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Abstract Dimensional reduction is a primary way to

analyze and work with complex and large amount of

multidimensional data by avoiding the effect of curse of

dimensionality. This problem of constructing low dimen-

sional embedding gains importance in number of fields like

artificial intelligence, image processing, geographical

research and lot more. In this paper, we introduce a mod-

ified locally linear embedding, an unsupervised learning

algorithm that computes low dimensional data from com-

plex high dimensional data using affine transformation and

neighborhood preserving embedding. Unlike novel locally

linear embedding, our method is affine invariant where

each point is being represented by an affine combination of

its neighboring points. At the end, we conduct the experi-

ment to evaluate our proposed method and compare its

performance with existing methods. Results show that our

proposed method is unaffected by affine transformation,

specifically shear while existing methods fail to produce

correct results in case of shear.

Keywords Locally linear embedding �
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Introduction

In the field of data mining, machine learning, information

processing, data compression, and artificial intelligence,

preprocessing is an important step to refine the data for any

further processing. The main purpose of this refinement is

to derive a representation that is more understandable and

meaningful to apply operations such as classification,

interpolation, outlier detection, or visualization [1]. It also

makes it easy to interpret the information from given data.

As most of the real world data like global climate patterns,

human gene distributions, spectrogram of speeches consists

of large number of dimensions that imposes challenge to

traditional preprocessing techniques. Dimension reduction

is a technique to handle such high dimensional data. It is

one of the main goals of unsupervised learning that is

extracting hidden information from huge and complex data

with large number of dimensions without any prior

knowledge of data. However, till now, there are number of

techniques that have been proposed to overcome the effect

of this ‘‘curse of dimensionality’’ [2].

Dimensionality reduction is a well known problem from

many years [3]. Several methods have been developed and

implemented on non linear multidimensional data. Initially

two methods principle component analysis [4] and multi-

dimensional scaling [5] based on eigenvectors involve the

modeling of linear variability in multidimensional data. In

PCA [4], linear projections are computed on the basis of

greatest variance calculated from the top eigenvectors of

data covariance matrix. MDS [5] works on pair wise dis-

tance matrix and computes the lower dimensional
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embedding. The result of both the methods is equivalent if

the distance matrix corresponds to Euclidean distance.

Limitation of applicability on only linear multidimensional

data of these two methods introduced the concept of locally

linear embedding (LLE) which is also applicable to non-

linear multidimensional data. In year 2000, Roweis and

Saul [6], presented the new method especially for nonlinear

multidimensional data and named it as locally linear

embedding. Local geometric structure is constructed by the

method which is invariant to translations and orthogonal

transformations in a neighborhood of each data point and

maps the data points to a lower dimension in which local

geometries are also remain preserved. In LLE, each data

point Xi having dimensions D is used to find out the

optimized weights wij to the neighbor (j). Then these

weights are used to construct the data points Yi in the lower

dimensions d. This is how, LLE is able to preserve the local

geometries. Tenenbaum et al. [7] in year 2000, presented

the method ISOMAP, for computing a low dimensional

embedding of a set of high dimensional data points. It is

basically an extension to MDS in which, geodesic distances

are incorporated. MDS works on pair wise distances to the

data points which is generally measured using Euclidean

distance, while ISOMAP consider the geodesic distance

generated by a neighborhood graph embedded in the

classical scaling. Geodesic distance is the sum of weights

along the shortest path between two nodes. Demerit of

PCA and MDS which is their inability to discover non liner

degree of freedom that underlies complex natural obser-

vations such as images of a face, handwriting is removed

by ISOMAP. In year 2001 [8], Mikhail Belkin and Partha

Niyogi proposed an algorithm based on laplacian Beltrami

operator. Their approach for representing high dimensional

data is based on correspondence between the graph lapla-

cian Beltrami operator and connections to heat equations.

Computationally, it was an efficient approach for dimen-

sionality reduction. In this, the approximation of manifold

is done by the adjacency graph computed from data points.

The weights are chosen by the heat kernel which is made

useful by the Laplace–Beltrami operator in the heat equa-

tion. One more key point of this algorithm is it’s insensi-

tivity to the outliers and noise. This algorithm cannot

embed out of sample points, but techniques based on

Reproducing kernel Hilbert space regularization exist for

adding this capability. Donoho and Grimes [9] in 2003

came out with Hessian method to recover the underlying

parameterization of scattered data (mi) lying on a manifold

M embedded in high-dimensional Euclidean space. It was a

modification in locally linear embedding and Laplacian

eigenmap framework, where they substituted a quadratic

form based on Laplacian to a form based on hessain.

Hessain LLE is a sparse matrix based technique which

gives better results than LLE, but the main drawback of

hessian LLE is that it’s computational complexity and

therefore it is not suitable for heavy sampled manifolds.

Zhenyue and Hongyuan [10] in year 2004 came out with an

approach which is based on a parameterized manifold

which is used to form a sample of unorganized data points.

It works on the fact that all of the tangent hyper planes will

be aligned if manifold is correctly unfolded. It’s a two way

algorithm which can efficiently learn a nonlinear embed-

ding into lower dimension coordinates from higher

dimension data and vice versa. Coifman et al. [11] in year

2005 utilized diffusion process to find the meaningful

embedding of datasets in a lower dimensional Euclidian

space whose coordinates are computed by using the eigen

values and eigenvectors of diffusion operator on data. It

basically lies in the family of nonlinear dimensionality

reduction whose main focus is to find underlying manifold

of the data has been sampled from. This method is basi-

cally using the eigen functions of a Markov matrix which is

defining a random walk on the data to obtain new

descriptions of data sets. The non-linearity and preserving

of local structures are the two main advantages of this

algorithm over the classical dimensionality reduction

algorithms. Zhenyue and Wang [12] in year 2007 presented

Modified LLE which addresses the problem of regular-

ization i.e. when the number of neighbors is greater than

the number of input dimensions. The matrix defining each

local neighbor rank deficient. MLLE solved this problem

by using multiple weight vectors in each neighborhood.

The algorithm is divided into three stages (1) finding

nearest neighbors, (2) weight matrix construction, (3)

Partial eigen value decomposition (same as LLE). It

requires N neighbors greater than n dimensions (N[ n).

Zhenyue et al. [13] in year 2012 proposed Adaptive

Manifold Learning that addresses two main issues. First is

the adaptive neighborhood size selection through neigh-

borhood expansion and contraction. Second is the adaptive

bias reduction in embedding by weighting local affine

errors in the embedding of the manifold which is specially

designed for LTSA by modifying the minimization model

in original LTSA. The advantage of this approach is that it

works well for noisy data sets. But it is very difficult to find

out a good embedding with a noisy data set that is sampled

from a manifold with variable curvatures and the noises are

relatively large. Yu et al. [14] in year 2014 presented a

novel supervised learning algorithm for representing a high

dimensional data to low dimension. It is a supervised

algorithm [13] in which class labels of the data points are

needed to be known for the classification purpose. This

classification is done to get the similar data points together

and separate dissimilar data points. This modification in

LLE [4] overcame the problem of topological distortion of

low dimension data with uneven distribution in high

dimensional space. This paper also introduces the concept
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of area based Chi square discretization that effectively

discretizes continuous data to discrete data in low dimen-

sional space. The only disadvantage with this approach is

that the class label of the data points should be known and

it is not invariant to affine transformations such as shear.

Guangbin et al. [15] in 2014 came out with an improve-

ment over the LLE in which traditional Euclidean distance

is replaced by homogenization distance to construct the

weight matrix which reduces the impact of neighboring

points in the dimension reduction. The homogenization

distance is calculated as given in the equation.

Dij ¼ xi� xjj jj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MðiÞMðjÞ
p

Here ||xi - xj|| is the Euclidean distance and M(i) and

M(j) respectively represents the average distance of xi and xj

to other points. The only purpose of using homogenization

distance is to get the narrow distance in relatively sparse area

and increased distance in the dense area. This paper doesn’t

address the problem of affine transformations. It is just

reducing the impact of neighboring points in the embedding

formation. Zhihui et al. [16]. extended the LLE method to

sparse cases by proposing a unified sparse learning frame-

work and L1-norm learning. Robustness in the classification

or feature extraction can be enhanced by L1-norm sparse

learning. Experimental results proved the performance of

Sparse linear embedding (SLE) and Sparse kernel Embed-

ding (SKE) for dimensionality reduction in terms of pre-

serving the local geometric structures and orthogonality and

thus robustness. But the paper didn’t talk about affine

transformation. Xianglei et al. [17] in April 2015 presented

the fusion of different manifold learning methods for

dimensionality reduction. Authors worked on the believe

that each method is based on some different geometric

foundation and thus they learn different partial information

from the original geometric embedding. So they just com-

bined and reformulated the laplacian eignmaps, LLE and

Hessian LLE to get the optimized manifold structure in low

dimensional coordinate space. Dayong and Juan [18] in 2015

proposed a supervised learning algorithm for dimension

reduction in speech recognition system. The algorithm uses

locality preserving projection method of multi kernel and

after pre-processingmethods like speech framing and feature

extraction, a 50*12 dimension matrix is obtained. With

reduced computation, the algorithm achieved good recog-

nition effect but again the paper does not show the effect of

affine transformation. In this paper, a new improved method

that is modified locally linear embedding for affine trans-

formations [19] is introduced which is locally affine invari-

ant and can handle more complex and natural

transformations of an object. Affine transformations are

transformations that preserves lines and parallelism and are

composed of linear transformation (shear, scaling or

rotation) and a translation. The affine transformations have a

property that they preserve the co linearity relation between

the points, that is point which lie on same line continue to be

collinear after the transformation. In a high dimension space

affine transformation locally looks like rotation plus trans-

lation which leads to local isometry but for non-neighbors it

acts like scaling resulting in distortion of global geometry.

Figure 1 shows the embedding formed by different methods

discussed above like MDS, PCA, ISOMAP, LLE, HLLE,

Laplacian, Diffusion map and LTSA. The topmost left plot

represents the original Swiss roll dataset [20] in 3D space (x,

y and z coordinates) with 800 points and 8 nearest neighbors

while all other plots represents the embedding formed by

different specified methods in 2D space (x and y). Also the

time taken by each method is specified in seconds (s).

The basic LLE is considered as a foundation in the field

of nonlinear dimensional reduction. It is based on simple

intuition of geometry that computes a low dimensional

embedding from high dimensional space keeping the

intrinsic correlation of the original data. The LLE algo-

rithm as the name suggests, reconstructs the data points

locally where only the neighbors contribute to each

reconstruction that is confined to linear subspace.

The first step is to define k nearest neighbors using

Euclidean distance for each data points. Using cost func-

tion we compute reconstruction error E(W) as :

EðWÞ ¼
X

i

Xi�
X

j
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The weight wij represents the role of the jth data point in the

ith reconstruction. These weights are computed using the

cost function in Eq. (1) that is minimized and subjected to

sparseness and invariant constraints. The sparseness

constraint states that each data point Xi is reconstructed

only from its neighbors,making these data points invariant to

scaling and rotation imposing Wij = 0 if Xj does not belong

to this set. The invariance constraint states that rows of the

weight matrix sum to one that is
P

jWij = 1 making the data

point invariant to translation. Finally, at the end each higher

dimension input Xi ismapped on to a lower dimension output

Yi by selecting d dimensional coordinates of Yi to minimize

embedded cost function U(Y):

UðYÞ ¼
X

i

Yi�
X

j
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The weight wij represents the role of the jth data point in the

ith reconstruction and Yi is the data point reconstructed only

from its neighbors Yj. Figure 2 shows the three steps

involved in the basic LLE. The above discussedmethod fails

when working with affine transformations that include shear

[1]. So to overcome this problem we propose our modified

locally linear embedding with affine transformations.
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To explain our modified locally linear embedding with

affine transformation (LLEWAF), Let P = {p1, p2, p3, …,

pn} be a given dataset of N samples, and D is the

dimension of the dataset. We first apply maximum likeli-

hood estimation (MLE) method to estimate the intrinsic

dimension (ID) d from P in Step 1. Unlike LLE that

Fig. 1 Embedding formed by different dimensionality reduction

algorithms. a Original embedding of the manifold, b embedding

formed by multidimensional scaling, c principle component analysis,

d embedding formed by ISOMAP, e locally linear embedding,

f hessian LLE, g laplacian, h diffusion map, i local tangent space
alignment
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considers each point to be represented by the convex

combination, we have considered each point to be repre-

sented by the affine combination of its neighboring points.

Then we apply clustering algorithm to find k nearest

neighbors with a constraint that number of neighbors must

at least be three and should be non collinear as the affine

hull of a set of three points not on one line is the plane

going through them. Using affine combination of neighbors

of pi we can represent pi by:

Pi ¼
X

pj2Np
Wijpj. . . ð3Þ

Such that W represents an nt * nt weight matrix of affine

combination coefficients for all pi. The weight matrix W is

subjected to two constraints. First is a sparseness constraint

that states that each data point pi is reconstructed only from

its neighbors, describing only the local geometric

properties of each point. This enforces Wij = 0 if pj does

not belong to Np. Second is invariance constraint such that

each row of the weight matrix sum to one:
P

jWij = 1,

making the representation invariant to global translation.

To minimize the error of each points affine combination we

use constrained least square problem as follows:

argmin pi�
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Such that
P

jWij = 1. The error function (2) is affine

invariant:

¼ argmin pi�
X
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where A and t denote an arbitrary 2*2 affine transformation

matrix and an arbitrary 2*1 translation vector. Once the

reconstruction weights are computed, modified NLLE

maps P to Y in a lower dimensional space Rd according

to (4):

argminyi
X

i2Np
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Given below is the algorithm for the proposed method

Algorithm :Modified LLE with Affine Transformation

Input: Dataset P of N samples with dimension D
k: number of nearest neighbors at each sample point pi
Output: Embedded result Y with the intrinsic dimension 
d 

1) Estimate the global intrinsic dimension d of the   
dataset P using the MLE method.

2) Find k nearest neighbors of each pi such that k is 
greater than equal to 3 and neighbors are non collinear.

3) Calculate local reconstruction weights.
4) Apply affine transformation.
5) Map the dataset P to Y in a lower dimensional 

space Rd.

Fig. 2 Three steps involved in basic locally linear embedding to form

embedding in lower dimension space

Table 1 Parameter settings for the experiment

Technique Parameter settings

PCA None

ISOMAP K = 12

LLE K = 12

Hessian LLE K = 12

Laplacian K = 12

LTSA K = 12

MLLE K = 12
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Implementation and Result: In order to evaluate our

proposed method in a real-world situation, we conducted

experiments on a Lenovo S210 with 2-GB RAM and

Intel(R) Pentium(R) CPU 2127U @1.90 GHz, on

Windows 8(64-bit Operating System, x-64based proces-

sor).We have taken Swiss roll dataset (P) with input con-

sisting of N = 2000 data points taken from the original

manifold and k = 12 neighbors per data point as shown in

Fig. 3 Embedding formed by local linear embedding and modified

LLEWAF. a Original embedding of the manifold, b Scattered plot of

sampled data, c Embedding formed using LLE e Scattered plot of

sheared sampled data, f distorted plot formed by LLE, i embedding

formed using modified LLE with affine transformation
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Table 1. We applied Locally Linear Embedding (LLE) and

Modified Locally Linear Embedding with Affine Trans-

formation (MLLEAF) in MATLAB to analyze the effect of

shear transformation on final embedding formed in lower

dimension. We took Swiss roll dataset with d = 3 (di-

mensions), k = 1 (neighbors) and N = 2000 (data points)

shown in Fig. 3a. Using this dataset we reconstructed a

scatter plot (Fig. 3b). We applied LLE algorithm to this

scattered plot and obtained a new embedding in 2D space

(Fig. 3c). In order to show the effect of shear, we took the

sampled data P again and multiplied it with affine trans-

formation matrix A (also called the shear matrix) i.e. P*A.

Now we applied LLE on this new sheared sampled data

and found that this new embedding in 2D is distorted and

different from what was expected (Fig. 3f). To overcome

this problem of distortion due to shear, we applied our

algorithm. We took the original sampled data and applied

affine transformation to it. We then obtained a scattered

plot of sheared sampled data and applied our proposed

MLLEWAT. It was found that the new embedding formed

is similar to LLE without affine transformation (Fig. 3i).

This is because our proposed algorithm (MLLEWAF)

considered each point to be represented as affine combi-

nation of its neighboring points, unlike LLE which con-

sidered convex combination of each point. We also

checked our algorithm on two other datasets shown in

Fig. 4 which are Corner planes and Punctured sphere with

1000 points. We can see that the final embedding is without

affine transformation similar to LLE. Table 2 shows the

generalization errors of linear discriminant classifiers

trained using artificial datasets like Swiss roll. The leftmost

column shows the datasets and topmost row contains all the

techniques used for dimensionality reduction. We can

observe that the proposed modified LLE is not best for

every dataset, but on an average, it has the minimum

generalization error.

Fig. 4 Embedding formed by modified local linear embedding on a corner planes, b punctured sphere

Table 2 Generalization error on artificial data using linear discriminant classifier

Dataset PCA (%) ISOMAP (%) LLE (%) Hessian LLE (%) Laplacian (%) Diffusion Map (%) LTSA (%) MLLE (%)

Swiss roll 55.64 1.86 10.98 1.17 23.87 14.64 1.13 1.05

Corner planes 34.65 15.42 12.43 6.44 13.48 11.34 15.67 12.43

Punctured sphere 25.63 9.89 17.87 8.77 18.53 18.74 25.45 10.82

Average 38.64 9.06 13.76 5.46 18.63 14.91 14.08 8.10
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In this paper, we have proposed a modified locally linear

embedding with affine transformations, a non-supervised

dimensional reduction method which overcomes the

drawback of locally linear embedding (LLE) and its

extensions. In this method we considered the affine com-

bination of points instead of convex combination to show

the effects of affine transformations. Unlike LLE and

NLLE, we considered only those neighbors who are non-

collinear because of which our proposed method is not

affected by affine transformations such as shear. First, we

reconstructed weights using our modified k nearest neigh-

bor algorithm, applied affine transformation and then

mapped the given high dimension data to low dimension

embedding. Our experimental results on real data demon-

strate that MLLE produces correct and faithful embedding

with affine transformation like shear.
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