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Picrorhiza kurroa grown in the Northwestern Himalayan region is used in various herbal formulations but extensive harvesting
of this plant has led it to near extinction. The active constituents responsible for the medicinal properties of P. kurroa have
been identified as picroside-I and picroside-II which are present in a particular ratio (1 : 1.5) in herbal formulations like Picroliv.
The biosynthetic pathway of picrosides has been partially deciphered till date and needs to be elucidated completely. Review of
literature revealed that no information is available as of today on the proteome analysis of Picrorhiza kurroa w.r.t. picroside-II
biosynthesis.Therefore, with the aim of identifying proteins associated with picroside biosynthesis in Picrorhiza kurroa, differential
protein expression was studied under picroside accumulating versus nonaccumulating conditions using SDS-PAGE. A total of 19
differentially expressed proteins were identified using MALDI-TOF/TOF MS followed by MASCOT search. Proteins involved in
diverse functions were identified amongst which the most important proteins were glyceraldehyde-3-phosphate dehydrogenase, 1-
aminocyclopropane-1-carboxylate oxidase, photosystem I reaction centre subunit V, 2-oxoglutarate ferrous-dependent oxygenase
and putative cytochrome P450 superfamily protein because of their role in picroside biosynthesis.These identified proteins provide
an insight and a basic platform for thorough understanding of biosynthesis of secondarymetabolites and various other physiological
processes of P. kurroa.

1. Introduction

Plants have become an important part of our daily lifestyle.
For several years, intensive studies have been carried out
on various plant constituents and their nutrition value [1].
Plants synthesize a variety of metabolites which can be
classified into two categories, namely, primary metabolites
which are involved in essential metabolic processes of the
plant and secondarymetaboliteswhich are not involved in the
fundamental life processes of plant but in a variety of other
roles which help plants in their survival and reproduction [1–
4].

The medicinal properties of various medicinal plants can
be attributed to these secondary metabolites. It has been
generally observed that a particular medicinal property is
inherent to a specific plantspecies or groups which is in

congruence with the fact that taxonomically distinct plants
possess different combination of secondary metabolites [5].

One such medicinal plant is Picrorhiza kurroa which is
a perennial medicinal herb belonging to family Scrophular-
iaceae found in northwestern Himalayas at an altitude from
3000m to 4300m [6–8]. It has beenwidely used in the ancient
Ayurvedic system for treatment of various disorders like liver
diseases, dyspepsia, chronic diarrhoea, and upper respiratory
ailments [6]. In modern system of medicine, it is widely
used as a hepatoprotective [6–11], anticarcinogenic [12],
antioxidant [7, 8, 11, 13, 14], antiallergic [8], antiasthmatic [8,
11, 15], immunomodulatory [8, 11, 14], superoxide scavenging
[10], antidiabetic [16], and immunostimulant [8, 17].

Research on P. kurroa extracts has revealed its potential
role in treating hepatic injuries induced in rats by various
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agents such as ethanol [8, 18], thioacetamide, galactosamine,
and carbon tetrachloride [8, 19].

These pharmacological activities of P. kurroa are due to
the presence of novel monoterpene derived iridoid glyco-
sides such as picroside-I, picroside-II along with picroside-
III, picroside-IV, apocynin, androsin, catechol, kutkoside,
verminoside, and specioside [6–8].

P. kurroa has been used in various herbal formulations
like Picroliv, Livokin, Picrolax, Livomap, Tefroliv, Katuki,
Arogya, Kutaki, and so forth [7, 8]. The requirement of a
particular concentration and composition of desired chem-
ical constituents in a herbal drug formulation has been
emphasized by Picroliv, which is a herbal formulation from
P. kurroa and reported to contain a definite ratio (1 : 1.5)
of picroside-I and picroside-II [20]. The upsurge in market
demand, inadequate cultivation, and uncontrolled collection
from the wild has resulted in declaring P. kurroa as a critically
endangered species [7].

The two major medicinal components of P. kurroa,
picroside-I (P-I) and picroside-II (P-II), show differential
accumulation. P-I has been found to be differentially pro-
duced in shoots, while P-II has been found to occur differ-
entially in stolons or roots [8, 11, 18].

Recently, the pathway for the production of picrosides has
been proposed. Picrosides are derived from geranyl diphos-
phate (GDP) using the isoprenoid biosynthetic pathway [7].
The search for whether this GPP was derived from the
mevalonate (MVA) pathway or the 2-C-methyl-D-erythritol
4-phosphate (MEP) pathway resulted in the identification of
several upregulated genes of both MVA and MEP pathways
indicating that both pathways contributed in the formation
of GPP [7, 18].

All picrosides are formed from the esterification of
catalpol derived from iridoid biosynthetic pathway with var-
ious aromatic acids obtained from phenylpropanoid pathway
[7].

Although the metabolites of the pathway have been
deciphered, the proteins involved in their biosynthesis still
need to be elucidated. According to a proposed strategy,
metabolites, proteins, and transcriptional profiling under two
physiological states (e.g., metabolites accumulating versus
nonaccumulating) can provide a novel approach for pathway
elucidation in plants [8, 20].

Although transcriptomics analysis can provide a great
wealth of knowledge about various biological processes,
it is incomplete without proteome analysis which aids in
improving the understanding of events occurring inside a
cell [8]. As the central dogma dictates the transcription of
DNA to mRNA and the translation of mRNA to proteins,
one would expect to find correlation between mRNA and
protein abundances. But this is not true; research has found
the correlation betweenmRNA and protein to be poor [8, 21–
23].

Three reasons have been presumed for this poor corre-
lation: (a) significant difference in the half lives of proteins,
(b) inability to get a clear picture because of significant
amount of error and noise in both protein and mRNA

experiments, and (c) various complicated posttranslational
modifications [23]. It has been observed that DNA sequence
and mRNA expression studies fail to provide information
regarding protein posttranslational modification, structure,
and protein-protein interactions. For performing various
functions, almost all proteins undergo posttranslational
modification; hence, it becomes essential to analyse the
protein content so as to get a better understanding of the
various physiological processes [8, 24].

Another important reason which necessitates the study
of P. kurroa proteins is that proteomic studies till date
have been carried out primarily in model plants such as
Arabidopsis thaliana,Oryza sativa (rice), Populus trichocarpa
(black cottonwood), and Vitis vinifera (grape vine) for which
fully sequenced genomes are available. Very few studies have
been conducted in relation to the biosynthesis of secondary
metabolites in medicinal plants especially with the focus of
identifying new enzymes involved in secondary metabolism
[25].

Review of literature reveals that no proteomic data is
available as of today associated with the biosynthesis of
picroside-II in the stolons ofP. kurroa. Hence this preliminary
study was carried out with the objective of identifying pro-
teins for the first time related to the biosynthesis of picroside-
II in the stolon of Picrorhiza kurroa using differential pro-
teomics approach between two differential conditions of
metabolite accumulation and metabolite nonaccumulation.

2. Material and Methods

2.1. Plant Material. For differential proteomic study, roots
were obtained from P. kurroa plants maintained by tissue
culture at 15∘C and stolon samples were taken from P. kur-
roa plants obtained from Sairopa (4,500m altitude, 31∘38󸀠–
31∘54󸀠N, and 77∘20󸀠–77∘45󸀠E) with respect to differential
picroside-II content. Both of the samples were obtained from
the same strain of P. kurroa deposited at Himalayan Forest
Research Institute, Shimla, India, with Herbarium Accession
no. 0670. These samples were selected on the basis of ∼10
times higher picroside-II content (as determined by HPLC)
in Sairopa plants (10.4mg/g fresh weight) as compared to
roots of P. kurroa grown at 15∘C (0mg/g fresh weight).

2.2. Picroside-II Quantification. Picroside-II content was
estimated using high performance liquid chromatography
(HPLC) analysis method developed by Sood and Chauhan
[11]. P-II content in 15∘C roots has already been experimen-
tally proven to be 0mg/g fresh weight [18]. For quantifica-
tion of P-II in the stolon samples, they were dissolved in
methanol after being grounded into a fine powder using
liquid nitrogen.The filtered extract was then diluted 10 times
and analysed using reverse phase (HPLCWaters 515) through
C18 (5 𝜇m) 4.6 × 250mm Waters Symmetry Column using
PDA detectors (Waters 2996). Two solvent systems were
used for running the test samples, that is, solvent A (0.05%
trifluoroacetic acid) and solvent B (1 : 1 methanol/acetonitrile
mixture. Solvents A and B were used in the ratio 70 : 30
(v/v).The column was eluted in isocratic mode with flow rate
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of 1.0mL/min. P-II was detected at 270 nm. The cycle time
of analysis was 30 minutes at 30∘C. The compounds were
identified on the basis of retention time and comparison of
UV spectra with the authentic standard from ChromaDex,
Inc.

2.3. Protein Extraction. Thesampleswere excised andwashed
with sterile water. These washed and dried samples were
frozen in liquid nitrogen and grounded in a precooled
pestle and mortar to obtain a fine powder. This fine
powder was then suspended in 10% (w/v) trichloroacetic
acid (TCA) in 100% (v/v) acetone containing 0.07% (w/v)
dithiothreitol (DTT). For complete precipitation, samples
were incubated overnight at −20∘C, followed by centrifu-
gation at 15,557×g for 45 minutes. The pellets were resus-
pended in 100% (v/v) acetone containing 0.07% DTT
for 1 hour, followed by centrifugation at 15,557×g for
45 minutes. This step was repeated thrice to completely
remove any residual TCA. The pellet was then air dried to
remove acetone and resuspended in lysis buffer containing
7M urea, 2M thiourea, 2% (w/v) 3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulfonate (CHAPS), 1% (w/v)
DTT, 2% biolyte pH 3–10, and protease inhibitor cocktail.The
samples were then sonicated in a water bath maintained at
20∘C for 30 minutes followed by gentle stirring at room tem-
perature for 4 hr. The samples were centrifuged at 15,557×g
for 45 minutes and supernatant obtained was transferred
to a new tube for further centrifugation at 15,557×g for
45 minutes to remove any residual precipitate. The clear
supernatant obtained was divided into aliquots and stored at
−80∘C. Protein concentration was estimated using the Bio-
Rad RC DC protein estimation kit.

2.4. Sodium Dodecyl Sulphate: Polyacrylamide Gel Elec-
trophoresis (SDS-PAGE) Analysis. For SDS-PAGE analysis,
the required amount of the samples was precipitated by
adding 100% (v/v) acetone containing 0.07% DTT in 1 : 4
ratio. The samples were kept at −20∘C for at least 2 hours,
followed by centrifugation at 20,000×g for 15 minutes. The
pellet obtained was air dried at room temperature and
resuspended in 2x Laemmli buffer containing 0.5mM Tris-
HCl (pH 6.8), 25% glycerol, 1% bromophenol blue, and 10%
SDS. The samples were loaded onto a discontinuous gel
system containing 12% resolving gel and 5% stacking gel.
Separationwas carried out usingBio-RadPROTEANII xi cell
at 16mA for first 30 minutes, followed by 24mA till dye front
reached bottom of the gel. The gels were visualized by silver
staining. SDS-PAGE gel separations were repeated for a total
of 3 times.

2.5. Image Acquisition and Analysis. The SDS-PAGE gels
were scanned using Bio-Rad GS-800 calibrated densitometer
at a resolution of 36.3 × 36.3microns. All image analysis
and densitometry studies were performed using Bio-Rad’s
Quantity One software.

2.6. MALDI TOF/TOF MS Analysis. The differentially ex-
pressed bands identified after the image analysis were excised

and cut into small pieces of approximately 1mm followed
by destaining of the pieces in a freshly prepared 1 : 1 (v/v)
mixture of potassium ferricyanide and sodium thiosulphate.
The gel pieces were then sequentially incubatedwith reducing
and alkylating reagents and with modified trypsin (Sigma).
Peptides were eluted and reextracted in 50% trifluoroacetic
acid (TFA) containing 0.1% acetonitrile (ACN). The samples
were purified using ZipTip and mixed with 𝛼-cyano-4-
hydroxycinnamic acid (4-HCCA)matrix in 1 : 1 ratio followed
by plating onto aMALDI plate. After air drying, the plate was
analysed using MALDI TOF/TOF ultraflex III instrument
and further analysis was done with flex analysis software for
obtaining the peptide mass fingerprint.

2.7. MASCOT Protein Identification. The data obtained from
MALDI-TOF/TOF MS analysis was used to identify pro-
teins using the MASCOT protein database search engine
maintained at http://www.matrixscience.com. Peptides were
assumed to be monoisotopic, carbamidomethylated at cys-
teine residues, and oxidized at methionine residues. Only 1
maximal cleavage was allowed for peptide matching. Swis-
sprot andNCBInr databaseswere searchedwithViridiplantae
as the preferred taxonomy. Proteins with probability based
MOWSE scores exceeding their threshold (𝑃 < 0.05) were
considered to be positively identified.

3. Results and Discussion

3.1. Results

3.1.1. HPLC Analysis. The estimation of picroside-II content
using HPLC identified approximately 10 times more P-II in
case of Sairopa stolons as compared to 15∘C roots. The P-II
content in Sairopa stolons was estimated to be 10.4mg/g fresh
weight of stolons. As far as 15∘C roots are concerned, the P-II
content was estimated to be 0mg/g fresh weight of 15∘C roots
[18]. Figure 1 shows the presence of picroside-II in Sairopa
stolons which was validated by comparing the chromatogram
and the UV spectra of the Sairopa sample with that of P-II
standard.

3.1.2. SDS-PAGE Analysis. Differential protein expression
studies revealed a total of 29 bands in Sairopa and 26
bands in 15∘C root samples (Figure 2). Densitometry analysis
(Figure 3) of the gel using Bio-Rad’s Quantity One software
identified a total of 21 differentially expressed proteins,
out of which 10 proteins were differentially expressed in
Sairopa stolons, while 11 were differentially expressed in 15∘C
roots. Gel analysis showed that most of the proteins were
concentrated between a molecular weight range from 15 kDa
to 45 kDa.

3.1.3. Identification of Differentially Expressed Proteins. Mass
by charge ratios of 21 differentially expressed proteins
obtained fromMALDI-TOF/TOFMSwere used to search the
MASCOT database. Out of 21, 19 differentially expressed pro-
teins were identified. Table 1 shows the differentially
expressed proteins identified after MASCOT analysis.
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Figure 1: HPLC analysis for quantification of P-II content in Sairopa stolons. (a) HPLC chromatogram of P-II standard, (b) HPLC
chromatogram of Sairopa stolon sample, (c) UV spectra of P-II standard, and (d) UV spectra of Sairopa stolon sample.

Figure 2: SDS PAGE profile of Sairopa stolon and 15∘C roots with
marked bands that were excised for MALDI-TOF/TOFMS analysis
based on their differential expression.

These proteins were involved in stress response, signalling
pathways, metabolic pathway, transcription, and energy
metabolism. The functional distribution of proteins is
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Figure 3: Densitogram analysis of SDS-PAGE gel using Bio-Rad’s
Quantity One software showing the relative optical densities and
relative front of various bands. The red line represents Sairopa
stolon samples and the green line represents 15∘C root samples. The
different peaks indicate the different bands in the samples and their
heights correspond to the level of expression.

represented in Figure 4. The majority of proteins were found
to be involved in stress response and metabolic pathways.

Proteins involved in (a) stress response include methio-
nine sulfoxide reductase, peptidyl-prolyl cis-trans isomerase,
DnaJ homolog subfamily C, glyceraldehyde-3-phosphate
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Figure 4: Putative functional classification of differentially expressed proteins.

dehydrogenase, 1-aminocyclopropane-1-carboxylate oxidase,
and chaperone protein DnaJ; (b) signaling pathways include
Rab GTPase; (c) metabolic pathway includes glyceraldehyde-
3-phosphate dehydrogenase, 1-acyl-sn-glycerol-3-phosphate
acyltransferase 2, 2-oxoglutarate ferrous-dependent oxyge-
nase, UbiE/COQ5 methyltransferase, putative cytochrome
P450 superfamily protein, adenylate isopentenyltransferase,
and 3-ketoacyl-CoA synthase 11; (d) transcription and trans-
lation include predicted ethylene-responsive transcription
factor WIN1 and 40S ribosomal protein; and (e) energy
metabolism includes ferredoxin, photosystem 1 reaction
centre subunit V, NADH dehydrogenase subunit F, and
mitochondrial carrier protein.

3.2. Discussion. In this study, an attemptwasmade to identify
differentially expressed proteins in Picrorhiza kurroa samples
grown under different conditions of picroside accumulation
and nonaccumulation. The proteomic analysis of medicinal
plants in the absence of fully sequenced and annotated
genomes can allow exploration and investigation of physi-
ological pathways related to metabolism, defense, signaling,
and energy metabolism of these medicinal plants [25].

It has been experimentally proven that picroside-II con-
tent in Sairopa stolon is about ∼10 times higher as compared
to 15∘C root samples. The estimation of P-II content in
different tissues helped in the identification of differential
conditions for the biosynthesis of P-II. The higher content
of P-II in case of Sairopa stolons can be attributed to various
climatic factors such as light, temperature, altitude, and UV
[18]. When same amount of protein (15 𝜇g) was loaded onto
the gel, differentially expressed proteins were identified in
Sairopa stolon. This is in congruence with the fact that the
amount of picroside-II in Sairopa sample is 10.4mg/g fresh
weight as compared to 0mg/g fresh weight in 15∘C root
samples as determined by HPLC.

3.2.1. Stress Related Proteins. Sairopa samples obtained from
high altitudes and grown in green house were under more
stress as compared to 15∘C samples grown using tissue cul-
ture.This resulted in a number of stress related proteins being

uniquely expressed in Sairopa sample. Methionine sulfoxide
reductase catalyses the reduction of methionine sulfoxide
to methionine which is oxidised to methionine sulfoxide
under oxidation conditions. This results in a change in
protein hydrophobicity and its folding ultimately affecting its
catalytic function [26–29]. For example, a heat shock protein,
Hsp21 loses its chaperone activity when methionine residues
are oxidised. The action of methionine sulfoxide reductase
helps in attaining a fully active enzyme by reduction of
these oxidised methionine residues using thioredoxin as the
reductant [26, 30]. Peptidyl-prolyl cis-trans isomerases also
known as conformases or rotamases are involved in protein
folding because of their ability to catalyse slow steps in the
initial folding/rearrangement of proteins [31, 32]. Peptidyl-
prolyl cis-trans isomerase functions to prevent or reverse
protein aggregation resulting from stress conditions [32].
DnaJ is part of the DnaK-DnaJ chaperone system which
is centrally involved in heat stress response in response
to destabilizations which cause protein misfolding [33].
Although DnaJ can act as a chaperone on its own, it generally
functions as a cochaperone with DnaK [34]. Glyceraldehyde-
3-phosphate dehydrogenase catalyzes the oxidation of triose
phosphates during glycolysis. In addition to this role, it is
also involved in stress conditions [35, 36] where it has been
shown to interact with the plasma membrane-associated
phospholipase D to transduce the ROS hydrogen peroxide
signal [36]. It is assumed that it acts as a part of signaling path-
way to increase malate-valve capacity and the effect of other
protective systems [35]. 1-Aminocyclopropane-1-carboxylate
oxidase is involved in ethylene biosynthesis in response to
various biotic and abiotic stress conditions [37]. It catalyses
the oxidation of 1-aminocyclopropane-1-carboxylate (ACC)
to ethylene [38]. Previous studies showed that changes in
monoterpene concentration are generally related to the rate
of ethylene production; that is, with high rates of ethylene
production monoterpene concentrations were also found
to be increased [39]. Therefore, an overexpression of this
enzyme indicated a possibility of its involvement in picroside
biosynthesis. Chaperone DnaJ-like protein is involved in
protein folding and assembly. Different DnaJ-like proteins
interact with specific Hsp70s forming pairs adapted to each
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other and function as chaperone system protecting plants
against various stress conditions [40].

3.2.2. Signaling Pathways Related Proteins. Plants require
vesicular transportation for various specialized phenomena
and common housekeeping events. Rab GTPase is the key
player involved in vesicular transport. They act as molecular
switches controlling the fusion of vesicles with target mem-
branes via transition between GTP and GTP-bound forms
[41].

3.2.3. Metabolic Pathway Related Proteins. Glyceraldehyde-
3-phosphate dehydrogenase is associated with glycolysis
where it catalyses the reversible reaction of converting
glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate [36,
41]. This enzyme is involved in energy production and
siphoning of various intermediates for cellular metabolism
[41]. Overexpression of this enzyme leads to production of
more pyruvate which is one of the starting molecules of MEP
pathway involved in the biosynthesis of picrosides (Figure 5)
[42].

Phospholipids are responsible for maintaining the epi-
dermal permeability barrier. This barrier prevents transcuta-
neous water loss helping in plant survival. 1-Acyl-sn-glycerol-
3-phosphate acyltransferase 2 is the key enzyme involved
in the biosynthesis of phospholipids and triglycerides. This
enzyme causes acylation of lysophospholipids to phospha-
tidic acid which is the major precursor of all phospho-
lipids/triglycerides [43]. 2-Oxoglutarate ferrous-dependent
oxygenase is a superfamily of enzymes that are known to
catalyse various reactions like hydroxylations, desaturations,
and oxidative ring closures [44]. They are involved in post-
translational modification of collagen and in biosynthesis
of both primary and secondary metabolites [44] including
flavonoid biosynthesis which are a kind of secondarymetabo-
lites derived from phenylalanine and acetate metabolism.
2-Oxoglutarate ferrous-dependent oxygenase catalyses dif-
ferent steps within the same pathway due to the fact that
flexibility in metal coordination chemistry suggests its suit-
ability for new and unusual reactions [44]. UbiE/COQ5
methyltransferase belongs to family of methyltransferases
which participate in the biosynthesis of menaquinone and
ubiquinone. Ubiquinone is involved in the respiratory chain
where it transfers electron from complex I (or complex II) to
complex III. Ubiquinone has been explored for roles other
than in electron transfer such as its role in/as antioxidant,
disulphide bond formation, and extension of lifespan due
to lack of ubiquinone [45]. All of these functions suggest
its importance in survival. Cytochrome P450 enzymes are
involved in various biosynthetic and detoxification path-
ways. In biosynthetic pathways, these enzymes have played
tremendous role in biosynthesis of lignin intermediates,
sterols, terpenes, flavonoids, isoflavanoids, furanocoumarins,
and other secondary metabolites [46]. Cytochrome P450
dependent monooxygenases have been found to increase the
structural diversity of terpenoids [47]. Adenylate isopentenyl
transferase is involved in cytokinin biosynthesis where it

catalyses the transfer of an isopentenyl group from dimethy-
lallyl diphosphate (DMAPP) toN6 amino group of adenosine
phosphate to produce isopentenyl adenosine phosphates [48,
49] which are then converted to isopentenyladenine and
trans-zeatin [48]. These cytokinins are involved in plant
growth and development [49]. 3-Ketoacyl-CoA synthase 11
is involved in the biosynthesis of cuticular wax and suberin
[50]. Cuticle present on plant surfaces acts as the first line
of defense against pathogens, phytophagous insects, and
environmental stresses such as drought, UV damage, and
frost. Overexpression of this protein confers protection to
Picrorhiza kurroa. Differential expression of all the proteins
in this category helps in plant survival and in the formation of
secondary metabolites. Although the pathway for picrosides
biosynthesis is yet to be fully deciphered, the overexpression
of these enzymes adds significantly to the available informa-
tion.

3.2.4. Transcriptional and Translational Factors Related Pro-
teins. Regulating genes at transcription level serves as one
of the most important points of regulation in biological
processes. Ethylene responsive transcription factorWIN1 has
been shown to be related to plant development, defense
response, and stress signaling pathways enabling plants to
adjust to their adverse surroundings [51]. It promotes cuticle
formation by inducing the expression of enzymes involved
in wax biosynthesis. It provides protection against drought
resistance [52]. 40S ribosomal protein S13-1 is involved in
translation of mRNA to proteins which may help plants to
synthesize new proteins or replace damaged proteins to help
plants cope with various stress conditions. Overexpression of
this protein indicated that stressed plant is undergoing heavy
translation.

3.2.5. Energy Metabolism Related Proteins. Ferredoxin
belongs to family of oxidoreductases which use iron-sulfur
proteins as electron donors and NAD+ or NADP+ as electron
acceptors. These function primarily in photosynthesis where
they transfer electrons from photoreduced photosystem
I to ferredoxin NADP(+) reductase in which NADPH
is produced for CO

2
assimilation [53]. Ferredoxin can

also function in removing excessive reducing power
and preventing uncontrolled overreduced states that
are common in stroma under stress conditions [54].
Photosystem I reaction centre subunit V of the photosystem
I is an integral membrane protein [55]. It is involved in
stabilizing the binding of peripheral antenna and regulation
of photosystem I [56]. Photosystem I functions to produce
NADPH necessary for the reduction of CO

2
in the Calvin-

Benson-Bassham cycle. This cycle has been previously
shown to be linked to MEP pathway for the synthesis
of picrosides [8, 42]. Photosystem I is involved in cyclic
synthesis of ATP from light generating large amounts of ATP
for sustaining various metabolic and physiological processes
[57]. NADH dehydrogenase subunit F is a part of NADH
dehydrogenase. NADH dehydrogenase allows electron
transport to continue even when membrane potential is
high, thus uncoupling electron transport fromATP synthesis.
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Figure 5: This image shows the connecting link of MEP pathway to other pathways for supply of glyceraldehyde-3-phosphate and pyruvate,
the two starting molecules of MEP pathway. Module 1, that is, glycolysis, is of interest as the overexpressed enzyme glyceraldehyde-
3-phosphate dehydrogenase is involved in this pathway. Gene symbols and the enzymes they encode: dxs: DXP synthase; ispC: DXP
reductoisomerase; ispD: DXP-ME synthase; ispE: CDP-ME kinase; ispF: MECPP synthase; ispG: HMBPP synthase; ispH: HMBPP reductase;
idi: IPP isomerase; ispS: isoprene. Pathway intermediates: G3P: glyceraldehyde-3-phosphate; DXP: 1-deoxy-D-xylulose 5-phosphate;
MEP: 2-C-methyl-D-erythritol 4-phosphate; CDP-ME: 4-diphosphocytidyl-2-C-methyl-D-erythritol; CDP-MEP: 4-diphosphocytidyl-2-C-
methyl-D-erythritol 2-phosphate; MECPP: 2-C-methyl-D-erythritol 2,4-cyclopyrophosphate; HMBPP: 1-hydroxy-2-methyl-2-(E)-butenyl
4-pyrophosphate; IPP: isopentenyl pyrophosphate; DMAPP: dimethylallyl pyrophosphate; DHAP: dihydroxyacetone 3-phosphate.

Removal of intermediates from the citric acid cycle, as what
happens during secondary metabolite synthesis, requires
NAD+ to be recycled at a higher rate than coupled transport
allows. This problem is solved by NADH dehydrogenase
catalysed recycling of NAD+ in mitochondrial matrix
[58]. Mitochondria play an important role in respiration
and energy production and are involved in several plant
metabolic pathways. Mitochondrial carrier family proteins
connect the internal metabolism with that of the cells
surrounding allowing exchange of ATP, di- and tricarbonic
acids basic amino acids, carnitine, S-adenosylmethionine,
phosphate, reducing power, and so forth, from and to the
mitochondria [59].

4. Conclusions

Picrorhiza kurroa is associated with innumerable medicinal
properties, most potent being the ability to treat various liver
disorders. Herbal formulations meant for treating hepatic
disorders use a particular ratio of picroside-I and picroside-
II as the main active components. Therefore, it becomes
all the more important to study their biosynthesis so as
to understand their biosynthesis within P. kurroa which is
partially known till date. Studying difference in proteomes
of samples corresponding to metabolite accumulation and
nonaccumulation can help in elucidating important proteins
involved directly or indirectly in the biosynthesis of these
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potent molecules. Differential proteomic analysis can aid in
profiling altered proteins enabling better understanding of
various physiological processes occurring in plants. Here,
differential proteome analysis using SDS-PAGE combined
with mass spectrometry based protein identification revealed
altered proteins belonging to several functional categories
like stress response, signaling pathways, metabolic pathways,
transcription and translation factors, and energymetabolism.
As this is the first report on the analysis of proteins from
stolon and roots of different Picrorhiza kurroa samples grown
undermetabolite accumulating and nonaccumulating condi-
tions, all the identified proteinswill contribute in understand-
ing the various physiological processes of this plant. Out of
the 21 differentially expressed proteins, the proteins of notable
importance were identified as glyceraldehyde-3-phosphate
dehydrogenase, 1-aminocyclopropane-1-carboxylate oxidase,
photosystem I reaction centre subunit V, 2-oxoglutarate
ferrous-dependent oxygenase, and putative cytochrome P450
superfamily protein because of their role in picroside biosyn-
thesis. Hence, information resulting from this study can
provide an important platform for carrying further the
research using advance proteomics techniques such as 2D
gel electrophoresis and shotgun proteomics to identify more
proteins enabling a thorough understanding of the plants
physiological processes. Identification of all the proteins
involved in the biosynthesis of picrosides would allow the
complete pathway to be deciphered including the identi-
fication of rate limiting enzyme which can be enhanced
to increase the picroside yield. MEP and MVA pathways
involved in picroside biosynthesis are expressed in several
other organisms like plants and microorganisms. Metabolic
engineering of this pathway into these organisms can reduce
the overexploitation of Picrorhiza kurroa for obtaining picro-
sides and thus preventing it from getting extinct.
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