, decreasing 
the inflammatory processes and ocular 
apoptosis)

[197]

Dithiocarbamates hCA I, II, IX, and XII Adequate intraocular pressure lowering 
activity of CAs (antiglaucoma) and 
cancer

[198]

Dithiocarbamates (DTCs) hCA II Excellent intraocular pressure (IOP) lower-
ing properties in an animal model of 
glaucoma

[99]

Dithiocarbamates and the xanthates α- and β-CAs Potent antiglaucoma activity in animal 
models of the disease

[100]

A Class of 4-Sulfamoylphenyl-ω-
aminoalkyl Ethers

hCA II Effective IOP lowering properties in an 
animal model of glaucoma

[199]

Coumarins CA II Antiepileptic [200]
Branched aliphatic carboxylic acids and 

4-aminobenzenesulfonamide
1. Type of 13, 16, and 17 potent inhibi-

tors of CAs VII and XIV
2. Compounds 9, 14, and 19 inhibited 

CA II
3. 10 and 12 inhibited all isoforms

Anticonvulsant [201]

Hesperidin HCA I and II Antiglaucoma [98]
Topiramate and zonisamide Mitochondrial isoforms CA VA and VB Reducing lipogenesis and mitochondrial 

oxidative stress associated with many 
obesity comorbidities

[69]

Sulfonamide analogs Mitochondrial carbonic anhydrase (CA) 
isozymes (CA VA and CA VB)

Shifting metabolism and glucogenesis flux 
to treat obesity and diabetes

[202]

Pyrazolo[4,3-e][1,2,4] triazine sulfona-
mides

CA IX and XII, Cytotoxic effects on breast cancer cell line 
ex-vivo

[203]

A set of benzenesulfonamide(BSA) deriva-
tives

SLC-0111 a sulfonamide CA IX/XII Completed a successful Phase I clinical 
trial for the treatment of advanced, solid 
metastatic tumors

[204]

CA IX A potential antitumor effect [205]
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diabetes [171]. In addition to inhibiting α-glycosidase, 
AChE, and BChE, these inhibitors also inhibit the enzyme 
carbonic anhydrase [172, 173].

The inhibitory effect of trichloroacetone on human CAs 
(hCA I and hCA II) has already been reported. Trichlo-
roacetone may have promising therapeutic potential for 
glaucoma, leukemia, and epilepsy treatment [174]. Pyr-
idine and its aminopyridine derivatives are used in the 
manufacture of drugs, dyes, and detoxifying compounds. 
The researches on the crystal structure, properties, and 
inhibitory effects of these compounds showed their effec-
tive inhibitory effects on CA [175]. The inhibitory effects 
of enzymes including acetylcholinesterase (AChE) and CA 
reported in recent studies can be a promising strategy to 
produce drugs against epilepsy, Alzheimer's disease, and 
obesity. CAs play an important role in catalyzing the bal-
ance of CO2 and bicarbonates [176]. Bromophenol deriva-
tives are selective cytosolic inhibitors of isoforms I and II 
(hCA I and II) of CA and acetylcholinesterase (AChE). 
CA inhibitors are used to treat many disorders such as 
Alzheimer's disease, Parkinson's disease, and ataxia [177]. 
Moreover, they include antibacterial, antidiabetic, antican-
cer, and antimicrobial properties [177].

CA inhibitors are used as an alternative medicine to 
treat many diseases such as heart failure and epilepsy [178, 
179]. Various compounds such as (E)-4-(3-bromo-4,5-dihy-
droxyphenyl) but-3-en-2-one (1), (E)-4-(2-bromo-4,5-dihy-
droxyphenyl) but-3-en-2-one (2), and (E)-4-(2,3-dibromo-
4,5-dihydroxyphenyl) but-3-en-2-one (3) are known as 
natural bromophenols. These new compounds, are the potent 
inhibitors of the carbonic anhydrase enzymes I and II (hCA 
I and II). 4-Phenylbutene derivatives are used as carbonic 
anhydrase inhibitors to produce drugs for the treatment of 
glaucoma, autism, gastric ulcers, neurological disorders and 
osteoporosis [180, 181].

Almost CA inhibitors have been approved by the FDA 
and have clinical usage. The most efficient CA inhibitors 
that have been well-known for their pharmaceutical proper-
ties are acetazolamide, Ethoxylamide, Sulphim, Diclofena-
mide, Dorzolamide, Brinzolamide, Insulam, Topiramate, 
Zonisamide, Sulpyride, Comat, EMATE, Celecoxib, Daro-
doxib, and Saccharinetc. These inhibitors are located near 
the activation site of CAs, disrupting the zinc-bound water 
interactions and blocking enzyme activity (Fig. 4). Long-
term use of these inhibitory drugs can affect other enzymes 
in body tissues and lead to side effects such as kidney and 
liver damage [86, 182]. However, these inhibitors are used to 
treat many diseases and develop antibiotics, diuretics, anti-
cancer drugs, anti-obesity, antiglaucoma, and antiepileptic 
drugs (Table 2) (Fig. 4). The challenges faced by presently 
available CAIs are indiscriminate inhibition of CA isoforms 
other than the target one, which will result in undesired side 
effects [74]. Nowadays, CAIs are designed in such a way that 

they target isozyme-selective compounds and show fewer 
side effects [74].

Various efforts have been made to develop inhibitors such 
as (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)metha-
none, NCX250, Dithiocarbamates, 4-Sulfamoylphenyl-ω-
aminoalkyl ethers, hesperidin that can inhibit selectively 
α-Cas to reduce the side effects of CAIs, and widely used as 
antiglaucoma agent (Table 2) (Fig. 4). Inhibitors including 
branched aliphatic carboxylic acids and 4-aminobenzene-
sulfonamide inhibits CAs VII and XIV and have anticon-
vulsant effects (Table 2) (Fig. 4). The inhibition of mito-
chondrial isoforms CA VA and VB have been reported from 
topiramate, zonisamide and sulfonamide analogs which play 
essential role in reducing lipogenesis and shifting metab-
olisms to treat obesity and T1DM and T2DM (Table 2) 
(Fig. 4). Finally, CA IX and XII that are highly expressed in 
cancer cells can be selectively inhibited by Pyrazolo[4,3-e]
[1,2,4]triazine sulfonamides and benzenesulfonamide (BSA) 
derivatives (Fig. 4) (Table 2). These inhibitors may serve as 
promising drug targets for various diseases. Polyamines are 
polycyclic and aliphatic molecules that initially act as acti-
vators of CAs. However, measuring the activity of several 
polyamines, such as spermin, spermidine, and their deriva-
tives, indicated the inhibitory properties on CAs [183].

Carboxylic acid derivatives are inhibitors that block the 
cavity entry of the active site of CAs and inhibit them. [184, 
185]. Coumarins are produced as secondary metabolites in 
many plant species. Natural coumarins have attracted the 
attention of many scientists because of their wide range of 
biological activities, including anti-HIV [186], anticancer 
[187, 188], antimicrobial [189], anticoagulant [190], antioxi-
dant [191], and anti-inflammatory [192]. Natural coumarin 
6-(1S-hydroxy-3-methylbutyl) -7-methoxy-2H-chroman-
2-one is an enzyme inhibitor of CAs [193]. This inhibitor 
acting on CAs is widely used in medical science to treat 
diseases [194, 195].

Use of marine carbonic anhydrase 
as innovative approach for medical 
requirements

Carbonic anhydrase showed high potential in medical devel-
opments. A study of carbonic anhydrase extracted from sea 
sponges Subereamollis and Pseudoceratina sp., were phar-
macologically performed. It showed particular potential for 
the treatment of many diseases, including cancer tumors 
[206, 207]. Marine carbonic anhydrase CA IV and type II 
inhibitors, such as dorzolamide in the eye, can treat glau-
coma through decreasing secretion of fluid and intraocular 
pressure [199].

Many marine organisms, including deep-water bac-
teria, volcanic-bacteria, and marine animals such as 
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sponges, algae, marine plants, and other marine organ-
isms, having CAs showed high potential for pharmaceuti-
cal application [208, 209]. Furthermore, various studies 
showed that marine carbonic anhydrase can be applied to 
manufacture artificial lungs to treat respiratory failure. 
Moreover, CAs have different medical usages, including 
SazCA extracted from a thermophilic hydrogen-oxidiz-
ing, which has been used to treat analgesic overdose and 
blood substitutes for the optimization CO2 removal rates 
(Table 3) (Fig. 2). Carbonic anhydrides extracted from 
marine organisms are also notable in the pharmaceutical 
industry. Another potential medical application reported 
for CAs is artificial blood production [210, 211].

Marine carbonic anhydrase: novel 
and potential enzyme for environmental 
monitoring and industry

Pollution has become a significant concern for the environ-
ment. Many toxic compounds are released into the environ-
ment continuously, most of which originate from industrial 
and agricultural activities [221, 222]. Structure and function 
of CAs have created their recent advances perspectives in 
environmental monitoring and health. Carbonic anhydrase 
as the first zinc metalloenzyme [223] is ideal for measur-
ing the ion concentration because to zinc affinity. Various 
mutants of CAII with altered zinc affinities, were developed 
to measure zinc concentrations over wide dynamic range [2]. 
The determination of metal ions including Cu2+ and Zn2+ in 
natural waters are of interest environmentally. Availability 

Table 3   Types of CAs extracted from different marine organisms and high potential usage for environmental monitoring and capturing CO2

CAs used Application(s) Reference(s)

Thermophilic bacterium Sulfurihydro-
genibium yellowstonense

SspCA Post combustion carbon dioxide capture [212]

S. yellowstonense SspCA Biosensors checking the toxic effects of zinc 
on marine life

[213]

S. azorense SazCA Measuring sulfanilamide pharmaceutical 
residues in biological and environmental 
samples

[213]

Marine prokaryotes – Detecting leaks of CO2 from storage areas [214]
HCA II Quantify trace amounts of zinc in sea and 

wastewater
[215]

HCA II Efficient and selective extraction of carbon 
dioxide (CO2) at low to medium concentra-
tion by CA-based reactor

[216]

Bovine carbonic anhydrase II Employing in CO2-responsive cationic 
hydrogels in antidote delivery to treat 
analgesic overdose

[97]

- Bovine CA Used in blood substitutes for the optimiza-
tion CO2 removal rates

[96]

Marine Diatom Thalassiosira weissflogii CDCA1 (δ-CAs) CDCA1-based biosensors for the detec-
tion of Cd2+ trace amounts in the marine 
environment

[217]

T. weissflogii CDCA1 (δ-CAs) A useful tool for the design of bioreactor 
systems for carbon dioxide capture and its 
conversion into water-soluble ions

[217]

Desulfovibrio vulgaris Highly thermostable β–CA Highly efficient carbon capture from flue gas [218]
Polyextremophilic bacterium A. pallidus Thermo-alkali-stable γ–CA (ApCA) Biomineralization [219]

Highly thermostable CAs Potential for the formation of bioconcrete [94]
CAs Developing small artificial lungs [94]
HCA II Checking the toxic effects of zinc on marine 

life
[95]

Diatoms, dinoflagellates, and coccolitho-
phores

δ-CAs Potential biosensors able to detect Zn and Co [220]

Diatoms, dinoflagellates, and coccolitho-
phores

δ-CAs Potential to capture and sequester carbon 
dioxide in bioreactors

[220]
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Cu2+ and Zn2+ is essential to control the growth of primary 
producers, thus other organisms in higher trophic levels in 
the food chain, however, their increased levels are toxic and 
alarming to many life forms [3].

A biosensor can be defined as a compact analytical 
instrument or a continuous biological unit with a trans-
ducer related biosensor part [224, 225]. Many biosensors 
were used in clinical analysis, health monitoring, veterinary 
applications, agriculture, processing, industrial monitoring, 
and environmental pollution control [225, 226]. In recent 
years, research interest has been increased towards design-
ing fluorescence-based biosensors to determine free metals 
in solution [220]. Sensors based CAII determining Cu2+ is 
based on copper binding to the His3 metal site [227]. A 
variety of copper concentrations can be measured through 
the CAII variants with altered copper affinity. Unique advan-
tages including the high sensitivity and selectivity of CA-
based fluorescence sensors for zinc and copper have created 
them potential ideal tools to determining free metal ions in 
the complex matrix of seawater [228]. CA-based sensors 
can provide continuous readout of metal ion concentration 
in situ, in real time without any processing or separation 
steps [229]. The fluorescent-labeled CAII sensor can deter-
mine the metal ion concentration remotely in situ at some 
depth [230]. CA-based sensors were used to check the toxic 
effects of zinc on marine life [231], as well as to measure 
sulfanilamide pharmaceutical residues in biological and 
environmental samples [231].

hHCA II has a high affinity towards zinc and has been 
used for the detection of minute amounts of zinc in waste 
and seawater for concerns over toxicity to fishes, inverte-
brates and plants (Table 3) (Fig. 2). However, because of the 
relative abundance of this element in the environment, trace 
amounts of other metal ions may be challenged through CA-
based biosensors [220]. Now, HCA II variants obtained by 
site-directed mutagenesis have resulted in the high sensitiv-
ity, selectivity and affinity for detecting various heavy metals 
such as Cu2+, Co2+, Cd2+, and Ni2+ [220]. δ-CAs extracted 
from diatoms, dinoflagellates, and coccolithophores have 
shown the high potential to detect Zn2+, Co2+and Cd2+in 
environment (Table 3). Finally, it is expected many potential 
application of CA-based sensors in future for environmental 
monitoring of metal ions because of their high sensitivity, 
selectivity, power and flexibility.

On the other hand, CAs can be referred to as a multi-
functional and multitasking superfamily because of their 
ability to capture carbon dioxide creating them as exciting 
candidates to be used in environmental and industrial appli-
cations [232–234]. Global warming created by increasing 
of atmospheric CO2 levels is being major concern in world-
wide. The usage of CO2 capture strategies can be an inno-
vative approach to solve this continuous increase of global 
temperature [233]. CO2 of the atmosphere produced by the 

anthropogenic activities can be easily captured through the 
use of “robust” CAs [234] (Fig. 2). The biomimetic strategy 
was introduced as an eco-friendly strategy to CO2 capture 
allowing CO2 conversion to water-soluble ions for pur-
poses such as CaCO3 mineralization [232]. Usage of CAs 
for biomimetic CaCO3 mineralization is one of promising 
approaches among the various carbon capture and storage 
(CCS) technologies [235]. CAs are known as zinc ion relat-
ing biocatalyst for reversible hydration of CO2 [207, 236, 
237] and precipitation to calcium carbonate [238, 239]. CAs 
that are overexpressed in a variety of microalgae are a prom-
ising way to effectively capture excess CO2 for biomitigation 
[240] (Fig. 2). Thus, CCS based on CAs have advantages 
including no secondary pollution, environmentally friendly, 
fast process of mineralization without additional energy con-
sumption [241].

It is essential providing the high stable CAs on the 
extreme and harsh environment for carbon fixation. Recom-
binant E. coli are beneficial and efficient choice for increas-
ing the production and improving characteristics of carbonic 
anhydrase [242, 243]. The various CAs from thermophilic 
bacteria were reported including CA from Sulfurihy-
drogenibium with the ability to incubation at 90–100 °C 
[244–246], Hahella chejuensis KCTC 2396, Dunaliella sp. 
[247] and Lactobacillus delbrueckii CGMCC 8137 [248], 
EX-H1 Persephonella marina [249] with thermostability 
at 50, 55, 60, and 100 °C, respectively, showing effective 
development for CO2 sequestration. Moreover, the ability of 
CAs to withstand in harsh conditions can show the stability 
of alkaline CAs such as CA from Pseudomonas fragi with 
stability at pH range 7.0–8.5 [250], CahB1 of Microcoleus 
chthonoplastes at alkaline pH near 9 [251], β-CA and γ-CA 
from the Bacillus sp. SS105 with stability at pH 8.0 [252]. 
The using bovine CA has been reported as one of successful 
approach for effectively facilitates CO2 capture [253]. Car-
bon capture and storage (CCS) process using CAs has been 
widely reported. However, the use of CAs in free form for 
this purpose can be expensive because its loss reusable and 
non-recyclable from the reaction environment [232]. Immo-
bilization of CAs was introduced as one of effective and 
economical approaches to solve the whole process of CCS 
[254, 255]. Up to now, various strategies for immobilization 
of CAs have been reported including adsorption, covalent 
bonding, encapsulation and entrapment [232].

A limited number of industrial processes using CA for 
capturing CO2 have been known to date. A pilot-scale 
CO2 capture plant at Center in Wilsonville, AL, the USA 
by Codexis Inc. was installed in which carbonic anhydrase 
enzyme from D. vulgaris was used, and the CO2 absorption 
rate was improved 25-fold as compared to non-enzymatic 
reaction [256]. In areas such as mines, shipyards, or under-
ground tunnels, and spacecraft or submarines, where airflow 
is low, there is a little buffering capacity to absorb. In another 
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study, a novel enzyme-based reactor was used to capture 
CO2 from a mixed gas stream, and this system efficiently 
captures CO2 over the range of 400 ppm to 100,000 ppm 
[257]. Therefore, the use of enzymes in the industries is 
precious. CAs from thermophilic bacteria and diatoms, 
dinoflagellates, and coccolithophores have been reported as 
suitable tools to capture and sequester CO2 in bioreactors 
(Table 3) (Fig. 2). It was also reported the microorganisms 
living in extreme environments were employed as natural 
CA-based biosensors to detect leaks of CO2 from storage 
areas [258] (Table 3). Marine CAs from marine algae in the 
production of biofuels are of interest to researchers. Adding 
this enzyme to the algae culture medium, Dunaliella, Chlo-
rella, and Spirulina had increased biofuel production, which 
is economically valuable [259–261]. CA enzyme contains 
many lysine residues that increase CA stability and facili-
tates the covalent CA immobilization. One of the benefits of 
inactivation of CAs is increasing its strength and improving 
the possibility of its repeated use, which reduces the costs 
of its purification and production in the industry [262]. The 
bacterial α-CA immobilization from Neisseria gonorrhoeae 
and Clostridium thermocellum has also been investigated, 
which was satisfactory [263].

Conclusion

Currently, the world’s population is rising, and people 
need to be supplied with various food and medicine meth-
ods. Increasing microorganisms’ knowledge and advancing 
biotechnology research, the use of microorganisms and 
enzymes derived from them, and other microbial metabo-
lites are considered a strategy for food and pharmaceuti-
cals, development, increasing efficiency, and improving 
production processes. Our finding showed, to date, the 
high diversity of CAs extracted from marine organisms, 
but a limited number of CAs have been applied for practi-
cal application. The recent advancement in medical and 
industrial areas have commonly focused on human or 
covine isoform II of CAs. Further research is essential that 
characterizes individual marine CAs with unique proper-
ties, leading to further advancement in the biotechnology 
and medical areas. Moreover, there are still vast resources 
for marine CAs yet to be explored. Future researches are 
required to explore CAs originated marine organisms 
with improved chemical characteristics and thermal sta-
bility for the decreasing costs of production for CCS. CAs 
from Marine organisms are promising candidate for car-
bon capture because of unique properties such as active 
at high temperatures and long-lived. CAs-based biosen-
sors have been indicated high potential to determine free 
Zn2+ and Cu2+ concentrations in seawater. It is expected 
the development biosensors based CAs-originated marine 

organisms to measure the readily exchangeable concen-
tration of other metal ions in cells and in seawater. With 
regarding the ongoing progress, developments concern-
ing the use of marine CAs can be expected for medical, 
industrial purposes and environmental monitoring in the 
near future.
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