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Abstract
Energy efficiency has become a prime concern in this evolving era of cloud computing. In recent years, several VM consolida-
tion techniques were proposed. However, they involve single-criterion‐based host selection methods, which are unsuitable for 
the dynamic cloud environment. Cloud data centers need an efficient utilization of physical host resources. The selected hosts 
for VMs deployment must ensure the least energy consumption and service ‐level agreement (SLA) violations simultane-
ously. There is a lack of multi-criteria‐based solution which considers multiple resources to select hosts for the deployment of 
VMs. This paper presents a VM deployment framework that considers multiple criteria, i.e., reducing energy consumptions 
and SLA violations simultaneously while determining target hosts for VMs placement. The article proposes an Improved 
Technique for Order of Preference by Similarity to Ideal Solution-based Host Selection Policy for VM deployment on the 
target hosts in terms of energy efficiency. It manages the trade-off between energy consumption and SLA compliance. A 
case study is demonstrated to prove the usefulness and appropriateness of the proposed framework. The results show that 
our framework is promising and provides more efficiency in the use of cloud resources and maintaining SLA.

Keywords  Cloud computing · Energy efficiency · SLA · Improved TOPSIS · Host selection

1  Introduction

Cloud computing has revolutionized the information tech-
nology (IT) industry by providing on-demand computing 
services to users. Virtualization made it possible for dif-
ferent users to use infrastructural, software and platform‐
related services rather than to own them individually [1]. 
Although it has overwhelmed the users by providing high 
profits, the harmful effects it is causing are putting a bur-
den on society [2]. Cloud data centers consume tremendous 
power and release toxic gases to the atmosphere. The report 
by Smart 2020 states that the emission by the IT industry 
will increase to 180% from 2002 to 2020 [3]. According 
to Greenpeace, the demand for electricity will increase by 
60% or more in 2020 [4]. The World Wide Fund for Nature 

(WWF) community suggests increasing the expenditure on 
research and development in achieving energy efficiency 
twice to avoid catastrophic climate failure [5]. Therefore, the 
focus of researchers should not be only on performance opti-
mization, but also on energy efficiency in cloud computing. 
Researchers have addressed the issue of achieving energy 
efficiency by proposing infrastructure-based solutions, 
hardware-based solutions and software-based solutions. 
Software-based solutions are considered more promising in 
contrast to hardware and infrastructure [6]. These include 
consolidation techniques [7–13]. VMs from overutilized 
and underutilized servers are migrated to optimal servers 
by scheduling mechanisms to optimize energy efficiency 
[14, 15]. Figure 1 represents the VM consolidation process.

VM consolidation involves host under-load detection, 
overload detection, VM selection and VM placement algo-
rithms [16–18]. Resources can be consolidated onto lesser 
machines by migrating VMs from overutilized machines and 
halting underutilized machines. The selection of effective 
hosts for deploying the VMs from under-loaded and over-
loaded hosts plays a significant role in VM consolidation. 
The ultimate goal of VM consolidation is to select a target 
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host for placing VMs to switch off underutilized hosts for 
efficient resource utilization.

Thus, VM consolidation involves migration which is 
the shifting of VMs from one host to another for optimal 
resource utilization [19] by switching off idle machines.

VMs are to migrate for optimum resource utilization, 
energy efficiency, load balancing, maintenances and failure 
of a server and to remove hotspots. However, in some cases 
migrations degrade the system performance, so the number 
of migrations should be minimized as possible. VM migra-
tions demand special requirements in order to maintain SLA. 
For example, in the case of video streaming, the intercon-
nection network may create a bottleneck. Thus, to maintain 
performance a feedback mechanism should be incorporated 
between a scheduler and switches to decide on placement. 
As the workload in case of the cloud is dynamic, so VM 
migration which is a part of VM placement must consider 
the type of workloads to maintain performance.

The existing literature shows that the problem of VM 
placement is a multi-dimensional bin packing problem [20, 
21]. However, the authors in [22] report that it is similar to 
3D bin packing but not precisely the same. The VM place-
ment problem can actually be referred to as vector bin pack-
ing problem or an NP hard problem. The work found in the 
literature on VM placement has various anomalies and draw-
backs. For example, the heuristics such as First Fit checks 
the machines sequentially and assigns VM to the first suit-
able machine. However, this creates a major unbalancing of 
the load. The other 1-D best-fit heuristics also create load 
unbalancing as hosts may use all the CPU capacity but stor-
age bandwidth can be underutilized. The literature also lacks 
techniques which ensure the elasticity of resources during 
VM placement. Thus, multi‐dimensional optimization is a 
solution which tries to use parameters considering all these 
dimensions unlike single‐criterion‐based approaches.

In single-criterion‐based strategy, the mono‐objec-
tive function is used which focuses on a single‐parameter 
minimization or maximization. Whereas, in the case of 

multi-criteria‐based strategies, the multi-objective function 
is used which considers multiple parameters resulting in 
the fulfillment of multiple goals. For example, considering 
increase in power consumption, multiple resources capaci-
ties, resource availability, the delay caused due to migration 
(network) while placing a VM makes the proposed scheme 
in this paper a multi-criteria decision‐making (MCDM) 
solution. The formulation of VM placement solution con-
sidering multiple criteria is the only feasible strategy in the 
real scenario because of dynamic cloud workloads. The cri-
teria for VM placement in the cloud data centers can be: (1) 
minimizing the energy consumption, (2) cost optimization, 
(3) network traffic minimization, (4) balancing resource uti-
lization and (5) ensuring high quality of service (QoS). The 
multi-criteria‐based approaches consider multiple param-
eters which try to optimize two or more criteria.

In large‐scale cloud data centers, selection of an appro-
priate target hosts for VM placement in a very challeng-
ing job. The overall system performance can be improved 
with efficient placement. The data transfer time can be too 
long in large data centers [23]. Moreover, large data cent-
ers incur high costs in terms of energy consumption. The 
problem of resource wastage can be to a greater extent as 
different VMs can be launched on a large number of hosts 
which may impact VM placement. Similarly, excessive VM 
migrations incur high overhead costs and performance deg-
radation. Thus, in large‐scale data centers, multi-objective 
functions which involve different parameters related to main-
taining QoS, energy efficiency, efficient resource usage and 
reducing network delays should be incorporated into the 
placement strategy. In addition to this, it should also deal 
with scalability issues by minimizing transmission traffic 
considering constraints associated with servers, dependen-
cies among VMs and applications. Scalability is one of the 
most attractive features provided by the cloud environment. 
Autoscaling and elasticity ensure efficient use of resources 
and help to maintain QoS [24]. VM placement must be car-
ried out in such a way which provides resource scalability. 

Fig. 1   VM consolidation process
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The optimization approach must address the issue of reduc-
ing the data transfer rate between applications to ensure net-
work scalability [25].

Most of the solutions in the literature for selecting hosts 
include bin packing heuristics which are based on a single 
criterion. They only consider energy consumption and not 
energy efficiency (reducing energy consumption and SLA 
violations simultaneously).

In this paper, an effort is made to design a multi-criteria 
(energy consumption and SLA violations reduction)‐based 
VM deployment framework for finding an effective host 
for VM placement considering CPU, RAM and network‐
related parameters. It manages the trade-off between energy 
consumption and SLA compliance. A case study is demon-
strated to prove the usefulness and appropriateness of the 
proposed framework. The results show that our framework 
is promising and provides more efficiency in the use of cloud 
resources and maintaining SLA.

Significant contributions are as follows:

•	 It presents a design of a VM deployment framework con-
sidering CPU, RAM and network‐related parameters to 
determine the target hosts for VM deployment while 
reducing the energy consumption and SLA violations 
simultaneously (multi-criteria).

•	 Improved Technique for Order of Preference by Simi-
larity to Ideal Solution (TOPSIS)-based Host Selection 
Policy (ITHSP) is proposed to find energy‐efficient hosts 
considering various scheduling parameters.

•	 It categorizes hosts into five classes ranging from 
extremely energy efficient to minimal energy efficient.

•	 A case study‐based approach evaluates the efficiency of 
the proposed algorithm by ranking the hosts.

The paper is organized as follows: Sect. 2 defines the 
VM consolidation literature for cloud computing. Section 3 
discusses the design of the proposed VM deployment frame-
work. In Sect. 4, the results are illustrated, analyzed and 
discussed. The conclusion is presented in Sect. 5.

2 � Related Literature

VM consolidation is an efficient technique for achieving 
energy efficiency in cloud computing. There have been 
numerous host selection algorithms for VM deployment. 
This section discusses frameworks that derive energy effi-
ciency based on these algorithms.

Nathuji and Schwan [17] designed a VM placement 
framework for energy‐efficient management of resources 
by using both global and local policies. The drawback of 
work is that the framework considered a single criterion, and 
resources were not automatically managed at a global level.

Tarighi et al. [18] proposed a framework for effective 
resource utilization by migrating VMs between cluster nodes 
using Fuzzy TOPSIS. VMs were migrated from underuti-
lized hosts to overutilized hosts. However, the VM deploy-
ment algorithm was not disclosed.

Beloglazov and Buyya [21] designed an energy‐efficient 
system for resource management of cloud data centers. 
Authors used bin packing heuristics for VM deployment 
and did not consider multiple attributes. Algorithms were 
not appropriately defined, and the system was not generic. 
It was tested on a random dataset.

Sharifi et al. [26] proposed a scheduling algorithm for 
mapping of VMs to hosts such that power consumption is 
minimum. Authors designed power and migration models 
and presented the consolidation fitness metric. Although 
authors considered multiple resources like CPU and disk 
utilization, the parameters were given equal weights which 
are not possible in the real scenario.

Beloglazov and Buyya extended [21] by proposing an 
architectural framework using VM consolidation algorithms 
based on double and fixed thresholds for detection of over-
loaded hosts [27]. However, VM deployment was based on 
a modified best-fit decreasing heuristic. It considered only 
a single criterion that is the increase in power consumption. 
The system was tested on a random dataset.

Beloglazov and Buyya [20] used adaptive double thresh-
olds for host overload detection; bin packing heuristics 
were used for VM deployment as in [21]. Planet Lab data 
were used to check the efficiency of the designed model. 
This framework also considered a single criterion for VM 
placement.

Cao and Dong [28] reformed the framework designed in 
[20] by introducing an algorithm for detecting those over-
loaded hosts which violate SLA. For VM deployment, mini-
mum power maximum utilization (MPMU) was used. Planet 
Lab dataset was used to evaluate its performance. Horri et al. 
[29] proposed a VM consolidation approach that considered 
QoS factors also for designing energy‐efficient system. The 
algorithm proposed for VM deployment examined just two 
parameters—host utilization and the correlation between 
applications. Experiments are conducted in CloudSim. The 
results revealed that a trade-off exists between energy con-
sumption and QoS. Arianyan et al. [30] designed a resource 
management framework. Authors considered multiple crite-
ria for selecting under-loaded hosts. However, for VM place-
ment modified best-fit decreasing heuristic was used.

Ding et al. [31] designed an energy-aware scheduling 
algorithm for VMs, considering timing constraints. For 
allocation of VMs to hosts, hosts were arranged in decreas-
ing order of their optimal performance power ratio and the 
first host that satisfies VM’s requirements was selected. The 
drawback is that some assumptions were made which did not 
apply for practical systems.
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Zhou et al. [8] proposed a three threshold‐based energy-
aware algorithm for VM consolidation. VM consolida-
tion algorithms were based on triple and fixed thresholds. 
Authors proposed a minimization of migration policy based 
on three thresholds for VM placement. Planet Lab dataset 
was used to test the validity of the proposed model. Kansal 
and Channa [32] focused on live VM migration to reduce 
energy consumption. This work was based on Firefly algo-
rithm. In this technique, the highly loaded VM was migrated 
to the least loaded node while taking care of performance 
and energy efficiency of the data center. However, this 
approach only considered a single parameter, i.e., the load 
of the node. Goyal et al. [33] designed an energy‐efficient 
resource management system for IaaS clouds. A schedul-
ing algorithm was used that performed VM consolidation 
using VM admission control approaches. The results showed 
that the acceptance rate of VMs was increased and overall 
energy consumption was reduced. However, the system was 
not generic.

In [34], the authors proposed energy-aware heuristics to 
maximize resource utilization and considered VM placement 
as a bin packing problem. The algorithms were based on a 
single criterion, and the authors considered that all the hosts 
have similar computing power.

Kafali and Salah [35] performed modeling and analysis 
of energy consumption in cloud data centers. For effective 
resource utilization, authors developed a model for predict-
ing the number of VMs needed according to the given work-
load and for meeting QoS constraints. The model considered 
a single criterion, i.e., the number of VMs to maintain QoS. 
However, we have proposed a solution based on multiple 
criteria to maintain energy efficiency because workloads are 
not static in the heterogeneous cloud environment.

A recent survey by Arunarani et al. [36] indicates that 
single-criterion-based resource allocation heuristics like 
Min–Min algorithm [37], Max–Min algorithms [37] are 
not optimal. There is a need to design multi-criteria‐based 
novel solutions which are compatible with the dynamic 
cloud environment. This survey states that there are a lot of 
possibilities to enhance the existing scheduling algorithm as 
researchers have been not able to cater to multiple schedul-
ing aspects simultaneously. Authors suggested combining 
scheduling algorithms with VM consolidation strategies to 
enhance popular and classic techniques.

In [38], a study of resource management techniques for 
maintaining energy efficiency is performed. It states that 
resource management algorithms are the core of energy‐effi-
cient solutions. It also suggests formulating resource allo-
cation problem as a multi-objective optimization problem 
considering multiple parameters such as power consump-
tion, RAM utilization, migration delay and number of VMs.

The literature implies that there are several efforts for 
developing VM consolidation algorithms, but very few 

attempts considered multiple resources for VM deployment. 
Deployment is a significant phase which helps to optimize 
the whole process [39]. Multiple scheduling parameters are 
vital for maintaining performance. There is a need to design 
a VM deployment algorithm considering multiple parame-
ters for selecting hosts. Thus, this work uses Improved TOP-
SIS technique for VM deployment that considers multiple 
parameters related to CPU, RAM and network, which reduce 
both energy consumption and SLA violations.

3 � The Proposed VM Deployment Framework

VM consolidation involves (1) detecting overloaded and 
under-loaded hosts, (2) selecting VMs, which are to be 
migrated to optimal hosts and (3) placing VMs on target 
hosts (VM deployment). The process results in lesser power 
consumption as idle hosts are switched off after migration. 
The proposed VM deployment framework employs ITHSP 
for selecting the target hosts for VMs deployment consider-
ing scheduling parameters for maintaining energy efficiency. 
Figure 2 shows the designed framework.

VM deployment (placement) is an MCDM problem. 
Decision-making includes handling trade-offs or negotia-
tions between various conflicting criteria. Hwang and Yoon 
developed the TOPSIS method [40]. It is established on the 
idea that the selected alternative should be the minimum dis-
tance (Euclidean distance) apart from the optimal solution 
and should have maximum distance from the non-optimal 
solution. For the assumed ideal solution, all the attributes 
have maximum values in the dataset of satisfying solutions, 
and for the case of the supposed negative ideal solution, all 
the attributes have minimum values in the dataset. Therefore, 
the solution generated by TOPSIS is not only nearest to opti-
mum, but it is also farthest from non-optimum. In TOPSIS, 
all the parameters are given equal or random weights.

In Improved TOPSIS technique, the decision maker 
decides the relative importance of weights systematically 
using analytical hierarchy processing (AHP) technique [41]. 
AHP is the most extensively used technique for solving 
MCDM problems. It is a multi-attribute decision‐making 
(MADM) method, which makes ill-structured difficult prob-
lems easier by structuring decision factors in a hierarchal 
way. The benefits of AHP which provide over other methods 
are its flexibility, spontaneous appeal to the decision mak-
ers and its capability to find irregularities. Moreover, AHP 
creates a hierarchy of criteria by splitting the decision prob-
lem into constituent parts. In addition to these advantages, 
it also decreases biases in decision‐making [42]. Because of 
these benefits of TOPSIS with AHP (Improved TOPSIS), the 
designed VM deployment framework has applied ITHSP for 
mapping of VMs on hosts.



9459Arabian Journal for Science and Engineering (2019) 44:9455–9469	

1 3

3.1 � Parameters for Host Selection

Power consumption is a vital parameter considered in this 
work. In addition to it, various other parameters are identi-
fied for selection of target hosts in terms of energy efficiency. 
The selection of criteria considered by ITHSP is motivated 
from [30], and parameters are described in Table 1. ITHSP 
policy benefits from the MCDM-Improved TOPSIS algo-
rithm. Scores of all candidate hosts (PMs) (which can 
host VMs) are calculated using the procedure described in 
Sect. 3.2.

The host (PM) with the maximum score is chosen. Cri-
teria can be of benefit or cost type in ITHSP policy. The 
higher value of benefit‐type criteria and the lowest value of 

cost non-benefit type‐criteria indicates solution is near to the 
optimum point. Scores are calculated in ITHSP based on the 
following conditions:

(1)	 The host (PM) that is selected should have the maxi-
mum available capacity in terms of RAM.

(2)	 The host (PM) that is selected should have the maxi-
mum available computation capacity (power) in MIPS.

(3)	 The number of VMs in the selected host (PM) should 
be minimum.

(4)	 The delay incurred by VM on allocating it to selected 
host (PM) should be minimum.

(5)	 Increase in power consumption of the selected host 
(PM) should be least.

Fig. 2   Design of proposed framework

Table 1   Criteria considered by ITHSP

Criteria Meaning

Available capacity in terms of RAM (AC RAM) The PM should have the maximum available capacity in terms of RAM
AC capacity in terms of MIPS (AC MIPS) The PM should have the maximum available computation capacity (power) in MIPS
Number of VMs allocated (VMs) The total VMs on the selected PM should be minimum
Migration delay (MD) The delay incurred by VM on allocating it to selected PM should be the minimum
Increase in power consumption (PI) Increase in power of selected PM should be least
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So, it chooses the best alternative from a set of options 
considering these criteria.

3.2 � Proposed Improved TOPSIS‑Based Host 
Selection Policy

ITHSP takes into account multiple resources related to CPU, 
RAM and network for decision-making. The proposed pol-
icy is energy efficient as it considers parameters for reducing 
energy consumption and SLA violations both. It selects the 
host that has the minimum number of VMs. So, competent 
for shared resources becomes less, leading to lesser SLA 
violations. Further, choosing hosts with the highest avail-
able RAM and computation power (MIPS) certifies that 
VMs will be allocated with ease and reduce SLA violation 
time per active host. Moreover, considering migration delay 
decreases violations in SLA during migration and therefore 
lowers down the performance degradation due to migration. 
The procedure of ITHSP is:

Step 1 Make an evaluation matrix containing m hosts 
(options) and n attributes (criteria). The intersection of each 
option and parameter is called as hostij, i = 1, 2,…, m and 
j = 1, 2,…,n. Thus, the matrix is (host)m*n (Eq. 1), PH_1, 
PH_2, … PH_m are the m hosts or PMs (alternatives) and 
P1, P2, … Pn are the different parameters considered for the 
selection of hosts. Pi,j denotes the value of jth parameter of 
ith host.

Step 2 (Nhost)m*n matrix is constructed by normaliz-
ing the matrix (host)m*n as shown in Eq. (2). The values in 
the formed matrix vary from 0 to 1, where 1 indicates the 
utmost relevant parameter, and 0 indicates the least relevant 
parameter

using the normalization method.

where i = 1, 2…, m and j = 1, 2…, n.

(1)Nhost =
(
hostij

)
m∗n

,

(2)Nhostij =
hostij

�∑m

i=1
host2

ij

,

Step 3 A set of weights WTj (for j = 1, 2,…, n) such that 
WTj = 1 is found for parameters (criteria). AHP technique was 
used to calculate the weights in an orderly manner [41]. The 
steps of AHP [43] using radical root technique for estimating 
weights are:

Step 3(i) A pair-wise assessment matrix (Fig. 3) is cre-
ated using the relative significance scale of criteria shown in 
Table 2 [43]. As there are n parameters, the pair-wise con-
trast of ith parameters with jth parameters produces a square 
matrix PARn×n where PARij indicates the relative significance 
of parameters i in comparison with parameters j. In this matrix, 
PARij = 1 when i = j and PARji = 1/PARij.

Step 3(ii) Calculate the weight (WTj) of all parameters as 
follows: (1) the geometric mean of the ith row is calculated 
(Eq. 3), and (2) the geometric means of the rows in comparison 
matrix are normalized in Eq. (4).

Step 3(iii) Calculate normalized PAR matrix as shown in 
Eq. (5).

(3)GMeanj =

[
n∏

j=1

PARij

]1∕n

(4)WTj = GMeanj∕

n∑

j=1

GMeanj

(5)NPn∗1 = PARn∗n ∗ WTn∗1

Fig. 3   Comparison matrix

Table 2   Scale of the relative significance

Values Level of importance

1 Similar significance
3 Moderate significance
5 High significance
7 Very high significance
9 Absolute significance
2, 4, 6, 8 For negotiating the values
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Step 3(iv) Calculate relative normalized PAR matrix as 
shown in Eq. (6).

Step 3(v) Define the largest eigenvalue λmax which is cal-
culated by finding the mean of matrix RNPnx1 and com-
putes the CI (consistency index) as calculated in Eq. (7). The 
greater is the CI, the greater it deviates from consistency. 
Therefore, it should be less.

Step 3(vi) Find the RI (Random Index) for the used num-
ber of attributes in the process of decision‐making (Table 3).

Step 3(vii) Find the ratio of consistency (CR) as shown in 
Eq. (8). CR = 0.1 or less is satisfactory.

Step 4 Construct the weighted normalized decision matrix 
as shown in Eqs. (9) and (10).

i = 1, 2,…, m and j = 1, 2,…, n where

j = 1, 2,…, n so that 
∑n

j=1
WTj = 1, where WTj represents 

the original weight assigned to the criteria.
Step 5 Obtain the ideal/optimal alternative (AlI) and the 

non-ideal/non-optimal alternative (AlN) for every criterion 
as shown in Eqs. (11) and (12)

(6)RNPn∗1 =
NPn∗1

WTn∗1

(7)CI =

(
�max − n

)

(n − 1)

(8)CR =
Consistency Index

Random Index

(9)D =
(
dm∗n

)
=
(
wtjNVMP

)
m∗n

(10)wtj = WTj∕

n∑

j=1

WTj

(11)

AlI =

{⟨
min

(
dij|i = 1, 2,… ,m

)||j�J− ,
⟩

⟨
max

(
dij|i = 1, 2,… ,m

)||j�J+
⟩
}

≡

{
dIj|j = 1, 2, ..., n

}

where,

Step 6 Calculate the separation measures. The separa-
tion of each alternative from the ideal one is represented in 
Eqs. (13) and (14):

The values are i = 1, 2,…, m and j = 1, 2,…, n.
Step 7 The comparative nearness of a specific alterna-

tive to the optimal/ideal solution is called as Opt_Hosti and 
represented in Eq. (15).

The value of i = 1, 2,…, m.
Step 8 Rank the choices with respect to Opt_Hosti (i = 1, 

2,…, m), where Opt_Hosti signifies the efficiency of an ith 
host.

Thus, the ITHSP method ensures that the selected host is 
least distance (Euclidean distance) apart from the optimal 
solution and the maximum distance apart from the non-
optimal solution.

3.3 � Case Study: Host Selection for VM Deployment 
Based on Planet Lab Dataset

Although many scheduling approaches are proposed in the 
literature, they have limited applicability to dynamic cloud 
computing environment as they do not consider multiple 
resources. In this case study, ITHSP is used to find the optimal 
host for VM deployment. In this process, compliance is gener-
ated considering five parameters. A sample dataset generated 
from Planet Lab data of CPU utilization and real cloud VM 

(12)

AlN =

{⟨
max

(
dij|i = 1, 2,… ,m

)||j�J− ,
⟩

⟨
min

(
dij|i = 1, 2,… ,m

)||j�J+
⟩
}

≡

{
dNj|j = 1, 2,… , n

}

J+ =

{
j = 1, 2,… , n

|||||

j is related to positively

impacting criteria

}
,

J− =

{
j = 1, 2,… , n

|||||

j is related to negatively

impacting criteria

}

(13)Sei+ =

{
n∑

j=1

(
dij − dIj

)2
}0.5

(14)Sei− =

{
n∑

j=1

(
dij − dNj

)2
}0.5

(15)Opt_Hosti =
Sei−(

Sei+ + Sei−
)

Table 3   Random index values Attributes Values of 
random 
index

3 0.52
4 0.89
5 1.11
6 1.25
7 1.35
8 1.4
9 1.45
10 1.49
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and host configurations is used in this case study. Planet Lab 
dataset is already provided with CloudSim [44]. The data are 
associated with CoMon project. CoMon was used to monitor 
the nodes of Planet Lab. The workload contains CPU utiliza-
tion of VMs collected after every 5 min. The data were col-
lected on ten different days having a diverse number of VMs 
as described in Table 4.

CloudSim [44] was used during implementation. It allows 
us to experiment on large-scale virtualized data centers. The 
data center has 800 heterogeneous hosts having 400 HP Pro-
Liant ML110 G4 and 400 HP ProLiant ML110 G5. Four types 
of VMs that correspond to Amazon EC2 instances are used. 
The hosts’ and VMs’ configuration is given in Table 5. Power 
models employed are taken from SPEC power benchmark [20] 
as shown in Table 6.

Throughout the simulations, each VM is arbitrarily 
given a workload trace from one of the VMs from the cor-
responding day. For the demonstration of the results, sam-
ple dataset comprises of performance of 40 hosts accessed 
on five parameters. The parameters are available capacity 

in terms of RAM (AC RAM), available capacity in terms 
of MIPS (AC MIPS), number of VMs allocated on a host, 
migration delay and an increase in power consumption. 
AHP method is used to calculate relative weights that 
are to be assigned to these parameters. The parameters 
AC RAM and AC MIPS are presumed to be beneficial 
attributes in the case study. From the dataset generated by 
using Planet Lab workload trace and real hosts and VMs 
configuration, the normalized decision matrix (Table 7) is 
formed. It is a 40 × 5 matrix, which represents 40 physical 
hosts on five attributes.

The relative significance among parameters is given 
in Table 8. The steps described in Sect. 3.2 are used to 
calculate relative normalized weights of all attributes. 
The relative normalized weights of parameters are AC 
RAM = 0.1786, AC MIPS = 0.2143, number of VMs allo-
cated = 0.1786, migration delay = 0.1071 and increase in 
power consumption = 0.3214. The value of λmax = 5.4222, 
CI = 0.1056 and CR = 0.0950, which is smaller than the 
allowed CR value of 0.1. It denotes the good reliability 
in the judgments for evaluating the weights of attributes.

According to the normalized weights, effective host for 
VM deployment is found. They are based on the ranks gen-
erated according to compliance of parameters, as shown 
in Table 9. From Table 9, it is evident that PH_401 is 
evaluated to be the most effective host for VM deploy-
ment with compliance of parameters (AC RAM = 0.1353, 
AC MIPS = 0.3219, number of VMs allocated = 0.0576, 
migration delay = 0.0265 and increase in power con-
sumption = 0.0275). PH_612 is assessed to be the most 
non-optimal host with compliance of parameters (AC 
RAM = 0.1832, AC MIPS = 0.0089, number of VMs allo-
cated = 0.0576, migration delay = 0.2592 and increase in 
power consumption = 0.5104).

4 � Results and Discussion

During VM placement, various hosts are investigated 
to find an energy-efficient target host. Because of being 
a dynamic technology, the problem of host selection in 
cloud computing data centers needs a solution based on 
multiple criteria. The designed system selects a target host 
in terms of energy efficiency and efficient resource utiliza-
tion considering multiple criteria.

Table 4   Description of planet lab data

Workload trace name Hosts VMs

20110303 800 1052
20110306 800 898
20110309 800 1061
20110322 800 1516
20110325 800 1078
20110403 800 1463
20110409 800 1358
20110411 800 1233
20110412 800 1054
20110420 800 1033

Table 5   Configuration of hosts and VMs used in the experiment

Configuration Host VMs

Types 2 4
MIPS {1860, 2660} MHz {2500, 2000, 1000, 

500} EC2 compute 
units

PES {2, 2} {1, 1, 1, 1}
RAM {4, 4} GB {0.85, 1.7, 1.7, 0.6} GB
BW 1 Gbit/s 100 Mbit/s

Table 6   Power consumption 
(W)

Server Idle 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP Proliant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP Proliant G5 93.7 97 101 105 110 116 121 125 129 133 135
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4.1 � Dataset

A standard dataset (Planet Lab) containing CPU utiliza-
tion values is investigated during the literature survey. A 
simulation run of 800 hosts for the data center is performed. 
Improved TOPSIS method evaluates the compliance of hosts 
as described in Sect. 3.2. The efficiency of hosts is classified 
in Table 10.

4.2 � Results on Planet Lab Dataset

Figure 4 illustrates the evaluation of physical hosts on vari-
ous parameters. Figure 5 presents the relative importance 
of parameters utilized in this study of host selection. Fig-
ure 5 indicates the comparative significance of parameter 
AC RAM relative to other parameters (AC MIPS, number 
of VMs allocated, migration delay and increase in power 

Table 7   Normalized decision 
matrix

Physical host AC RAM AC MIPS Number of VMs 
allocated

Migration delay Increase in 
power consump-
tion

PH_1 0.0620 0.1799 0.0576 0.0265 0.0183
PH_2 0.0508 0.1138 0.1153 0.0596 0.0356
PH_3 0.0396 0.0476 0.1729 0.1022 0.0356
PH_4 0.0421 0.1138 0.0576 0.0735 0.0183
PH_5 0.0309 0.0476 0.1153 0.1124 0.0183
PH_201 0.0620 0.2858 0.0576 0.0265 0.0178
PH_204 0.0171 0.0212 0.2882 0.2384 0.0394
PH_207 0.0110 0.0873 0.1153 0.1653 0.0394
PH_209 0.0197 0.0873 0.1729 0.1625 0.0178
PH_210 0.0084 0.0212 0.2306 0.2294 0.0394
PH_211 0.0046 0.0873 0.0576 0.1620 0.0178
PH_212 0.0577 0.0212 0.0576 0.0367 0.0178
PH_401 0.1353 0.3219 0.0576 0.0265 0.0275
PH_402 0.1241 0.2557 0.1153 0.0596 0.0275
PH_403 0.1129 0.1896 0.1729 0.1022 0.0275
PH_404 0.1016 0.1234 0.2306 0.1589 0.0577
PH_405 0.0904 0.0573 0.2882 0.2384 0.0275
PH_406 0.1154 0.2557 0.0576 0.0735 0.0275
PH_407 0.0843 0.1234 0.1153 0.1653 0.0275
PH_408 0.0778 0.1234 0.0576 0.1620 0.0275
PH_409 0.1310 0.0573 0.0576 0.0367 0.0577
PH_410 0.1042 0.1896 0.1153 0.1124 0.0577
PH_411 0.0929 0.1234 0.1729 0.1625 0.0275
PH_412 0.0817 0.0573 0.2306 0.2294 0.0577
PH_413 0.0730 0.0573 0.1729 0.2229 0.0275
PH_414 0.0666 0.0573 0.1153 0.2121 0.0275
PH_601 0.2819 0.3396 0.0576 0.0265 0.2137
PH_602 0.2706 0.2735 0.1153 0.0596 0.2137
PH_603 0.2594 0.2073 0.1729 0.1022 0.2137
PH_604 0.2482 0.1412 0.2306 0.1589 0.3216
PH_605 0.2369 0.0750 0.2882 0.2384 0.2137
PH_606 0.2369 0.0750 0.3458 0.2980 0.3216
PH_607 0.2619 0.2735 0.0576 0.0735 0.2137
PH_608 0.2308 0.1412 0.1153 0.1653 0.2137
PH_609 0.1997 0.0089 0.1729 0.2833 0.2137
PH_610 0.2244 0.1412 0.0576 0.1620 0.2137
PH_611 0.2775 0.0750 0.0576 0.0367 0.2137
PH_612 0.1832 0.0089 0.0576 0.2592 0.5104
PH_613 0.2507 0.2073 0.1153 0.1124 0.2137
PH_614 0.2395 0.1412 0.1729 0.1625 0.2137
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consumption) is 0.83, 1.00, 1.67 and 0.56. Similarly, the 
comparative significance of parameter increase in power 
consumption compared to other parameters (AC RAM, AC 
MIPS, number of VMs allocated and migration delay) is 
1.80, 1.50, 1.80 and 3.00.

Figure 6 shows the normalized comparative weights for 
parameters, and an increase in power consumption has the 
maximum relative normalized weight (increase in power 

consumption = 0.3214). In comparison, migration delay 
has the minimum relative normalized weight (migration 
delay = 0.1071).

In other words, an increase in power consumption has 
been considered the most significant parameter and migra-
tion delay as the least significant parameter.

Figure 7 shows the ranks of physical hosts according to 
compliance (Fig. 4) and the normalized comparative weights 
(Fig. 6). It is seen that PH_401 is evaluated to be the most 
effective host. In contrast, PH_612 is assessed to be the least 
effective host for VM placement.

The grouping of hosts concerning the classification pat-
tern given in Table 10 is illustrated in Table 11.

The correctness of framework is verified as it (1) uses 
TOPSIS-a standard MCDM technique, (2) calculated 
weights using AHP which reduces biasness and (3) con-
sidered parameters related to CPU, memory, network and 
multiple criteria, i.e., energy efficiency and SLA efficiency. 

Table 8   Relative importance of 
parameters

AC RAM AC MIPS Number of 
VMs allo-
cated

Migration delay Increase in 
power consump-
tion

AC RAM 1.00 0.83 1.00 1.67 0.56
AC MIPS 1.20 1.00 1.20 2.00 0.67
Number of VMs allocated 1.00 0.83 1.00 1.67 0.56
Migration delay 0.60 0.50 0.60 1.00 0.33
Increase in power consumption 1.80 1.50 1.80 3.00 1.00

Table 9   Ranks generated 
according to compliance

Physical host Rank (normalized) Rank Physical host Rank (normalized) Rank

PH_1 0.8820 0.7687 PH_409 0.8053 0.7018
PH_2 0.8195 0.7143 PH_410 0.8765 0.7639
PH_3 0.7627 0.6647 PH_411 0.8267 0.7205
PH_4 0.8303 0.7236 PH_412 0.7425 0.6471
PH_5 0.7784 0.6784 PH_413 0.7735 0.6741
PH_201 0.9343 0.8143 PH_414 0.7831 0.6825
PH_204 0.7041 0.6137 PH_601 0.7944 0.6923
PH_207 0.7785 0.6785 PH_602 0.7632 0.6652
PH_209 0.7829 0.6823 PH_603 0.7146 0.6228
PH_210 0.7157 0.6238 PH_604 0.4913 0.4282
PH_211 0.7941 0.6921 PH_605 0.5976 0.5208
PH_212 0.7817 0.6813 PH_606 0.4241 0.3696
PH_401 1.0000 0.8715 PH_607 0.7711 0.6721
PH_402 0.9524 0.8300 PH_608 0.6836 0.5958
PH_403 0.8834 0.7699 PH_609 0.5854 0.5102
PH_404 0.7940 0.6920 PH_610 0.6944 0.6052
PH_405 0.7473 0.6513 PH_611 0.6792 0.5919
PH_406 0.9548 0.8321 PH_612 0.2940 0.2562
PH_407 0.8357 0.7283 PH_613 0.7271 0.6337
PH_408 0.8406 0.7326 PH_614 0.6710 0.5848

Table 10   Efficiency classification

S. no. Efficiency class Value

1 Extremely energy efficient ≥ .8
2 Energy efficient .7999– .6
3 Moderately energy efficient .5999–.4
4 Base line energy efficient .3999–.2
5 Minimal energy efficient < .2



9465Arabian Journal for Science and Engineering (2019) 44:9455–9469	

1 3

The results are validated as the ranking of hosts are done 
based on a real dataset, real hosts and VMs’ configuration 
because the case study is an in-depth, detailed, qualitative 
validation of proposed work representing the living reality 
[45]. Moreover, the case study approach is widely used in 
the literature [46–48] for validation of the proposed work.

4.3 � Comparison with Other Methods

This section illustrates the comparison between our frame-
work and others in terms of energy efficiency. We have 
made the comparison qualitatively, as quantitatively com-
paring the frameworks is not possible. The frameworks 

Fig. 4   Compliance of the various attributes for physical hosts

Fig. 5   Relative significance 
of the parameters for physical 
hosts
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Fig. 6   Relative normalized 
weights of the parameters for 
physical hosts

Fig. 7   Efficiency of the hosts generated according to ranks

Table 11   Hosts classification according to efficiency class

S. no. Efficiency class Value Hosts

1 Extremely energy efficient ≥ .8 PH_401, PH_406, PH_402, PH_201
2 Energy efficient .7999–.6 PH_403, PH_1, PH_410, PH_408, PH_407, PH_4, PH_411, PH_2, 

PH_409, PH_601, PH_211, PH_404, PH_414, PH_209, PH_212, 
PH_207, PH_5, PH_413, PH_607, PH_602, PH_3, PH_405, PH_412, 
PH_613, PH_210, PH_603, PH_204, PH_610

3 Moderately energy efficient .5999–.4 PH_608, PH_611, PH_614, PH_605, PH_609, PH_604
4 Base line energy efficient .3999–.2 PH_606, PH_612
5 Least energy efficient < .2 –



9467Arabian Journal for Science and Engineering (2019) 44:9455–9469	

1 3

developed in [18, 21, 26, 30, 32] are considered for com-
parison as they have also made efforts to tackle the same 
issue. The model [18] used TOPSIS for migration of VMs 
to utilize the resources optimally. However, we have sys-
tematically decided the weights of parameters employing 
AHP technique (MADM), i.e., we have used Improved 
TOPSIS for VM deployment. It makes our framework suit-
able for the real environment. In [21], VMs were mapped 
to PMs using bin packing heuristics rather than follow-
ing the MADM approach, which may not be suitable for 
a dynamic environment. The framework in [26] used a 
scheduling algorithm for mapping of VMs to hosts such 
that power consumption is minimum. However, attributes 

were given equal weights which are too far from reality. 
Therefore, this may not be a realistic framework. In frame-
work [30], authors considered multiple criteria and used 
TOPSIS for selecting under-loaded hosts. However, for 
VM placement modified best-fit decreasing heuristic was 
used. In [32], only a single criterion, i.e., the load of the 
node, was considered to decide on placement. Thus, this 
is not suitable for the dynamic cloud environment and is 
not compliant with features provided by cloud comput-
ing [49]. The framework proposed in this paper is more 
robust, energy efficient and considers multiple resources 
like CPU, RAM and network. It can be used to evaluate 
the compliance of hosts in the real cloud environment. 

Table 12   Qualitative comparison of the proposed framework

Work Type Parameters Weights decision Technique Summary

[18] Multi-criteria CPU, network and RAM-related 
parameters

User Fuzzy TOPSIS for 
detecting over-
loaded/under-loaded 
hosts

In this work, Fuzzy TOPSIS was 
used to find overloaded and 
under-loaded servers using real 
case study. However, they did not 
propose a solution for VM place-
ment. Moreover, the authors did 
not evaluate the framework using 
a cloud environment

[21] Single criterion Considered CPU only Not applicable Bin packing heuristics Authors proposed an energy-
efficient resource management 
system, but it was not or multiple 
resources. Further, it was tested 
for the synthetic dataset and 
SLA-related metrics were not 
considered

[26] Multi-criteria CPU, disk utilization Equal weights Integer nonlinear 
programming, 
simulated annealing 
algorithm

The authors proposed a scheduling 
model using integer nonlinear 
programming and considered 
equal weights for parameters. 
However, this is not realistic in 
the dynamic cloud environment

[30] Multi-criteria CPU, network and RAM-related 
parameters

Equal weights TOPSIS The proposed resource manage-
ment framework used TOPSIS 
for allocation of VMs to hosts 
and considered equal weights for 
parameters. However, this is not 
realistic in the dynamic cloud 
environment

[32] Single criterion Load of the node Not applicable Bio-inspired technique In this work, authors proposed 
techniques for live VM migration 
mainly focusing on the load of 
the node

This work Multi-criteria AC RAM, AC MIPS, Number of 
VMs allocated, migration delay, 
increase in power consumption

AHP Technique Improved TOPSIS We have used Improved TOPSIS 
technique (decided parameter 
weights using AHP) for selecting 
the target host for the deploy-
ment of migrated VMs. The 
proposed framework considers 
multiple CPU, network and 
memory-related parameters, and 
its efficiency is proved with a real 
case study
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Table 12 illustrates the comparison of the proposed frame-
work with other frameworks.

5 � Conclusion

The issue of maintaining energy efficiency in cloud data 
centers should be given utmost priority. This article proposes 
a VM deployment framework, which selects the target hosts 
for VM placement considering energy-efficient use of phys-
ical resources. Ranks are generated according to optimal 
hosts. The proposed ITHSP scheme uses Improved TOP-
SIS to evaluate the energy efficiency of hosts normalized in 
the range 0–1. Parameters for maintaining energy efficiency 
(scheduling parameters for energy-efficient deployment of 
VMs) are also described, which help to maintain the SLA. 
The energy efficiency estimated by ITHSP is categorized 
into five classes, ranging from extremely energy efficient 
to minimal energy efficient. The designed framework is an 
effort in the direction of research on energy-efficient VM 
deployment. The parameters considered in this work lead 
to a reduction in SLA violations, performance degradation 
due to migration and SLA violation time per active host. In 
the future, we are planning to implement Improved TOP-
SIS algorithm in other phases of VM consolidation like VM 
selection.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Buyya, R.: Market-oriented cloud computing: vision, hype, and 
reality of delivering computing as the 5th utility. In: 9th IEEE/
ACM International Symposium on Cluster Computing and the 
Grid, 2009, vol. 25, no. 6, pp. 1

	 2.	 Altomare, A.; Cesario, E.; Vinci, A.: Data analytics for energy-
efficient clouds: design, implementation and evaluation. Int. J. 
Parallel Emerg. Distrib. Syst. (2018)

	 3.	 The Climate Group: SMART 2020 : Enabling the low carbon 
economy in the information ag (2008). https​://www.thecl​imate​
group​.org/sites​/defau​lt/files​/archi​ve/files​/Smart​2020R​eport​.pdf. 
Accessed 24 June 2018

	 4.	 Cook, G.; Dowdall, T.; Pomerantz, D.; Wang, Y.: Clicking Clean: 
How Companies are Creating the Green Internet. Greenpeace Inc., 
Washington, DC (2014)

	 5.	 Living planet report (2014). https​://www.wwf.or.jp/activ​ities​/data/
WWF_LPR_2014.pdf. Accessed 24 June 2018

	 6.	 Kaur, T.; Chana, I.: Energy efficiency techniques in cloud com-
puting: a survey and taxonomy. ACM Comput. Surv. 48(2), 1–46 
(2015)

	 7.	 Zhou, Z.; et al.: Minimizing SLA violation and power consump-
tion in cloud data centers using adaptive energy-aware algorithms. 
Future Gener. Comput. Syst. 86, 836–850 (2018)

	 8.	 Zhou, Z.; Hu, Z.; Li, K.: Virtual machine placement algorithm for 
both energy-awareness and SLA violation reduction in cloud data 
centers. Sci. Program. 2016(i), 15 (2016)

	 9.	 Castro, P.H.P.; Barreto, V.L.; Corrêa, S.L.; Granville, L.Z.; 
Cardoso, K.V.: A joint CPU-RAM energy efficient and SLA-
compliant approach for cloud data centers. Comput. Netw. 94, 
1–13 (2016)

	10.	 Wang, Y.H.; Wu, I.C.: Achieving high and consistent rendering 
performance of java AWT/Swing on multiple platforms. Softw. 
Pract. Exp. 39(7), 701–736 (2009)

	11.	 Cao, Z.; Dong, S.: Dynamic VM consolidation for energy-aware 
and SLA violation reduction in cloud computing. In: Parallel 
Distrib. Comput. Appl. Technol. PDCAT Proc., pp. 363–369 
(2012)

	12.	 Ashraf, A.; Byholm, B.; Porres, I.: Distributed virtual machine 
consolidation: a systematic mapping study. Comput. Sci. Rev. 28, 
118–130 (2018)

	13.	 Ashraf, A.; Porres, I.: Multi-objective dynamic virtual machine 
consolidation in the cloud using ant colony system. Int. J. Parallel 
Emerg. Distrib. Syst. 33, 103–120 (2018)

	14.	 Verma, A.; Kaushal, S.: A hybrid multi-objective Particle Swarm 
Optimization for scientific workflow scheduling. Parallel Comput. 
62, 1–19 (2017)

	15.	 Hussain, H.; et al.: A survey on resource allocation in high per-
formance distributed computing systems. Parallel Comput. 39, 
709–736 (2013)

	16.	 Li, K.; Zheng, H.; Wu, J.; Du, X.: Virtual machine placement in 
cloud systems through migration process. Int. J. Parallel Emerg. 
Distrib. Syst. 30, 393–410 (2015)

	17.	 Nathuji, R.; Schwan, K.: Virtualpower: coordinated power man-
agement in virtualized enterprise systems. In: Proc. Twenty-First 
ACM SIGOPS Symp. Oper. Syst. Princ.—SOSP’07, pp. 265 
(2007)

	18.	 Tarighi, M.; Motamedi, S.A.; Sharifian, S.: A new model for vir-
tual machine migration in virtualized cluster server based on fuzzy 
decision making. J. Telecommun. 1(1), 40–51 (2010)

	19.	 Calcavecchia, N.M.; Biran, O.; Hadad, E.; Moatti, Y.: VM place-
ment strategies for cloud scenarios. In: 2012 IEEE 5th Int’l Con-
ference on Cloud Comput., pp. 852–859. IEEE

	20.	 Beloglazon, A.; Buyya, R.: Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data 
centers. Concurr. Comput. Pract. Exp. 24(13), 1397–1420 (2012)

	21.	 Beloglazov, A.; Buyya, R.: Energy efficient resource management 
in virtualized cloud data centers. In: 10th IEEE/ACM Int’l Confer-
ence on Cluster, Cloud and Grid Comput., pp. 826–831 (2010)

	22.	 Mishra, M.; Sahoo, A.: On theory of VM placement: anomalies in 
existing methodologies and their mitigation using a novel vector 
based approach. In: 2011 IEEE CLOUD, pp. 275–282

	23.	 Attaoui, W.; Sabir, E.: Multi-criteria virtual machine placement in 
cloud computing environments: a literature review. arXiv preprint 
arXiv​:1802.05113​ (2018)

	24.	 Al-Haidari, F.; Sqalli, M.; Salah, K.: Impact of cpu utilization 
thresholds and scaling size on autoscaling cloud resources. In: 
2013 IEEE 5th Int’l Conference on Cloud Comput. Tech. and Sci., 
vol. 2, pp. 256–261. IEEE.

	25.	 Calyam, P.; Rajagopalan, S.; Seetharam, S.; Salah, K.; Ramnath, 
R.: VDC-analyst: design and verification of virtual desktop cloud 
resource allocations. Comput. Netw. 68, 110–122 (2014)

	26.	 Sharifi, M.; Salimi, H.; Najafzadeh, M.: Power-efficient distrib-
uted scheduling of virtual machines using workload-aware con-
solidation techniques. J. Supercomput. 61(1), 46–66 (2012)

	27.	 Beloglazov, A.; Abawajy, J.; Buyya, R.: Energy-aware resource 
allocation heuristics for efficient management of data centers for 
cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 
(2012)

https://www.theclimategroup.org/sites/default/files/archive/files/Smart2020Report.pdf
https://www.theclimategroup.org/sites/default/files/archive/files/Smart2020Report.pdf
https://www.wwf.or.jp/activities/data/WWF_LPR_2014.pdf
https://www.wwf.or.jp/activities/data/WWF_LPR_2014.pdf
http://arxiv.org/abs/1802.05113


9469Arabian Journal for Science and Engineering (2019) 44:9455–9469	

1 3

	28.	 Cao, Z.; Dong, S.: An energy-aware heuristic framework for vir-
tual machine consolidation in Cloud computing. J. Supercomput. 
69(1), 429–451 (2014)

	29.	 Horri, A.; Mozafari, M.S.; Dastghaibyfard, G.: Novel resource 
allocation algorithms to performance and energy efficiency in 
cloud computing. J. Supercomput. 69(3), 1445–1461 (2014)

	30.	 Arianyan, E.; Taheri, H.; Sharifian, S.: Novel energy and SLA effi-
cient resource management heuristics for consolidation of virtual 
machines in cloud data centers. Comput. Electr. Eng. 47, 222–240 
(2015)

	31.	 Ding, Y.; Qin, X.; Liu, L.; Wang, T.: Energy efficient schedul-
ing of virtual machines in cloud with deadline constraint. Future 
Gener. Comput. Syst. 50, 62–74 (2015)

	32.	 Kansal, N.J.; Chana, I.: Energy-aware virtual machine migration 
for cloud computing—a firefly optimization approach. J. Grid 
Comput. 14(2), 327–345 (2016)

	33.	 Goyal, S.; Bawa, S.; Singh, B.: Energy optimised resource sched-
uling algorithm for private cloud computing. Int. J. Ad Hoc Ubiq-
uitous Comput. 23(1/2), 115 (2016)

	34.	 Lee, Y.C.; Zomaya, A.Y.: Energy efficient utilization of resources 
in cloud computing systems. J. Supercomput. 60, 268–280 (2012)

	35.	 El Kafhali, S.; Salah, K.: Modeling and analysis of performance 
and energy consumption in cloud data centers. Arab. J. Sci. Eng. 
43, 7789–7802 (2018)

	36.	 Arunarani, A.R.; Manjula, D.; Sugumaran, V.: Task scheduling 
techniques in cloud computing: a literature survey. Future Gener. 
Comput. Syst. 91, 407–415 (2019)

	37.	 He, X.S.; Sun, X.H.; Von Laszewski, G.: QoS guided min–min 
heuristic for grid task scheduling. J. Comput. Sci. Technol. 18, 
442–451 (2003)

	38.	 Bhattacherjee, S.; Das, R., Khatua, S.; Roy, S.: Energy-efficient 
migration techniques for cloud environment: a step toward green 
computing. J. Supercomput. (2019). https​://doi.org/10.1007/s1122​
7-019-02801​-0

	39.	 Csorba, M.J.; Meling, H.; Heegaard, P.E.: A bio-inspired method 
for distributed deployment of services. New Gener. Comput. 29, 
185 (2011)

	40.	 Yoon, K.P.; Hwang, C.-L.: Multiple Attribute Decision Making: 
An Introduction. Sage publications, Thousand Oaks (1995)

	41.	 Rao, R.V.: Improved multiple attribute decision making methods. 
In: Pham, D.T. (ed.) Decision Making in Manufacturing Environ-
ment Using Graph Theory and Fuzzy Multiple Attribute Decision 
Making Methods, vol. 2. Springer, Berlin (2013)

	42.	 Ramanathan, R.: A note on the use of the analytic hierarchy pro-
cess for environmental impact assessment. J. Environ. Manag. 63, 
27–35 (2001)

	43.	 Saaty, T.L.; Vargas, L.G.: Economic, political, social and techno-
logical applications with benefits, opportunities, costs and risks. 
In: Price, C.C. (ed.) Decision Making with the Analytic Network 
Process, vol. 195. Springer, Berlin (2006)

	44.	 Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; 
Buyya, R.: CloudSim: a toolkit for modeling and simulation of 
cloud computing environments and evaluation of resource provi-
sioning algorithms. Softw. Pract. Exp. 41, 23–50 (2011)

	45.	 Hodkinson, P.; Hodkinson, H.: The strengths and limitations of 
case study research. In: 2001 Learning and Skills Development 
Agency Conference at Cambridge, vol. 1, no. 1, pp. 5–7

	46.	 Xu, J.; Fortes, J.A.: Multi-objective virtual machine placement 
in virtualized data center environments. In: 2010 IEEE/ACM 
Int’l Conference on Green Comput. and Communications & Int’l 
Conference on Cyber, Physical and Social Comput., pp. 179–188. 
IEEE

	47.	 Janpan, T.; Visoottiviseth, V.; Takano, R.: A virtual machine 
consolidation framework for CloudStack platforms. In: 2014 Int’l 
Conference on Information Networking, pp. 28–33. IEEE

	48.	 Corradi, A.; Fanelli, M.; Foschini, L.: VM consolidation: a real 
case based on OpenStack Cloud. Future Gener. Comput. Syst. 32, 
118–127 (2014)

	49.	 Wang, L.; et al.: Cloud computing: a perspective study. New 
Gener. Comput. 28, 137–146 (2010)

https://doi.org/10.1007/s11227-019-02801-0
https://doi.org/10.1007/s11227-019-02801-0

	Multi-criteria-Based Energy-Efficient Framework for VM Placement in Cloud Data Centers
	Abstract
	1 Introduction
	2 Related Literature
	3 The Proposed VM Deployment Framework
	3.1 Parameters for Host Selection
	3.2 Proposed Improved TOPSIS-Based Host Selection Policy
	3.3 Case Study: Host Selection for VM Deployment Based on Planet Lab Dataset

	4 Results and Discussion
	4.1 Dataset
	4.2 Results on Planet Lab Dataset
	4.3 Comparison with Other Methods

	5 Conclusion
	References




