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Abstract 

Adaptive Pulse Compression (APC) techniques for target detection differ from 

their mismatched filtering techniques based counterparts in their improved ability 

to detect the target efficiently. In order to further improve the target detection 

capability, an attempt has been made to design a novel pulse compression model, 

named Adaptive Mismatched Filter (AMMF). The AMMF consists of a linear 

network of fixed weights followed by an adaptive linear network. An adaptive 

algorithm based on Minimum Mean-Square Error (MMSE) has been suggested 

to estimate the weight coefficients of the adaptive network. The performance 

analysis of the new adaptive model has been carried out using an extensive 

simulation study. The detection efficiency of the proposed scheme, in terms of 

Peak Signal-to-sidelobe Ratio (PSR), Integrated Sidelobe Ratio (ISLR) and 

Average Target Power Prediction Accuracy (ATPPA), has been compared with 

that obtained using other existing APC techniques. The simulation study reveals 

the enhanced detection ability of the proposed AMMF. 

Keywords: Adaptive pulse compression, Matched filter, Minimum mean square 

error, Mismatched filter, Pulse compression. 
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1.  Introduction 

The conventional Matched Filter (MF) is commonly employed for radar pulse 

compression [1]. The output response of matched filtering contains the large 

sidelobes in the multiple moving targets environment. Sometimes these large 

sidelobes form spurious targets or sometimes mask weak neighbouring targets. In 

addition, sidelobe suppression using mismatched filtering techniques have been of 

considerable interest to the research community over many years. Ackroyd and 

Ghani [2] explained that an inverse filtering technique based on least-mean-square 

approximation has been employed for mismatched filter design. For different 

barker sequences, the authors have reported complete suppressed sidelobes with a 

small loss in SNR compared to the MF. Zoraster [3] has proposed a linear 

programming technique based approach for mismatched filter design and manage 

to achieve 5dB lower peak sidelobes as compared to the least square filter.  

Baden and Cohen [4] have proposed by using a weighted sidelobe reduction 

filtering technique, a mismatched filter model of low complexity. In this paper, 

weightage functions have been used to shape the sidelobe energy for the orthogonal 

code pairs. Fuentes and Fam [5] reported that the mismatched filter used sidelobe 

inversion method [5]. To reduce the chip area and power requirement for VLSI 

implementation, a cascade structure of matched filter and multistage-filter has been 

used in this paper. Levanon and Scharf [6] proposed in comparing the parallel 

outputs of contrasting mismatched filters, a range sidelobe blanking technique. 

Kumari et al. [7] suggested using a modified Woo filter to achieve low sidelobe 

pattern for P4 polyphase code. In this model, two time-shifted received pulses are 

combined and then correlated with the transmitted pulse to get the desired output. 

Akbaripour and Bastani [8] suggested using the two multi-stage mismatched filters 

based on linear programming technique and Lagrange multiplier method. In this 

paper, an iterative approach has been proposed to yield desired PSR by shaping the 

sidelobe energy with the help of weighting functions. 

Blunt and Gerlach [9] worked on one of the pioneering articles in the field of 

pulse compression, where authors presented the MMSE based adaptive pulse 

compression algorithm for the efficient sidelobe reduction and illustrated its ability 

to detect large and small targets in noisy condition. Blunt et al [10, 11] proposed 

for multiple non-stationary target detection, another variant of modified APC 

algorithm, named Doppler-compensated APC algorithm (DC-APC). Interestingly, 

in the work, the DC-APC algorithm suppresses the range sidelobes resulting from 

moving targets and estimates the true range profile.  

Due to the use of adaptive pulse compression filter for each individual range 

cell of interest, the computational cost of this adaptive approach is very high. Based 

on decimated and contiguous signal models a FAST adaptive pulse compression 

algorithm (FAPC) has been proposed to reduce the computational complexity of 

the APC [12]. Baghel and Panda [13] proposed the multiple stationery and non-

stationary target conditions, which is a generalized adaptive pulse compression (G-

APC) algorithm and has been shown to provide better results in comparison with 

APC and DC-APC algorithms. In this paper, the change in the phase of the received 

signal due to the Doppler shift is incorporated into the signal model. Wang et al. 

[14] used the practical application of solid-state radars, which is the APC algorithm 

for weather observation, near-surface precipitation measurement and for air traffic 

observation. Based on studies by Kikuchi et al. [15], an MMSE based pulse 
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compression method has also been used in the application of X-Band phased array 

weather radar.  

A similar MMSE based scheme presented recently by Li et al. has the advantage 

of low computational complexity. In this paper, authors have shown that the 

complexity of the proposed filtering method is similar to that of matched filtering 

[16]. According to Dominguez et al. [17], the APC technique was applied to range 

compression in SAR image focusing and evaluated under real and ideal conditions. 

In contrast to traditional methods, APC was shown to preserve resolution and 

reduce sidelobes with only marginal SNR loss. Cuprak and Wage [18] presented the 

application of covariance matrix tapers (CMTs) to the RMMSE algorithm for 

robust performance against Doppler. The computational efficient RMMSE-CMT 

model was shown to be robust in a variety of simulations and performs well even 

past the designed Doppler shift. Shokooh and Okhovvat [19] proposed a new 

method to account for both the Doppler phase shift and pulse eclipsing by using the 

Modified Adaptive Pulse Compression Repair (MAPCR) algorithm. The proposed 

MAPCR algorithm based on adaptive post-processing, not only innovates in 

repairing the eclipsed regions, but also applies the MF-RMMSE algorithm for the 

centre of processing window (non-eclipsed region). 

To utilize the advantages of APC algorithm, which locally construct an adaptive 

filter for each individual range cell, an attempt has been made in this paper to design 

a new pulse compression model, which incorporates the concept of APC along with 

matched filtering. In this proposed model, a fixed-weighted linear network is 

followed by an adaptive linear network. The weight coefficients of the adaptive 

network are identified using the MMSE based adaptive algorithm. Enhanced 

performance is expected at a lower computational cost in comparison with previously 

proposed adaptive pulse compression techniques. The paper is organized as follows. 

The proposed pulse compression model (AMMF) is presented in Section 2. 

Sequentially, an MMSE based adaptive algorithm for the proposed AMMF model is 

outlined in Section 3. Extensive simulations have been carried out in Section 4 to 

demonstrate the efficacy of the proposed AMMF in different target scenarios. Lastly, 

the conclusions of the paper are presented in Section 5. 

2.  Proposed Adaptive Mismatched Filter (AMMF) Model  

The proposed AMMF model for pulse compression is shown in Fig. 1, in which, D 

denotes a time delay. This AMMF model is composed of a fixed-weighted linear 

network and an adaptive linear network. Each output of the first linear network is 

the weighted sum of the adjacent delayed inputs. The weight coefficients of this 

network are fixed and equal to the complex conjugate of the transmitted waveform, 

similar to the MF’s weight coefficients. The output of the first linear network can 

be expressed as:  

𝑧(𝑙) = 𝐵𝐻𝑟(𝑙)                  (1) 

where the vector 𝑧(𝑙) = [𝑧0(𝑙), 𝑧1(𝑙), … , 𝑧(𝑁/2)−1(𝑙)]
𝑇
represents the output of the 

first stage and 𝑟(𝑙) = [𝑟(𝑙), 𝑟(𝑙 + 1), … , 𝑟(𝑙 + 𝑁 − 1)]𝑇 represents a vector of 𝑁 

contiguous discrete samples of the received signal. Here 𝑟(𝑙) is the 𝑙𝑡ℎ  delayed 

received sample of the processing window of length, 𝐿. Note that (. )𝐻  and (. )𝑇 
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represent the Hermitian and transpose operations, respectively. The 𝐵 represents 

the weight coefficients matrix (𝑁 ×
𝑁

2
) of the first linear network and is given as: 

𝐵 =

[
 
 
 
 
 
 
𝑠0 0 0
𝑠1 0 0
0 𝑠2 0
0 𝑠3 0
⋮ ⋮ ⋮
0 0 0

0       ⋯ 0
0       ⋯ 0
0       ⋯ 0
0  ⋯       0
⋮ ⋱       ⋮
0 ⋯ 𝑠𝑁−2

0 0 0 0 ⋯ 𝑠𝑁−1 ]
 
 
 
 
 
 

                 (2) 

where 𝑠 = [𝑠0, 𝑠1, … , 𝑠𝑁−1]
𝑇 represents 𝑁  samples of the transmitted pulse. The 

final output of the proposed model 𝑥𝑜𝑢𝑡(𝑙) can be written as 

𝑥𝑜𝑢𝑡(𝑙) = 𝑤
𝐻(𝑙)𝑧(𝑙)                 (3) 

where 𝑤(𝑙) = [𝑤0(𝑙), 𝑤1(𝑙), … , 𝑤(𝑁/2)−1(𝑙)]
𝑇
represents the weight coefficients of 

the adaptive stage. From Eq. (1), the simplified model output is 

𝑥𝑜𝑢𝑡(𝑙) = 𝑤
𝐻(𝑙)𝐵𝐻𝑟(𝑙)                 (4) 
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Fig. 1. Adaptive mismatched filter (AMMF) model. 

3.  Adaptive Pulse Compression algorithm for AMMF 

The Doppler shifted discrete received signal model [13] can be written as 

𝑟(𝑙) = 𝑥𝑇(𝑙)(𝑠 + Δ𝑠(𝑙)) + 𝑣(𝑙)                (5) 

where 𝑥(𝑙) = [𝑥(𝑙), 𝑥(𝑙 − 1), … , 𝑥(𝑙 − 𝑁 + 1)]𝑇represents 𝑁 contiguous impulse 

response samples of range profile and expression 𝑣(𝑙) is the additive noise. The 

Doppler phase shift is induced by the moving target, which results the phase shift 

in the reflected signal with respect to the transmitted signal. Therefore, the reflected 

signal can be modelled as given in Eq. (5), where Δ𝑠(𝑙) =
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[Δ𝑠0(𝑙), Δ𝑠1(𝑙), … , Δ𝑠𝑁−1(𝑙)]
𝑇represents 𝑁 contiguous sample-by-sample change 

in the transmitted signal contributed by the Doppler shift. The 𝑁  contiguous 

samples of received signal, collected at the receiver end, can be written as 

𝑟(𝑙) = 𝑋𝑇(𝑙)(𝑠 + 𝛥𝑠(𝑙)) + 𝑣(𝑙)                (6) 

where 𝑣(𝑙) = [𝑣(𝑙), 𝑣(𝑙 − 1), … , 𝑣(𝑙 + 𝑁 − 1)]𝑇 . Here 𝑋(𝑙) represents the 𝑁 

length-N sample-shifted snapshots of the impulse response and is given as 

𝑋(𝑙) = [

𝑥(𝑙)             𝑥(𝑙 + 1)              

𝑥(𝑙 − 1)                𝑥(𝑙)                 
⋯                     𝑥(𝑙 + 𝑁 − 1)
⋱                 ⋮

⋮           ⋱               
𝑥(𝑙 − 𝑁 + 1)             ⋯                 

⋱                         𝑥(𝑙 + 1)

𝑥(𝑙 − 1)                 𝑥(𝑙)

]   7) 

To estimate the range profile impulse response of each range cell with the help 

of the proposed model, the standard MMSE cost function can be designed as 

𝐽(𝑙) = 𝐸[|𝑥(𝑙) − 𝑥𝑜𝑢𝑡(𝑙)|
2]                 (8) 

Here, 𝐸[  ] denotes statistical expectation. From Eq. (4), above equation can be 

formulated as 

𝐽(𝑙) = 𝐸[|𝑥(𝑙) − 𝑤𝐻(𝑙)𝐵𝐻𝑟(𝑙)|2]                (9) 

To minimize the MMSE for each individual delay index, the above cost 

function is differentiated with respect to 𝑤(𝑙) and Δ𝑠(𝑙). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⏟      
𝒘(𝑙),Δ𝒔(𝑙)

 𝐸 [|𝑥(𝑙) − 𝑤𝐻(𝑙)𝐵𝐻{𝑋𝑇(𝑙)(𝑠 + Δ𝑠(𝑙)) + 𝑣(𝑙)}|
2
]           (10) 

To minimize this cost function, first, we find the optimum value of Δ𝑠(𝑙), 
Δ𝑠𝑜𝑝(𝑙), and then by using this optimum value, we find the weight coefficients of 

the adaptive stage. To find Δ𝑠𝑜𝑝(𝑙), we need to make assumption about 𝑤(𝑙). To 

reduce processing time and computational complexity, we have assumed that the 

weight coefficients for 𝑙𝑡ℎ range cell are equal to the output of the first linear 

network, that is 𝑤(𝑙) = 𝑧(𝑙). Using this assumption, Eq. (10) can be rewritten as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⏟      
Δ𝑠(𝑙)

 𝐸 [|𝑥(𝑙) − 𝑧𝐻(𝑙)𝐵𝐻{𝑋𝑇(𝑙)(𝑠 + Δ𝑠(𝑙)) + 𝑣(𝑙)}|
2
]           (11) 

The above minimization function Eq. (11) is quite similar to the function 

described in Ref. (Eq. (9), [13]). To obtain the optimum value of Δ𝑠𝑜𝑝(𝑙)for each 

individual range cell, Eq. (11) is differentiated with respect to Δ𝑠(𝑙) and then the 

result is set equal to zero. Using assumption 𝐸[𝑧(𝑙)𝑥(𝑙 ± 𝑛)] = 0 for 𝑛 ≠ 0, the 

Δ𝑠𝑜𝑝(𝑙) can be obtained as: 

Δ𝑠𝑜𝑝(𝑙) = (𝐵𝐺(𝑙)𝐵
𝐻)−1𝐵𝑧(𝑙) − 𝑠              (12) 

where 𝐺(𝑙) is 

𝐺(𝑙) = [

𝑧0(𝑙)𝑧0
∗(𝑙) 0

⋱
0 𝑧(𝑁/2)−1(𝑙)𝑧(𝑁/2)−1

∗ (𝑙)
]            (13) 

By using Eq. (1), we can further simplify the above equation and it becomes 
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Δ𝑠𝑜𝑝(𝑙) = 𝐺̂(𝑙)
−1𝑟(𝑙) − 𝑠               (14) 

where 

𝐺̂(𝑙) = [
𝑟(𝑙)𝑟∗(𝑙) 0

⋱
0 𝑟(𝑙 + 𝑁 − 1)𝑟∗(𝑙 + 𝑁 − 1)

]           (15) 

Equation (14) shows that Δ𝑠𝑜𝑝(𝑙) does not depend on the output of the first 

network. It can be directly calculated using the received signal. With the help of 

calculated Δ𝑠𝑜𝑝(𝑙) from Eq. (14), Eq. (10) can be rewritten as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⏟      
𝒘(𝑙)

 𝐸 [|𝑥(𝑙) − 𝑤𝐻(𝑙)𝐵𝐻 {𝑋𝑇(𝑙) (𝑠 + Δ𝑠𝑜𝑝(𝑙)) + 𝑣(𝑙)}|
2

]          (16) 

Baghel and Panda [13] explained that this minimization equation is similar to 

the equation. By simplifying Eq. (16), the optimum value of weight coefficients of 

the adaptive network can be obtained as: 

𝑤𝑜𝑝𝑡(𝑙) = 𝜌(𝑙)[𝐵
𝐻(𝐶(𝑙) + 𝑃(𝑙) + 𝑄(𝑙) + 𝑈(𝑙) + 𝑅)𝐵]−1𝐵𝐻 (𝑠 + Δ𝑠𝑜𝑝(𝑙))  (17) 

Here it is assumed that 𝐸[𝑥(𝑙 ± 𝑛)𝑥(𝑛 ± 𝑚)] = 0  for 𝑛 ≠ 𝑚  and 

𝐸[𝑥(𝑙)𝑣(𝑙)] = 0 . As described in [9], 𝜌(𝑙) = |𝑥(𝑙)|2  and R represents noise 

covariance matrix. Other parameters 𝐶(𝑙), 𝑃(𝑙), 𝑄(𝑙) and 𝑈(𝑙)are obtained as in 

Eqs. (18) to (21), respectively. 

𝐶(𝑙) = ∑   𝜌(𝑙 + 𝑛) 𝑠̃𝑛 𝑠̃𝑛
𝐻𝑁−1

𝑛=−𝑁+1               (18) 

where  𝑠̃𝑛  is the delayed waveform of 𝑠  shifted by 𝑛  samples, e.g.,  𝑠̃2 =
[0  0  𝑠0  … . 𝑠𝑁−3]

𝑇 and  𝑠̃−2 = [𝑠2  … . 𝑠𝑁−1   0   0]
𝑇. 

𝑃(𝑙) = [

∑ 𝜌(𝑙 − 𝑛)Δ𝑠𝑛(𝑙)𝑠𝑛
∗𝑁−1

𝑛=0 0

⋱
0 ∑ 𝜌(𝑙 − 𝑛 + 𝑛 − 1)Δ𝑠𝑛(𝑙)𝑠𝑛

∗𝑁−1
𝑛=0

]      (19) 

𝑄(𝑙) = [

∑ 𝜌(𝑙 − 𝑛)𝒔𝑛Δ𝒔𝑛
∗ (𝑙)𝑁−1

𝑛=0 0

⋱
0 ∑ 𝜌(𝑙 − 𝑛 + 𝑛 − 1)𝑠𝑛Δ𝑠𝑛

∗(𝑙)𝑁−1
𝑛=0

]     (20) 

𝑈(𝑙) = ∑   𝜌(𝑙 + 𝑛) Δ𝑠̃𝑛(𝑙) Δ𝑠̃𝑛
𝐻(𝑙)𝑁−1

𝑛=−𝑁+1              (21) 

where Δ𝑠̃𝑛(𝑙)  is represented similarly as 𝑠̃𝑛 described in Eq. (18). It represents the 

delayed samples of Δ𝑠𝑜𝑝(𝑙). We cannot calculate 𝜌(𝑙)without the prior knowledge 

of range cell impulse response 𝑥(𝑙). Here the matched filtered output is used for 

evaluating this parameter, 𝜌(𝑙) = |𝑥𝑀𝐹(𝑙)|
2. Blunt, and Gerlach [9], Blunt et al. 

[11] and Baghel and Panda [13] compared by using direct matched filter output, in 

which, the computational complexity is further reduced and normalized matched 

filter output is used for calculating the same. 

4.  Results and Discussion 

For the performance comparison of five different pulse compression methods, 

NMF [1], APC [9], DC-APC [11], G-APC [13] and proposed AMMF, the Lewis-

Kretschmer P3 code [20] of length 𝑁 (= 30) and 𝐿 (= 100) number of range cells 
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of range profile are used. For all five methods, the performance parameter PSR is 

obtained through the simulation and compared. The performance comparison in 

terms of ISLR and ATPPA are also made for several different size targets with 

severe Doppler shift conditions. Based on stationary and non-stationary targets 

conditions, five different cases have been studied in this section. The noise is 

considered to be a uniform white noise with zero mean.  

4.1.  Case 1: Low SNR stationary point target 

In the first case, a low SNR stationary point target is taken into consideration. To 

simulate this condition, the noise power is taken as 10𝑑𝐵 less with respect to the target 

return. The PSR and ISLR shown in Table 1 indicate the effectiveness of the AMMF 

over the other methods in highly noisy condition. Figure 2 shows the performance of 

the proposed AMMF compared to the other pulse compression methods. It is found that 

the AMMF shows slightly lower side lobes compared to others. 

Table 1. Comparison of 𝑷𝑺𝑹𝒅𝑩 (and 𝑰𝑺𝑳𝑹𝒅𝑩) for different SNR conditions. 

 NMF APC DC-APC G-APC AMMF 

Case-1 11.87 

(1.05) 

11.12 

(0.52) 

12.26 

(-0.48) 

12.70 

(-1.29) 

20.05 

(-12.33) 

Case-2 20.24 

(-10.58) 

31.54 

(-19.68) 

29.30 

(-19.28) 

35.66 

(-24.68) 

40.57 

(-37.01) 

Case-3 18.47 

(-10.16) 

20.56 

(-17.04) 

22.42 

(-17.15) 

35.26 

(-24.19) 

36.52 

(-33.05) 

 

 

Fig. 2. Estimated range profile impulse response for each individual range 

cell using (a) NMF, (b) APC, (c) DC-APC, (d) G-APC, (e) AMMF for case-1. 
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4.2.  Case 2: High SNR stationary point target 

To simulate this condition, a high SNR point target of 40𝑑𝐵 above the noise floor is 

taken. The PSR and ISLR calculated from the outputs of the all five methods are 

presented in Table 1. These measurements show the proposed AMMF provides better 

result in comparison to others. It is also confirmed from the outputs of the all five 

pulse compression methods shown in Fig. 3. The energy of side lobes of the output 

of AMMF is much lesser than the other techniques. Figure 3 illustrates the results in 

which, as expected, NMF suffers from range sidelobes. The other methods, however, 

are able to estimate the range profile down to the level of the noise. 

 

Fig. 3. Estimated range profile impulse response for each individual range 

cell using (a) NMF, (b) APC, (c) DC-APC, (d) G-APC, (e) AMMF for case-2. 

4.3.  Case 3: High SNR non-stationary point target 

In this case, a non-stationary point target with high SNR is considered. Because 

of the moving target, phase shifted return pulses are received at the receiver. To 

simulate this condition, the received pulse is phase shifted by 20o over the full 

length of the waveform.  

The noise power is taken as 40dB less with respect to the moving target. The 

PSR and ISLR performance of all five methods for this case have been measured 

through simulation and are presented in Table 2. The proposed algorithm, while 

degraded somewhat as a result of Doppler mismatch, is still able to significantly 

outperform.  

The comparative simulation results justify the better performance of the AMMF 

model under Doppler shift condition. Figure 4 summarises the results for NMF, 

APC, DC-APC, G-APC and the proposed AMMF. From this, it can be confirmed 

that the AMMF suppresses sidelobes efficiently when compared to others methods. 
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Table 2. Comparison of 𝑷𝑺𝑹𝒅𝑩 for case-4. 

  NMF APC DC-APC G-APC AMMF 

Large non-stationary 

point target 

20.29 30.83 30.13 35.05 35.20 

Small stationary 

point target 

0.99 10.93 10.62 10.41 12.13 

 

 

Fig. 4. Estimated range profile impulse response for each individual range 

cell using (a) NMF, (b) APC, (c) DC-APC, (d) G-APC, (e) AMMF for case-3. 

4.4. Case 4: Large non-stationary point target with closed small 

stationary target 

In this case, two nearby targets are taken to compare the high range resolution 

capability of NMF, APC, DC-APC, G-APC and the proposed AMMF models. One 

large moving target along with a small stationary target with 20𝑑𝐵 less target return 

power is considered for the simulation purpose.  

The range profile with six range cell separated two targets is considered for the 

simulation purpose. The noise power is set to −40𝑑𝐵. The return pulses from the 

both targets are overlapped and received at the receiver.  

In this case, the return from the large moving target is phase shifted by 10𝑜 over 

the full length of the waveform. In Fig. 5, the output of AMMF shows high main 

lobes resolution with lower side lobes compared to other techniques.  

As listed in Table 2, the AMMF model shows the high PSR values for both 

targets. The AMMF model outperforms the other methods, yet its estimation 

performance is again degraded due to Doppler mismatch such that the one stationary 

target is masked by sidelobes. 



1370       V. Baghel 

 
 
Journal of Engineering Science and Technology               June 2019, Vol. 14(3) 

 

 

Fig. 5. Estimated range profile impulse response for each individual range 

cell using (a) NMF, (b) APC, (c) DC-APC, (d) G-APC, (e) AMMF for case-4. 

4.5.  Case 5: Dense target scenario with doppler 

In this case, the performance of the proposed AMMF in dense non-stationary targets 

condition is validated through the simulation study. For the simulation purpose, a 

large number of stationary and non-stationary point targets of different sizes are 

considered. The locations, phase shifts due to moving targets and power levels of 

eight targets are taken randomly. In the range profile, the positions of the targets are 
[8, 21 , 37, 50, 57, 63, 72 , 81],  the phase shifts over the full length of 

waveforms are [13o,  2o, −10o,  18o, −5o,  21o,   10o, 9o]   and the normalized 

power (dB) are [−5, −20, −3, 0, −23, −8, −17, −12]. The noise of −40dB 

SNR is taken for the simulation purpose. The performance measurements in terms of 

PSR and outputs of all five methods are shown in Table 3 and Fig. 6, respectively. 

The ISLR and ATPPA performances are also assessed through a simulation study 

and are listed in Table 4. These simulation studies show the robustness of AMMF in 

dense targets scenario. As can be seen in Fig. 6, the AMMF exhibits small sidelobes 

compared to other pulse compression techniques. The matched filter exhibits the 

usual range sidelobes masking the smaller targets. The effects of Doppler mismatch 

are significantly reduced by the AMMF model, resulting in the unmasking of the one 

small stationary target. 

Table 3. Comparison of 𝑷𝑺𝑹𝒅𝑩 obtained for Case-5. 

 NMF APC DC-APC G-APC AMMF 

Target-1 13.66 18.97 21.75 24.01 27.42 

Target-2 0.25 3.93 6.71 7.95 8.25 

Target-3 15.94 21.18 23.78 26.47 28.58 

Target-4 18.56 23.88 27.09 29.01 32.11 

Traget-5 Fail 1.55 3.92 3.09 5.36 

Target-6 11.74 16.03 19.99 21.02 22.55 

Target-7 1.34 6.87 9.84 12.10 12.78 

Target-8 6.64 11.92 14.99 16.87 19.27 
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Table 4. Comparison of 𝑰𝑺𝑳𝑹𝒅𝑩 and ATPPA (%). 

 NMF APC DC-APC G-APC AMMF 

𝑰𝑺𝑳𝑹𝒅𝑩 -11.61 -19.65 -21.81 -22.28 -28.33 

ATPPA (%) 91.45 98.06 96.37 81.37 95.62 

 

 

Fig. 6. Estimated range profile impulse response for each individual range 

cell using (a) NMF, (b) APC, (c) DC-APC, (d) G-APC, (e) AMMF for case-5. 

4.6.  Complexity evaluation 

Since the APC, DC-APC, G-APC and proposed AMMF are the same class of 

adaptive pulse compression techniques, comparison of the computational cost 

(Complex Multiplies) is discussed in this section.  

It is well known that the computational complexity of all APC, DC-APC and G-

APC pulse compression methods depend on the computational load of the first stage. 

In this stage, NMF is used for estimating the weight coefficients of the next stage. 

Due to the inversion operation of the matrix, the computational complexity of all 

these adaptive techniques increases.  

In the proposed model, the output of the matched filter has been used for further 

processing. Unlike the other APC methods, only 𝑁/2  weight coefficients are 

required to estimate the range profile impulse response for each range cell.  

Comparison of the computational load of all five-pulse compression methods is 

provided in Table 5. From this table, it may be inferred that for given 𝑁 and 𝐿, the 

computational load on the AMMF is much less than that of the other adaptive pulse 

compression methods, however, it is higher than that of NMF 

 

 



1372       V. Baghel 

 
 
Journal of Engineering Science and Technology               June 2019, Vol. 14(3) 

 

Table 5. Computational Cost (Complex Multiplies). 

Methods Computational cost 

NMF 
3𝑁3 + 𝑁𝐿 

(84,000) 

APC 
3(2𝐿 + 1)𝑁3 + 5𝐿𝑁 + 2𝐿 

(1,62,96,200) 

DC-APC 

𝐿𝑁4

16
+ (

25𝐿

4
+ 3)𝑁3 + 3𝐿𝑁2 +

11𝐿𝑁

2
+ 2𝐿 

(2,23,05,200) 

G-APC 
(8𝐿 + 3)𝑁3 + (3𝐿 + 1)𝑁2 + (5𝐿 + 3)𝑁 + 2𝐿 

(2,19,67,190) 

AMMF 5𝐿𝑁3 + (5𝐿 + 1)𝑁3 +
11𝐿𝑁

2
 

(1,39,67,400) 
#Value put in brackets is obtained for N = 30 and L = 100. 

5.  Conclusions 

This paper proposes a novel mismatched filter based on an adaptive pulse 

compression technique. The received signal is passed through two networks, a linear 

network with fixed weights, followed by an adaptive linear network. The fixed weight 

coefficients of the first linear network are similar to the matched filter weight 

coefficients. The weight coefficients of the adaptive network are estimated using the 

MMSE based adaptive algorithm. Pulse compression with AMMF model is found to 

be quite effective in the presence of Doppler shift and in noisy conditions. It is 

observed that the overall performance of AMMF model is superior to those of the 

existing adaptive pulse compression methods. Due to non-sequential operations, the 

computational complexity of the proposed scheme is low, so it can be implemented 

in most real-time systems. 
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