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Abstract

Background: Alzheimer’s disease is a leading neurodegenerative disease worldwide and is the 6th leading cause of
death in the USA. AD is a very complex disease and the drugs available in the market cannot fully cure it. The
glycogen synthase kinase 3 beta plays a major role in the hyperphosphorylation of tau protein which forms the
neurofibrillary tangles which is a major hallmark of AD. In this study, we have used a series of computational
approaches to find novel inhibitors against GSK-3β to reduce the TAU hyperphosphorylation.

Results: We have retrieved a set of compounds (n=167,741) and screened against GSK-3β in four sequential steps.
The resulting analysis of virtual screening suggested that 404 compounds show good binding affinity and can be
employed for pharmacokinetic analysis. From here, we have selected 20 compounds those were good in terms of
pharmacokinetic parameters. All these compounds were re-docked by using Autodock Vina followed by Autodock.
Four best compounds were employed for MDS and here predicted RMSD, RMSF, Rg, hydrogen bonds, SASA, PCA,
and binding-free energy. From all these analyses, we have concluded that out of 167,741 compounds, the
ZINC15968620, ZINC15968622, and ZINC70707119 can act as lead compounds against HsGSK-3β to reduce the
hyperphosphorylation.

Conclusion: The study suggested three compounds (ZINC15968620, ZINC15968622, and ZINC70707119) have great
potential to be a drug candidate and can be tested using in vitro and in vivo experiments for further
characterization and applications.

Keywords: Alzheimer’s disease, Neurofibrillary tangles, Tauopathies, GSK-3β, Virtual screening, Molecular docking,
Molecular dynamics simulation, Principal component analysis, MM-PBSA

Background
Alzheimer’s disease (AD) majorly contributes to demen-
tia and is a lethal neurodegenerative disease. Worldwide
approximately 50 million people are suffering from some
form of dementia in which AD is the most contributing
disease (60–70%). It is the major cause of death in the
USA and is ranked 6th in number. According to the
World Alzheimer Report of WHO 2018, this number

(50 million) for dementia will be tripled (~152 million)
by the year 2050, which reflects the seriousness of this
disease for mankind. The disease showed a very high
economic burden on the global society as 1 trillion US$
loss in 2018 was observed while it will double till 2030
[1]. The impact of the disease is reflected by its rise in
incidence rate where one person develops dementia
every 3 second globally. There is an urgent need to find
treatment and cure for this disease. AD showed very
complex disease etiology which is characterized by ma-
jorly two hallmarks, first is the association of amyloid β

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: tiratharaj@gmail.com; tiratharaj.singh@juit.ac.in
Department of Biotechnology and Bioinformatics, Jaypee University of
Information Technology (JUIT), Waknaghat, Solan H.P., 173234, India

Journal of Genetic Engineering
and Biotechnology

Shukla and Singh Journal of Genetic Engineering and Biotechnology
          (2021) 19:61 
https://doi.org/10.1186/s43141-021-00163-w

http://crossmark.crossref.org/dialog/?doi=10.1186/s43141-021-00163-w&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:tiratharaj@gmail.com
mailto:tiratharaj.singh@juit.ac.in


plaques which is formed by the abnormal cutting of amyl-
oid precursor protein (APP) while another hallmark is the
neurofibrillary tangles (NFTs) being formed by the associ-
ation of hyperphosphorylated microtubule-associated
binding protein (MAPT) [2, 3]. AD is also linked with sev-
eral autosomal mutations in the genes which are inherited
from parents encoding APP, tau protein, and presenilins 1
and 2 (PSEN1 and PSEN2), and these mutations induce
the Aβ plaques and NFTs formation [4–7].
For understanding the disease mechanism and inhibi-

tor identification, several studies have been done re-
cently [8–10]. Quite a lot of efforts have been made
towards finding the cure for AD for the last 20 years
against Aβ-based therapeutics including drug identifica-
tion, and antibody generation but these are not success-
ful [1]. Scientists also looked towards other tau-induced
therapies for AD such as tauopathies. The tau is a
microtubule-stabilizing protein that stabilizes the micro-
tubule and binds with α and β tubulin units of microtu-
bules and forms the nerve cell cytoskeleton. During the
Aβ formation and several other conditions, various ki-
nases like GSK-3β (glycogen synthase kinase 3 beta),
CDK5 (cyclin-dependent kinase 5), DYRK1A (dual speci-
ficity tyrosine-phosphorylation-regulated kinase 1A), and
few more enzymes hyperphosphorylate the tau protein
[11]. Due to the hyperphosphorylation, tau detached
from the microtubule and aggregates in the form of
clumps of intracellular NFTs, which block the nerve cell
communication and contributes towards AD progres-
sion. The NFTs are the result of assembled tau protein
fragments, and they can also disrupt the nuclear-
cytoplasmic transport [12]. Several compounds are in a
clinical trial for reducing the NFTs aggregation. But
there is an urgent need for inhibitors which can reduce
tau hyperphosphorylation by inhibiting the kinases
which are responsible for hyperphosphorylation [11].
The GSK-3β is an enzyme belonging to the family of

proline-directed serine/threonine kinase and plays a vital
role in the phosphorylation of various substrates in a
range of pathways [13]. This enzyme is involved in the
regulation of various cellular processes like metabolism,
cardiac hypertrophy, cell proliferation, apoptosis, and
oncogenesis [14]. It is known as a major therapeutic tar-
get against various metabolic disorders like insulin re-
sistance and type-2 diabetes because its function is
associated with glycogen metabolism. The GSK-3β is as-
sociated with several central nervous systems (CNS) dis-
eases like AD, stroke, and Huntington’s disease due to
its overexpression in the brain [15, 16]. Various strong
evidence in the literature showed that the GSK-3β co-
localizes preferentially with neurofibrillary tangles [17].
GSK-3β expressed actively in pre-tangle neurons and
plays an active role in the formation of paired helical fil-
aments (PHFs) or NFTs in the AD patient brain [18, 19].

Alteration in the GSK-3β function induces various neu-
roinflammation and neurodegenerative disorders which
affect the CNS. The hyperphosphorylation occurs in the
PHFs due to the over activation of the GSK-3β, and it is
revealed both in transfected mammalian neuronal cells
and in vivo experiments [14]. The role of GSK-3β is
mainly involved in the tau protein phosphorylation while it
is also associated with some other AD-related mechanisms.
Various strategies have been applied to find novel inhibitors
against GSK-3β to reduce the phosphorylation burden of
tau and for the management of tauopathies [20, 21].
Here we have applied the computational high through-

put screening method to predict the potential inhibitors
against GSK-3β. A natural subset (n=167,741) was re-
trieved and screened in four steps of virtual screening
against GSK-3β. Based on the MolDock score the 404
compounds were selected and employed for ADMET
prediction. The 20 compounds were selected based on
pharmacokinetics evaluations along with ATP analog
ANP (PhosphoAminophosphonic acid-adenylate ester)
for re-docking by using Autodock Vina and Autodock
software. Based on re-docking, we have selected finally
four compounds that showed a greater binding affinity
than the control compound and employed them for mo-
lecular dynamics simulation (MDS) study. Various MDS
results were performed and analyzed like RMSD, RMSF,
radius of gyration, number of hydrogen bonds, PCA, and
binding-free energy. The analysis suggests that three
compounds can act as best lead molecules against GSK-
3β and can act as an anti-Alzheimer compound or could
be proposed as potential lead molecules for tauopathies.
The whole method which has been used in this study
was depicted in Fig. 1.

Methods
Receptor and ligand preparation
The 3D crystal structure of GSK-3β was retrieved from
the RCSB protein databank. Various crystal structures
(approximately >35) are available in PDB with good
resolution. From there, we have selected GSK-3β
(RCSB-PDB ID: 1J1B, X-ray, 1.8 Å) [22] which is co-
crystallized with ANP an analog ATP. Here we wanted
to design the ATP competitive inhibitor therefore ANP
was a good control for this study. 1J1B was imported
into Chimera 1.13.2 [23], and all the hydrogens were
added by using a structure preparation wizard. There are
several open-source protein preparation tools available
while Chimera 1.13.2 has multiple advanced options
than other tools such as structure editing, multiple
force-fields. The structure minimization was performed
using Amber ff99SB force-field through the Amber tool
of Chimera 1.13.2 [23]. This force-field is widely used to
perform the MD simulation and energy minimization of
the structure. The natural compound subset (n=167,741)
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is downloaded from the ZINC database [24–26]. The
compounds are categorized based on the ZINC natural
product catalog. All structures of small molecules were
retrieved in .mol2 file format which has all the hydrogen
atoms.

ANP binding analysis
In the ANP, only one oxygen is replaced by nitrogen for
making it an ATP competitive inhibitor. The ANP is a
control compound in this study. Here ANP binds be-
tween the two domain interface: one domain has β
strand (residues 35-138) and the other consisting of a
helical domain with residues from 139 to 388 and a loop

(glycine-rich) and hinge region surrounds the cavity
[22]. The hydrophobic binding cavity of the enzyme oc-
cupies the adenine ring of ANP and showed the inter-
action with the main chain atoms of the hinge loop.
Here the authors described that a key residue (Arg141)
mainly involve in the ANP binding and it is not present
in other serine-threonine kinases [22]. Hence, Arg141 is
used as a centroid residue due to its specificity for the
grid preparation.

Virtual screening
Drug identification, design, and development is a very
time-consuming and expensive procedure, while with

Fig. 1 Schematic workflow for identifying the potential drug-like molecules specific to the HsGSK3β.
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the advent of new computational technologies, the drug
identification becomes a little easy as well as less time-
consuming. The in silico drug identification method can
screen the large databases based on binding site infor-
mation or the basis of pharmacophore or QSAR model
and can predict the lead compound to reduce the time
for the drug identification [27]. This process is faster,
has a low cost, and reduces the burden of unnecessary
experiments [28]. The structure-based virtual screening
approach is a popular and established method for the
screening of datasets retrieved from the ZINC database
[24]. The ligands and receptors were prepared using the
Molegro Virtual Docker (MVD) [29] and screened in
four steps using MVD. The MVD is a protein-ligand
docking software and used for the screening of large
datasets as mentioned earlier [30, 31]. The MolDock
Score is provided in the form of a binding score. Then
four subsequent runs were performed to find the novel
inhibitors from the virtual screening. In the first run, a
total of n=167,741 natural ligands were used for virtual
screening in one run. Other parameters were set like
population size (50), maximum iteration (2000), scaling
factor (0.50), and crossover rate (0.90). From the first
round of docking, we have selected 24,689 compounds
for the next round of virtual screening. The same par-
ameter was used for the next round except for the num-
ber of runs which was increased from 1 to 10. Then
from here 6352 compounds were selected and screened
in 20 runs. Finally, 1805 compounds were selected from
the previous result and screened in 50 runs. Then finally,
out of 1805 compounds, 404 compounds were selected
for ADMET (Absorption, Distribution, Metabolism, Ex-
cretion, and Toxicity) prediction. Although this is a
well-proved [27, 30, 31] and a good method for virtual
screening where it has some drawbacks also, in the 1
run, sometimes it can exclude the good compounds but
this error can also be removed by screening all the com-
pounds in 100 runs with good computational facility.
Some other methods are also available in which users
can screen a large library by using the Autodock Vina
and other software [32–34]. In the Autodock Vina, the
user can increase the exhaustiveness instead of the num-
ber of runs and then can perform the screening. The
Autodock Vina is a command-line tool while MVD is a
GUI-based tool where users can easily give a library of
compounds and can screen in multiple steps. Hence,
screening by using the MVD is better than Autodock
Vina and other command-line tools. We have also used
Autodock Vina for redocking in this study.

Pharmacokinetic evaluation
The ADMET parameters are very important when we
are proposing the lead compound. The ADMET values
predictions by using in silico tools can reduce the time

and give a proper estimation of the pharmacokinetic be-
havior of a predicted small chemical molecule. Several
tools such as preADMET, pkCSM, and others are avail-
able to predict the ADMET values but we have used the
admetSAR online server (http://lmmd.ecust.edu.cn/
admetsar1/) [35] for the calculation of pharmacokinetic
parameters (ADMET). It predicts more and relevant de-
scriptors as compare to other tools. Additionally, the de-
velopers are regularly updating this server. It uses the
data of FDA approved drugs and predicts the values for
the newly given compound using the machine learning
algorithm. The data has also been taken from Google
Scholar (https://scholar.google.co.in/) and Pubmed
(https://www.ncbi.nlm.nih.gov/pubmed/). We have pre-
dicted various parameters like BBB (blood-brain barrier),
Caco-2 cell permeability, HIA (Human Intestinal Ab-
sorption), Pgp Substrate/Inhibitor identification, Car-
cinogenicity, toxicity, Cyp450 metabolism, hERG gene
inhibition, and Lethal dose. We have employed all the
selected 404 compounds for ADMET prediction, and
several descriptors were calculated. From this analysis,
we have selected 20 compounds that were employed for
re-docking studies.

Molecular docking
For the prediction of better binding poses as well as for
validating our selected ligands, we have re-docked all se-
lected 20 compounds including ANP by using three
widely used software’s Molegro Virtual Docker [29],
Autodock Vina [36], and Autodock [37]. The number of
runs is increased to 100 for MVD and a total of 5 poses
is generated for each ligand. The grid box for the dock-
ing with Autodock Vina, and Autodock was set based on
co-crystallized ligand ANP and kept the same which
were used in the MVD virtual screening process. Here
we have focused on Arg141 because this is not con-
served in other kinases, as mentioned earlier [22]. The
MGL tools provide a complete suite to perform the
protein-ligand preparation, grid preparation, etc. Then
for docking, we have used Autodock which is a freely
available and highly cited tool for protein-ligand dock-
ing. The grid box is generated by using the grid gener-
ation box of Autodock Tools. We used ANP inhibitor as
a reference to construct the size of the grid (X, Y, and
Z-coordinates as 50, 50, and 50 Å, respectively) with
0.4Å grid spacing, where the incoming ligand binds dur-
ing the docking process. First Autodock Vina was used
for re-docking studies. It is a very efficient and less time-
consuming software than Autodock. Then to crosscheck
and finally select the best results, we used Autodock.
The Autodock uses the Lamarckian genetic algorithm
conformational search method for the generation of
binding poses. The semi-empirical free energy force field
was used with all the default parameters except pose
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generation. The sum of the freedom of a torsional de-
gree was used for the calculation of the conformational
entropy. The binding energy was evaluated in two steps
firstly, the protein and ligand energy were calculated in
the unbound state, and then in the second step, the
protein-ligand complex energy was calculated [38]. Fi-
nally, the difference between 1 and 2 was considered for
the result.

ΔG ¼ VL−L
bound−V

L−L
unbound

� �þ VP−P
bound−V

P−P
unbound

� �

þ VP−L
bound−V

P−L
unbound þ ΔSconf

� � ð1Þ
In this equation, the protein is referred to by P, Ligand

is referred by L, pairwise evaluation is denoted by V, and
ΔSconf denotes the loss of conformational entropy during
binding. For each ligand, 100 binding poses were gener-
ated for result analysis. Then, these generated binding
poses were sort-listed based on binding affinity as well
as the number of hydrogen bonds.

Conformational stability analysis
The conformational changes and complex stability can
be best achieved by the MDS [39, 40]. It is a very useful
and widely accepted method to predict the accuracy of
docking poses [41]. The complexes were selected based
on interaction and binding affinity analyses which were
carried forward for the MDS analysis. The apo-
HsGSK3β and predicted complex (HsGSK3β-ANP (con-
trol compound), HsGSK3β-ZINC15968620, HsGSK3β-
ZINC15968622, HsGSK3β-ZINC70704976, and
HsHSK3β-ZINC70707119) were employed for 60 ns mo-
lecular dynamics simulation studies by using Gromacs
5.1.2 [42] for analyzing the protein-ligand stability. The
Gromacs is an open-source widely usable software for
the MDS. It has several force-fields such as Amber,
GROMOS, and CHARMM. with regular updates. How-
ever, it cannot generate the topology other than 20
amino acids, hence we have to use third-party software
to generate the ligand topology such as ProDRG. The
generation of each conformation with the time frame is
based on Newton’s law of molecular motions (Eq. 1).

Fi ¼ miai ¼ δV rNð Þ
δri

ð2Þ

Here i represents the mass of the atom while mi and
ai represent its acceleration. The force acting on i given
by the partial spatial derivative of the potential energy
function V that is dependent on the positions rN = (r1,
r2, … , rN) of all N particles in the system is represented
by Fi. The protein topology and ligand topology were
generated by using the GROMOS 9653A6 force field
[43]. The ligand coordinates were generated by using the
ProDRG server [44]. A cubic box is created and then
HsGSK3β and HsGSK3β-ligand complexes were placed

in that box. Solvent molecules (no. 28,101) were added
and 8 Cl- ions were also added for neutralizing the sys-
tems. Energy minimizations of all the systems were per-
formed to remove the steric clashes of the system. Then
the PBC (periodic boundary condition) was applied and
the Ewald summation method [45] was used for the
long-range electrostatic interaction calculation. After
that NVT (the constant number of particles, volume,
and temperature), simulation was performed to fix the
volume and temperature (300K) of the systems. Then
NPT (the constant number of particles, pressure, and
temperature) simulation was carried out to fix the pres-
sure of the system. Finally, all the systems were
employed for the 60 ns MDS study, and the coordinates
were saved in 2fs. Then all the trajectories were analyzed
with various Gromacs utilities. The gmx rms, gmx rmsf,
gmx gyrate, gmx sasa, and gmx hbond tools were used
for the calculation of various parameters like RMSD,
RMSF, Rg, SASA, and number of hydrogen bonds. The
trajectories were visualized and analyzed by using
Chimera 1.13.2 [23].

Binding-free energy calculation
The g_mmpbsa developed by Kumara et al. is a com-
monly used tool to calculate the binding-free energy
using Gromacs as an interface [46]. This is a very easy-
to-use tool as compare to others. The user can calculate
the binding free energy by using only two steps. The last
10 ns MD trajectory snapshots were used for the calcu-
lation of binding free energy. The ΔGbind is calculated by
the following equation:

ΔGbind ¼ ΔGmm þ ΔGsol - TΔS ð3Þ

The electrostatic and Van der Wall interactions were
computed in the molecular mechanics energy (ΔGmm).
The polar and non-polar contributions defined solvation
free energy (ΔGsol). The Solvent Accessible Surface Area
(SASA) model was used for the determination of nonpo-
lar solvation-free energy. In this method, the entropy
(-TΔS) is not calculated due to the high computational
cost.

Results
Virtual high-throughput screening
For the identification of potential drug candidates that
can inhibit the activity of HsGSK3β, a systematic
structure-based virtual screening approach was imple-
mented. The crystal structure of HsGSK3β was used for
virtual screening. It is co-crystallized with the ANP. So
we have set a binding site based on the control com-
pound ANP and then docked this compound first. Then
all the retrieved ligand compounds (n=167,741) were
screened against this enzyme in the defined grid. From
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the first round of virtual screening, 24,689 compounds
were selected which showed the MolDock Score ranging
between −239.45 and −120.00. These compounds were
again screened in 10 runs. Increasing the number of
runs can remove false-positive binders [27]. The 6352
compounds were selected between the MolDock Score
−235.20 and −140.00 from this round of screening. Then
in the last run, we have selected 1805 compounds and
screened in 50 runs. These showed the MolDock Score
of −240.54 to −160.00. Then from this round of virtual
screening, it was observed that many of these natural
compounds reflect a good binding affinity score towards
the binding pocket of HsGSK3β; therefore, these com-
pounds (n=404) were selected for the pharmacokinetic
evaluation.

Pharmacokinetic evaluation
The natural compounds selected from the previous ana-
lysis (404) were subjected to an admetSAR tool for the
evaluation of various pharmacokinetic descriptors like
BBB, HIA, Caco-2 cell permeability, Cyp450 substrate/
inhibition, Pgp-substrate/inhibition, carcinogenicity,
hERG gene inhibition, and Lethal dose. As we are target-
ing the central nervous system (CNS), so we have se-
lected only those compounds for further study which
can cross the BBB. We found that out of 404 com-
pounds, 269 compounds were showing permeability to-
wards the BBB. HIA describes the absorption of a small
molecule in the large intestine. 367 compounds could be
absorbed from the HIA from our dataset of 404 com-
pounds. In the Caco-2 parameter, we could not found
more compounds that can pass this parameter like out
of 404, 361 cannot pass from these criteria while 41
compounds can pass from these criteria. In our study,
only 43 compounds can pass from this filter. P-gp (P-
glycoprotein) is a cell surface receptor for the efflux of
the xenobiotics. Out of 404 compounds, the 315 and 89
compounds acting as a substrate and non-substrate to-
wards P-gp, respectively. Out of 404, the 168 and 236
compounds acted as a substrate and non-substrate to-
wards P-gp, respectively (Supplementary Table S1). The
Cytochrome P450 is the key enzyme for the metaboliza-
tion of the chemical molecule or xenobiotics. In this
study, we have taken 5 variants of Cyp450 and predicted
the inhibition and substrate probability. In our study,
176 and 228 compounds act as high and low inhibition
promiscuity against Cyp450, respectively (Supplementary
Table S2). Further, toxicity, carcinogenicity, and other
parameters filtering were also done. The toxic com-
pound cannot be selected because it can cause adverse
effects when entering into the bloodstream. So we have
removed those compounds which showed the toxicity.
In this study, only 31 compounds act as toxic com-
pounds out of 404 compounds. Carcinogenicity of the

compound described that if the compound can cause
the mutation. So here only 2 compounds act as carcino-
genic compounds while others are safe in this parameter.
We have also predicted hERG gene inhibition because
inhibition of this gene can cause long QT syndrome. In
our study, 269 compounds act as a non-inhibitor while
135 compounds act as an inhibitor for this gene. Lastly,
we have predicted the lethal dose and acute oral toxicity
of all the compounds. The LD50 of maximum com-
pounds came between 2 and 3 mol.Kg-1 (Supplementary
Table S3). From all these analyses, we have selected only
20 compounds out of 404 compounds that passed all the
parameters successfully and were subjected for re-
docking studies.

Molecular docking analysis
The re-docking study is a good approach to predict the
binding poses from various tools and methods for valid-
ating the study. Based upon the technical evaluation
from the previous set of analyses, we have taken 20 com-
pounds along with the control compound ANP for re-
docking studies. We have used Autodock Vina, Auto-
dock, and MVD for this purpose. The ANP showed
binding affinity through Autodock, Autodock Vina, and
MVD and its scores are −7.8, −7.83, Kcal.mol-1, and
−179.07 MolDock Score, respectively. From the Auto-
dock, we have seen ZINC70707119 and ZINC95100194
showed the highest and lowest binding affinity of −13.26
and −7.99 Kcal.mol-1. The binding affinity for 20 com-
pounds ranging between −13.26 and −7.99 Kcal.mol-1

from ADT. The ZINC15968620 and ZINC95100194
showed the higher and lower binding affinity of −10.6
and −8.4 Kcal.mol-1 from the Autodock Vina. The bind-
ing affinity ranging between −10.6 and −8.4 Kcal.mol-1

for all the 20 compounds. The MVD, ZINC70704976,
and ZINC70700682 showed the highest and lowest Mol-
Dock Score of −207.04 and −181.85, respectively. In the
case of MVD, we have seen the MolDock Score ranging
from −207.04 to −181.25. The binding affinity, number
of hydrogen bonds, and interacting residues for all the
20 compounds with control compound ANP were
shown in Supplementary Table S4.

Structural analysis of selected hits
The binding pattern of the four selected
(ZINC15968620, ZINC15968622, ZINC70704976,
ZINC70707119) hits is described below, which was se-
lected by rounds of virtual screening as well as ADMET
studies from 167,741 compounds. The ANP binding pat-
tern was also checked for validation of the docking
study. The chemical structure, binding affinity, interact-
ing residues for four selected hits, and ANP were shown
in Table 1 and Fig. 2.
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Docking protocol validation
The ANP is co-crystallized in the PDB structure (PDB
ID: 1J1B). The ANP is removed from the PDB and again

re-docked by all three docking tools. The binding resi-
dues are found similar from all the three docking tools
while binding affinity is different due to different

Table 1 Details of the four selected compounds with control compound ANP. ZINC ID, structures, binding affinity, and interacting
residues obtained after molecular docking are shown. The residues which are forming hydrogen bonds are shown in bold
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algorithms. The RMSD of the ligands from all the dock-
ing tools is <2 Å from the experimentally solved 3D co-
ordinates. Various residues that interact in the PDB
structure like Asp133 and Val135 are the same and
forming the hydrogen bonds in re-docking studies. The
PDB structure authors resolved that Arg141 is a con-
served residue, and it showed the interaction from all
three docking tools [22]. The binding affinity for ANP
from all the three tools was −7.83, −7.8 Kcal.mol-1, and
−179.077 MolDock Score. Table 1 and Fig. 2a show de-
tailed analyses of interacting residues and binding affin-
ity. The common residues which lie from all three
softwares are Val70, Tyr134, and Arg141. In these three
residues, the Val70 and Arg141 are also predicted by an
experimentally solved (PDB ID: 1J1B) structure.

ZINC15968620
It is the predicted hit, which showed the highest binding
affinity from Autodock VINA as compared to all other
ligands. The binding affinity from Autodock Vina, Auto-
dock, and MVD was shown −10.6, −11.5 Kcal.mol-1, and
−184.884 MolDock Score. The binding affinity of this
compound is greater than ANP. The binding score rep-
resents that it has more affinity than ANP and can block
the active site of GSK3β and inhibits the enzyme’s func-
tion. It binds with the key catalytic residues of the ATP
site. Table 1 and Fig. 2b showed detailed analyses of
interacting residues, binding affinity, and the number of
hydrogen bonds. Common interacting residues, which

have been predicted from all three docking tool’s are
Ile62, Asn64, Ala83, Val135, Thr138, Arg141, Gln185,
Leu188, and Asp200. Here we have seen that most of
the amino acid residues are hydrophobic and positively
charged. It describes that the binding site has the cap-
ability of hydrophobic interactions. Arg141 is also con-
served and it is a key residue that is not conserved in
other kinases and actively participating in GSK3β-
ZINC15968620 complex stabilization. In these residues
Val135, Arg141, Gln185, and Asp200 are actively partici-
pating in the ANP stabilization in the experimentally re-
solved structure also. It represents that our ligand is
interacting with the key residues which are required for
the activity of the enzyme and the docking tools are giv-
ing accurate binding poses. Additionally, newly identified
residues could also be checked experimentally and can
provide new substrate specificity.

ZINC15968622
It is the derivative of ZINC15968620 with a bonding dif-
ference. It showed approximately similar binding affinity
which was shown by ZINC15968620. It showed the
binding affinity from Autodock Vina, Autodock, and
MVD as −10.5, −11.53 Kcal.mol-1, and −188.439 Mol-
Dock Score, respectively. It also showed a greater bind-
ing affinity than control ligand ANP. Binding affinity
proves that it can compete with the ANP and occupy
the ATP binding site and can block the enzyme func-
tion. It showed good hydrogen and other bonding

Fig. 2 Schematic representations of the binding interactions with HsGSK3β. a HsGSK3β-ANP. b HsGSK3β-ZINC15968620. c HsGSK3β-
ZINC15968622. d HsGSK3β-ZINC70704976. e HsGSK3β-ZINC70707119
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interactions with the key catalytic residues. It showed
the binding with Arg141 through two of the three soft-
ware used. A detailed description of the chemical struc-
ture, hydrogen bonding, and binding affinity is given in
Table 1 and Fig. 2c. The identical residues from all three
docking tools were predicted and compared with the X-
ray crystallized structure. The residues Ile62, Asn64,
Ala83, and Leu188 were found common from all three
docking tools.

ZINC70704976
The ZINC70704976 also showed a good binding affinity
and even greater than ANP from all the three docking
tools. The binding affinity of −10.0, −11.43 Kcal.mol-1,
and −207.046 MolDock Score was observed from Auto-
dock Vina, Autodock, and MVD tools, receptively. It
showed the highest MolDock Score compared to all
other compounds. The compounds showed the inter-
action with the key catalytic residues. The number of
hydrogen bonds, binding affinity, and the chemical
structure is shown in Table 1 and Fig. 2d. The residues,
which were identified from all the docking tools, are
Asn64, Ile62, Ala83, Tyr134, and Val135. These all resi-
dues are catalytically important. The Val135 is a residue
that is also found in the stabilization of ANP with
HsGSK3β in the experimentally resolved structure.

ZINC70707119
The ZINC70707119 showed the highest binding affinity
of −13.26 Kcal.mol-1 from the Autodock as compared to
all other selected ligands. The ZINC70707119 also
showed a greater binding score than ANP. The binding
score from Autodock Vina was −9.7 while the −200.768
MolDock score was observed from the MVD. It interacts
with the various key catalytic residues like Arg141 which
is a unique residue of GSK3β and participates in the
hydrogen bonding during docking. A detailed descrip-
tion of hydrogen bonds, hydrophobic interaction, and
chemical structure is given in Table 1 and Fig. 2e. The
residues found identical from all the docking tools are
Ile62, Asn64, Val70, Ala83, Tyr134, Val135, Thr138,
Arg141, Gln185, Leu188, and Asp200. These are the key
catalytic residues and are also found in ANP interaction
in the crystal structure. The residues Val70, Val135, and
Asp200 are identical to the experimentally solved struc-
ture. From this analysis, we have seen that all four li-
gands have a higher binding affinity than the control
ligand ANP. It represents that all selected hits can com-
pete with the ANP and can occupy the binding cavity.
These residues are interacting with the key catalytic resi-
dues which are required for enzyme function. It reveals
that our predicted inhibitors may alter the enzyme func-
tion. Further MDS study was performed for the

prediction of conformational dynamics of all the four
compounds with ANP complex and apo-HsGSK3β.

Common scaffold for all four selected compounds
We obtained a very interesting finding from this ana-
lysis. We have worked on a structure-based virtual
screening approach with a set of compounds. From
these rounds of virtual screening, we have selected 4
compounds for the MDS study. In these compounds, we
have seen that they belong to one scaffold (β-carboline-
hydantoin derivative named “2,5-DIPHENYL-1,3-
DIOXO-6H-1,2,3,5,11,11A-HEXAHYDROIMIDAZO-[1,
5-B]-BETA-CARBOLINE”) [47] only and all the com-
pounds are derivatives of this scaffold. The chemical
structure is shown in Supplementary Figure 1. It repre-
sents that this scaffold can play a key role in the design-
ing of potent inhibitors against GSK3β for AD and other
tauopathies.

Molecular dynamic simulation
The MDS was performed in two phases. First, the sys-
tems are prepared to remove the steric clashes and the
temperature and volume of the system are fixed, then
second the production run of 60 ns was carried out for
predicting the protein-ligand complex stability analysis.
The MDS provides the deeper detail of the mechanism
of the ligand-binding, and we can predict the changes at
the atomic level with the time-scale. We have predicted
various values such as RMSD, RMSF, Rg, SASA, number
of hydrogen bonds, PCA, and binding-free energy for
predicting the protein-ligand complex stability. The tra-
jectories are equilibrated after 20 ns, hence the analysis
was carried out from the last 40 ns trajectory.

RMSD
The RMSD is a widely used parameter to check the sta-
bility of the system. Here the RMSD value is calculated
for all the systems to predict the conformational changes
after ligand binding in the apo-protein and depicted in
Fig. 3a. The average RMSD value for apo-HsGSK3β,
HsGSK3β-ANP, HsGSK3β-ZINC15968620, HsGSK3β-
ZINC15968622, HsGSK3β-ZINC70704976, and
HsGSK3β-ZINC70707119 were 0.38, 0.38, 0.37, 0.35,
0.35, and, 0.34 nm, respectively, for the last 40 ns trajec-
tory. From the RMSD value, we have analyzed that the
ligand-binding induces stability in the apo-HsGSK3β.
The apo-HsGSK3β and HsGSK3β-ANP showed the
same RMSD value while HsGSK3β-ZINC70707119
showed the least RMSD value as compared to all other
compounds. All the trajectories got the equilibration
state after 20 ns while some extent in the RMSD peak
was observed in the HsGSK3β-ZINC70707119. It
showed the lower and higher RMSD peak till 40 ns, and
after that, it got the equilibration state and showed a
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stable peak. From the RMSD, we have concluded that all
the trajectories are well stable and can be considered for
further analysis.

Residue mobility analysis
The RMSF defines residual mobility after ligand binding.
The rigid structure like helix and sheet showed lower
RMSF values while loosely folded structures like turns
and coils showed higher RMSF values. We have calcu-
lated the RMSF value for all the ligand complexes and
shown in Fig. 3b. The average RMSF value for apo-
HsGSK3β, HsGSK3β-ANP, HsGSK3β-ZINC15968620,
HsGSK3β-ZINC15968622, HsGSK3β-ZINC70704976,
and HsGSK3β-ZINC70707119 were 0.11, 0.13, 0.15,
0.15, 0.13, and 0.14 nm, respectively. Figure 3b showed
that the ligand-binding induces conformational changes.
It showed the major changes in the residues between
64–70, 90–95, 119–126, 140–154, and 202–216. We
have observed a higher peak in the C-terminal region.
From the RMSF analysis, we have seen that ligand bind-
ing altering the geometry of the protein structure and

for performing the native function of any protein a
proper conformation is required. The HsGSK3β-
ZINC70704976 and HsGSK3β-ZINC70707119 showed
less fluctuation as compared to other predicted ligands.

Radius of gyration
The radius of gyration analysis of the protein-ligand
complex is done by the radius of gyration (Rg) parameter
analysis. The less Rg value is observed in the compactly
folded protein while the higher Rg value is generally
shown by the loosely folded protein structure. The Rg
value for all the systems was calculated for the last 40 ns
trajectory and plotted in Fig. 4a. The average Rg value
were recorded 2.13, 2.15, 2.15, 2.16, 2.16, and 2.17 nm
for apo-HsGSK3β, HsGSK3β-ANP, HsGSK3β-
ZINC15968620, HsGSK3β-ZINC15968622, HsGSK3β-
ZINC70704976, and HsGSK3β-ZINC70707119, respect-
ively. The result showed that the least Rg value was ob-
served for the apo-HsGSK3β as compared to other
compounds and control compounds. It represents that
after ligand binding, some conformational changes have

Fig. 3 Molecular dynamic simulation. a Root mean square deviation (RMSD) values of Cα backbone atoms for 60 ns. b Root mean square
fluctuation (RMSF) values of Cα atoms for the last 40 ns. The color code for all panels are apo-HsGSK3β (black), HsGSK3β-ANP (red), HsGSK3β-
ZINC15968620 (green), HsGSK3β-ZINC15968622 (blue), HsGSK3β-ZINC70704976 (cyan), and HsGSK3β-ZINC70707119 (magenta)

Fig. 4 Rg and hydrogen bond. a The radius of gyration value for backbone at 300 K for last 40 ns trajectory. b Number of hydrogen bonds
between protein and ligand for last 40 ns trajectory. The color code for all panels are apo-HsGSK3β (black), HsGSK3β-ANP (red), HsGSK3β-
ZINC15968620 (green), HsGSK3β-ZINC15968622 (blue), HsGSK3β-ZINC70704976 (cyan), and HsGSK3β-ZINC70707119 (magenta)
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occurred. The HsGSK3β-ZINC15968620 showed the
same average Rg value as compared to the control com-
pound. The HsGSK3β-ZINC15968622 and HsGSK3β-
ZINC70704976 showed the same Rg value and higher
than control while less than HsGSK3β-ZINC70704976.
All the complexes showed the stable peak from 20 to 40
ns while the value for HsGSK3β-ZINC15968620 is de-
creasing from higher to lower with the timescale. From
here, we have concluded that all predicted hits are good
and showed the protein-ligand complex stability.

Interaction analysis
Various interactions between protein and ligand play a
key role in protein-ligand stabilization. The hydrogen
bonds are the key interaction between protein and lig-
and. They provide interaction specificity and directional-
ity which is a key step in molecular recognition. We
have calculated the number of hydrogen bonds vs. time
and plotted it in Fig. 4b. All the complexes showed good
bonding between protein and ligand. The average num-
ber of hydrogen bonds for HsGSK3β-ANP, HsGSK3β-
ZINC15968620, HsGSK3β-ZINC15968622, HsGSK3β-
ZINC70704976, and HsGSK3β-ZINC70707119 was 0–1
for all the ligand complexes. The HsGSK3β-
ZINC15968620 and HsGSK3β-ZINC15968622 showed
0–3 hydrogen bonds respected time. The control com-
pound also showed 3 hydrogen bonds in some time
steps. It represents that these compounds stably inter-
acted with the HsGSK3β binding cavity and provides
stable interaction.

Solvent accessible surface area
The SASA of a protein defines the area which can be
accessed by the solvent. The SASA value is often in-
creased by hydrophobic residues. The solvation-free en-
ergy of protein is calculated by the polar and non-polar

interaction. The SASA value is calculated by using the
last 40 ns trajectory. The average SASA values were
186.23, 196.16, 188.84, 196.19, 191.18, and 190.93 nm2

calculated for apo-HsGSK3β, HsGSK3β-ANP,
HsGSK3β-ZINC15968620, HsGSK3β-ZINC15968622,
HsGSK3β-ZINC70704976, and HsGSK3β-
ZINC70707119, respectively (Fig. 5a). Here also, we have
seen results similar to Rg, where apo-GSK3β showed less
value as compared to all other predicted hits. The con-
trol compounds HsGSK3β-ANP showed a very high
SASA value as compared to all other predicted hits. It
represents that our predicted ligands showed more com-
plex stability as compared to the control ligand. The
HsGSK3β-ZINC15968620 showed a high SASA value of
42 ns while after that it showed a stable and lower peak
as compared to all other predicted compounds. The
control compound showed lower and higher SASA
values with respect to time while the HsGSK3β-
ZINC70704976 and HsGSK3β-ZINC70707119 showed
very stable peaks from starting (20 ns) till the 60 ns. The
results showed that both complexes are very stable as
compared to other predicted hits as well as the control
compound.
We have also tracked the residue level changes by

plotting the residue SASA value. It is an important par-
ameter to understand the residual changes during ligand
binding. The SASA value vs. residue plot is shown in
Fig. 5b. The average SASA value for apo-HsGSK3β,
HsGSK3β-ANP, HsGSK3β-ZINC15968620, HsGSK3β-
ZINC15968622, HsGSK3β-ZINC70704976, and
HsGSK3β-ZINC70707119 were 0.52, 0.54, 0.53, 0.55,
0.54, and 0.53 nm2, respectively. It represents that apo-
GSK3β shows the least residual SASA as compared to all
other predicted hits. In the case of predicted hits, the
HsGSK3β-ZINC15968620 and HsGSK3β-
ZINC70707119 showed 0.53 nm2 and it is the least value

Fig. 5 The solvent-accessible surface area as a function of time at 300 K. a SASA value vs. time. b SASA value for residues. The color code for all
panels are apo-HsGSK3β (black), HsGSK3β-ANP (red), HsGSK3β-ZINC15968620 (green), HsGSK3β-ZINC15968622 (blue), HsGSK3β-ZINC70704976
(cyan), and HsGSK3β-ZINC70707119 (magenta)
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as compared to other predicted hits. It is confirmed
from this finding that these compounds showed a stable
complex.

Principal component analysis
The PCA or essential dynamics (ED) are used to analyze
the correlated motions in the protein after ligand bind-
ing. The total motility in the system is equivalent to the
sum of the eigenvalues. It can be used to compare the
flexibility of a protein under different conditions. The
Gromacs provide the facility to calculate the eigenvec-
tors for characterizing the protein motions. Here we
have considered the first fifty eigenvectors for result ana-
lysis because it is a well-known fact that the first few
PCs describe the overall dynamics of the system. We
have calculated the percent wise motions for the first
five eigenvectors. The first five eigenvectors accounted
for 52.49%, 70.70%, 72.35%, 65.83%, 69.84%, and 66.59%
of the motions, recorded for last 40 ns trajectory for
apo-HsGSK3β, HsGSK3β-ANP, HsGSK3β-
ZINC15968620, HsGSK3β-ZINC15968622, HsGSK3β-
ZINC70704976, and HsGSK3β-ZINC70707119, respect-
ively (Fig. 6a). The apo-HsGSK3β showed very less mo-
tions as compared to ligand-bound complexes. It
indicates that ligand binding induces structural changes
and motions in the protein. In the case of the ligand-

protein complex the HsGSK3β-ZINC15968622,
HsGSK3β-ZINC70704976, and HsGSK3β-
ZINC70707119 showed less motions as compared to the
control compound. So from here, we have concluded
that these three complexes can act as lead compounds.
In this result, we have observed that the first few ei-

genvectors were describing the overall dynamics of the
protein. So in the next analysis, we have considered the
first two eigenvectors, and a 2D projection plot was plot-
ted to achieve the phase space behavior of the protein-
ligand complex (Fig. 6b). In this plot, the clear cluster
describes the well stable complex while the non-stable
cluster defines the non-stable complex. In Fig. 6b, we
have seen that apo-HsGSK3β showed a well stable clus-
ter. In the case of the protein-ligand complex, the
HsGSK3β-ZINC15968622, HsGSK3β-ZINC70704976,
and HsGSK3β-ZINC70707119 showed well stable cluster
as compared to the control compound. This result is
also consistent with the above-stated analysis.
After that, we have calculated the eigRMSF for the one

eigenvector vs. residues and plotted it in Fig. 6c. It describes
the motions based on residues that were affected after ligand
binding. We have calculated the eigRMSF value for all the
protein-ligand complexes and shown in Fig. 6c. The average
value for apo-HsGSK3β, HsGSK3β-ANP, HsGSK3β-
ZINC15968620, HsGSK3β-ZINC15968622, HsGSK3β-

Fig. 6 Principal component analysis. a The plot of eigenvalues vs. first 50 eigenvectors. b First two eigenvectors describing the projection of
protein motion in phase space for all the systems. c eigRMSF obtained from the first PC during PCA calculations. The color code for all panels is
apo-HsGSK3β (black), HsGSK3β-ANP (red), HsGSK3β-ZINC15968620 (green), HsGSK3β-ZINC15968622 (blue), HsGSK3β-ZINC70704976 (cyan), and
HsGSK3β-ZINC70707119 (magenta)
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ZINC70704976, and HsGSK3β-ZINC70707119 were 0.03,
0.05, 0.09, 0.08, 0.06, and 0.06 nm, respectively. The average
value suggested that apo-protein showed very less motions
as compare to all other protein-ligand complexes including
the control compound. The HsGSK3β-ZINC70704976 and
HsGSK3β-ZINC70707119 showed the least value as com-
pared to other ligands but more than the control compound.
The overall patterns were found similar to the RMSF
analysis.

Gibbs free energy landscape
The gmx sham tool was used for the calculation of the
Gibbs free energy landscape. The projection of the first
two principal components PC1 and PC2 was done for
the prediction of Gibbs free energy landscape. The
color-coded representation of the Gibbs free energy
landscape for all the systems was shown in Fig. 7. The
direction of fluctuation for all the Cα atoms was
inspected for apo-HsGSK3β, HsGSK3β-ANP, HsGSK3β-
ZINC15968620, HsGSK3β-ZINC15968622, HsGSK3β-
ZINC70704976, and HsGSK3β-ZINC70707119 from the
last 40 ns trajectory. The deeper blue color on the con-
tour map represents the lower energy for all the systems.
A higher blue color was observed for the control com-
pound and HsGSK3β-ZINC15968620. It represents that
these complexes have only one minimum state. The
apo-HsGSK3β showed a very stable cluster with blue
color, and it also represents only one stable

conformation. In the case of HsGSK3β-ZINC15968622,
HsGSK3β-ZINC70704976, and HsGSK3β-
ZINC70707119, we have observed the two to four con-
formational states so it represents that these complexes
have many energy minima. We have concluded from
overall MD analysis that our all protein-ligand com-
plexes showed robust stability.

Binding free energy analysis
For the investigation of the protein-ligand complex sta-
bility and binding of selected hits after MD simulation,
binding free energy of the lead compounds was calcu-
lated by using Molecular-Mechanics Poisson Boltzmann
Surface Area (MM-PBSA) method. We have selected the
last five ns trajectory for the calculation of binding free
energy. It calculated the polar and non-polar solvation
energy in energetic terms like electrostatic interaction,
Van der Walls energy, and SASA energy. The average
binding affinity for all the protein-ligand complexes was
summarized in Table 2. The binding affinity for
HsGSK3β-ANP, HsGSK3β-ZINC15968620, HsGSK3β-
ZINC15968622, HsGSK3β-ZINC70704976, and
HsGSK3β-ZINC70707119 were −150.49, −159.86,
−161.42, −143.55, and −159.54 kJ.mol-1, respectively. All
the compounds showed greater binding affinity than
control compound ANP except HsGSK3β-
ZINC70704976 while it showed higher Van der Walls
energy, electrostatic energy, and polar solvation energy

Fig. 7 Gibbs free energy landscape obtained from first two PCs at 300 K. a HsGSK3β, b HsGSK3β-ANP, c HsGSK3β-ZINC15968620, d HsGSK3β-
ZINC15968622, e HsGSK3β-ZINC70704976, and f HsGSK3β-ZINC70707119
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than the control compound. It represents that this com-
pound also acts as an inhibitor against HsGSK3β. The
HsGSK3β-ZINC15968622 showed the highest binding
affinity than all other selected hits. From here, we have
concluded that these complexes are energetically favor-
able and can act as a novel compound against HsGSK3β.
In structure-based drug designing, the residual contri-

bution in binding is very important. We have identified
the binding affinity based on each residue. For a clear
depiction of the result, we have taken the catalytically
important residues only, which play a key role in ligand
binding, and plotted in Fig 8. In the figure, we have seen
that Ile62, Asn62, Val70, Ala83, Tyr134, Val135, Thr138,
Arg141, and Gln185 play a key role in ligand binding.
Looking into these residues, it was observed that most of
these are hydrophobic; therefore, from here we have
concluded that hydrophobic interaction plays a key role
in HsGSK3β and ligand stabilization. We have also
found a few key residues which play important role in
ligand binding.

Discussion
AD is a complex and multifactorial disease. It is mainly
characterized by memory loss and generally affects old
age people. The Aβ and NFTs are the main key hall-
marks for disease identification. The amyloid precursor
protein and tau protein form the Aβ plaques and NFTs,
respectively. Several enzymes play an important role in

the disease progression in which the HsGSK3β plays a
key role in the phosphorylation of the tau protein and
due to the hyperphosphorylation tau protein forms the
NFTs [48]. These NFTs promote neuron death and ac-
tively participate in AD progression. Hence, inhibition of
the HsGSK3β reduces the tau phosphorylation in various
studies [18]. We have taken a subset of natural com-
pounds and screened against the HsGSK3β in four se-
quential docking runs. From the screening, we have
selected the top 404 compounds for the ADMET ana-
lysis, which is a required parameter to produce the com-
pounds in the market [49]. Then, the ADMET value is
predicted by using the admetSAR server [35]. The
admetSAR server can predict various physiochemical
properties such as BBB, HIA, Caco-2, Pgp substrate-
inhibitor, Cyp450 substrate/inhibitor, lethal dose, tox-
icity, and carcinogenicity. We have predicted all these
parameters, and on the basis of all these parameters, we
have selected 20 compounds for the redocking analysis
by using MVD, Autodock Vina, and Autodock. These
compounds were redocked by using the MVD, Auto-
dock, and Autodock Vina [36] software with the ANP.
The redocking suggested four best compounds
(ZINC15968620, ZINC15968622, ZINC70704976, and
ZINC70707119) which are used for further MDS ana-
lysis. The MDS is a widely used method to predict the
protein-ligand stability of the docked complex. Hence,
we have also performed 100 ns MD simulation for all

Table 2 The table represents the Van der Waals, electrostatic, polar solvation, SASA, and binding energy in kJ.mol-1 for control
compound and predicted hits

S. No. Compound Van der Waals energy Electrostatic energy Polar solvation energy SASA energy Binding energy

1. ANP -234.83 ± 16.12 -11.20 ± 7.04 115.37 ± 18.46 -19.82 ± 1.11 -150.49 ± 22.57

2. ZINC15968620 -233.65 ± 15.30 -16.37 ± 7.83 112.65 ± 22.21 -22.50 ± 1.46 -159.86 ± 20.28

3. ZINC15968622 -238.74 ± 16.94 -14.22 ± 7.28 114.71 ± 20.41 -23.18 ± 1.53 -161.42 ± 15.76

4. ZINC70704976 -267.56 ± 14.38 -30.88 ± 10.22 179.11 ± 26.14 -24.22 ± 1.15 -143.55 ± 20.84

5. ZINC70707119 -247.80 ± 12.58 -19.63 ± 6.95 129.82 ± 24.71 -21.94 ± 1.04 -159.54 ± 23.47

Fig. 8 Residual binding free energy decomposition. The plot describes the contribution of each amino acid to the binding of ligands
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the complexes. Several structural parameters such as
RMSD, RMSF, Rg, SASA, PCA, and binding free energy
analysis were carried out. The RMSD value suggested that
all the complexes are stable and producing the equilibrated
trajectory for further analysis. Hence, we have calculated
various other structural parameters such as RMSF, Rg, PCA,
Gibbs free energy, and binding free energy analysis. The
hydrogen bonds analysis suggest that all the complexes are
stable and showing the interaction with the key catalytic resi-
dues of the binding site. The essential dynamics analysis also
agreed with this result. Then we have also carried out the
Gibbs free energy landscape analysis. The analysis suggested
that some complexes followed the stable state with the meta-
stable state. The binding free energy analysis showed that
out of four compounds three compounds (ZINC15968620,
ZINC15968622, and ZINC70707119) are better than
ZNC70704976. Hence from all these results we have selected
ZINC15968620, ZINC15968622, and ZINC70707119 that
can act as a lead compound against the HsGSK3β to reduce
the NFTs burden from the cell. We have proposed these
compounds to the global scientific community as they can
further evaluate these compounds by using the in vitro and
in vivo techniques.

Conclusion
AD is a major problem for our society at a global level,
and there is a need to look for possible treatment strat-
egies. The HsGSK3β is an important protein kinase in-
volved in tau hyperphosphorylation in AD including
several other diseases. So in this study, we have targeted
the HsGSK3β to reduce the hyperphosphorylation of tau
protein. We have used various computational ap-
proaches for predicting the small molecules against
GSK3β which can bind to the active site and can block
the enzyme activity. We have retrieved the natural com-
pound library (n=167,741) from the ZINC database and
screened it against HsGSK3β in various steps by using
MVD. From the virtual screening, we have selected 404
compounds. These compounds were further employed
for the pharmacokinetic analysis. From this analysis, 20
compounds were selected and employed for the redock-
ing. Then selected 4 plausible compounds from docking
that were employed for MDS. From MDS, finally, three
compounds ZINC15968620, ZINC15968622, and
ZINC70707119 were selected and proposed as potent
lead compounds against HsGSK3β. These compounds
can be further evaluated through in vitro and in vivo ex-
periments. These compounds will serve as an initial
point to design the novel inhibitors against HsGSK3β
and can act as a novel therapeutic compound for AD. It
is anticipated that proposed compounds will provide
ready to use input for the experimental scientists and
after their respective verifications could help in the man-
agement of tauopathies and AD.
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