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INTRODUCTION

EPIPODOPHYLLOTOXINS ARE THE GLUCOSIDIC DERIVATIVES 
of podophyllotoxin, which has been used in chemotherapy 

of various types of cancer, including small cell lung cancer, tes-
ticular carcinoma, lymphoma, and Kaposi’s sarcoma.1-3 Etoposide 
(VP-16) and teniposide (VM-26) are the most successful widely 
prescribed chemotherapeutic agents. Efforts for further improv-
ing their clinical efficacy by overcoming drug resistance, myelo-
suppression, and poor bioavailability problems4 associated with 
them have continued to be challenging. Over the years, a number 
of laboratories throughout the world have engaged in the synthe-
sis and testing of epipodophyllotoxin derivatives5-8 to prepare 
new more potent and less toxic analogues, that is, with better 
therapeutic indices. The proposed mechanism of epipodophyl-
lotoxins’ antitopoisomerase II activity is to inhibit the catalytic 
activity of the target enzyme by stabilizing the covalent topoi-
somerase II (TP-II)–DNA cleavable complex.9

To construct an informative structure-activity relationship 
(SAR) model and further improve design of potentially bioac-
tive compounds, there is a need for the development of predic-
tive quantitative SAR (QSAR) models for the rapid prediction 
of inhibition of human TP-IIα of novel epipodophyllotoxin 
analogues and virtual prescreening. Comparative molecular 
field analysis (CoMFA) is one of the most popular methods for 
QSAR and is characterized by reasonable simplicity and a clear 
physiochemical sense of steric and electrostatic descriptors.10 
However, despite statistically excellent predictive perform-
ance, CoMFA has an inherent limitation in aligning with the 
database molecules correctly within 3D space.11,12 The determi-
nation of the “active” conformation that each compound will 
retain is a critical issue due to the unavailability of the X-ray 
structure. We should have some knowledge or hypothesis 
regarding active conformations of the molecules under study as 
a prerequisite for structural alignment. Nevertheless, especially 
for structurally diverse molecules, unambiguous 3D alignment 
makes it difficult to initiate the CoMFA process.

We, as well as other researchers,13 were motivated to explore 
possible alternatives that would use alignment-free descriptors 
derived from 2D or 3D molecular topology and thus alleviate 
frequent ambiguity of structural alignment typical of 3D QSAR 
methods. Accordingly, in this QSAR study, we have applied 
topological, electronic, geometrical, and energy-based descrip-
tors calculated directly from the 2D and 3D structure of the 
molecules. This approach is simple, fast, and straightforward. 
It benefits in predicting the activities of a large set of molecules 
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Epipodophyllotoxins are the most important anticancer drugs used in chemotherapy for various types of cancers. To further, 
improve their clinical efficacy a large number of epipodophyllotoxin derivatives have been synthesized and tested over the 
years. In this study, a quantitative structure-activity relationship (QSAR) model has been developed between percentage of 
cellular protein-DNA complex formation and structural properties by considering a data set of 130 epipodophyllotoxin ana-
logues. A systematic stepwise searching approach of zero tests, missing value test, simple correlation test, multicollinearity 
test, and genetic algorithm method of variable selection was used to generate the model. A statistically significant model 
(r2

(train) = 0.721; q2
cv = 0.678) was obtained with descriptors such as solvent-accessible surface area, heat of formation, Balaban 

index, number of atom classes, and sum of E-state index of atoms. The robustness of the QSAR models was characterized 
by the values of the internal leave-one-out cross-validated regression coefficient (q2

cv) for the training set and r2
(test) for the test 

set. The root mean square error between the experimental and predicted percentage of cellular protein–DNA complex forma-
tion (PCPDCF) was 0.194 and r2

(test) = 0.689, revealing good predictability of the QSAR model. (Journal of Biomolecular 
Screening 2010:1194-1203)
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in rational drug design. Furthermore, we have implemented the 
concept of variable selection, a process that has been investi-
gated recently by a number of researchers14-16 using genetic 
function approximation (GFA)17,18 optimization algorithms. 
Variable selection techniques choose the most informative 
variables and eliminate irrelevant variables to improve the 
signal-to-noise ratio in the resulting models. In addition, these 
techniques are not computationally intensive and are practi-
cally automated. The behavior of the QSAR model is examined 
with a variety of statistical parameters,19 and the contribution of 
various descriptors is analyzed.

MATERIALS AND METHODS

Data set

A total of 130 epipodophyllotoxin analogues (Table 1) were 
used in the study, and were synthesized and tested under the 
same conditions in the same laboratory.5-8 To generate statisti-
cally robust and, most important, validated models, all com-
pounds in the original data set were divided randomly into 100 
molecules in the training set and 30 molecules in the test set. 
All compounds in this study were evaluated for their ability to 
form intracellular covalent topoisomerase II–DNA complexes 
using human TP-IIα at similar laboratory conditions and exper-
imental setup. The assay system has been described previously 
by Lee et al.5 The activity data originally were expressed as the 
percentage of cellular protein–DNA complex formation 
(PCPDF) and were transformed by taking the logarithm of 
PCPDF (i.e., log10 [PCPDF]) and were used in subsequent 
variable selection as well as QSAR model development.

Building of molecular structures

All these epipodophyllotoxin analogues were built from the 
various scaffold structures (Fig.  1), and the substitution of 
functional groups was carried out as mentioned in Table 1. We 
used the Maestro molecular builder for building the scaffold 
and structural derivatives. LigPrep20 was used for final prepara-
tion of ligands. LigPrep is a utility of the Schrödinger software 
suite that combines tools for generating 3D structures from  
1D (Smiles) and 2D (SDF) representation, searching for tau-
tomers and steric isomers, and performing a geometry minimi-
zation of ligands. The ligands were energy minimized using the 
Macromodel module of the Schrödinger software with default 
parameters and applying molecular mechanics force fields 
(MMFFs). A truncated Newton conjugate gradient (TNCG) 
minimization method was used with 500 iterations and conver-
gence threshold of 0.05 kJ/mol.

Descriptor calculation

All the molecular descriptors such as E-state indices; log P; 
superpendentic index; structural, symmetrical, and topological 

Table 1. List of Epipodophyllotoxin Analogues and Their 
Experimental Activities

Compound No. R-Group
Scaffold Type  

(Fig. 1) Log (PCPDCF)

1 —OH 1 1.63
2 -NHCH2CH2OCH3- 1 2.04
3 —NHCH2CH=CH2 1 1.92
4 —NHCH2CH(OH)CH3 1 2.22
5 —NHCH(CH3)CH2OH 1 2.21

6 1 2.46

7 1 2.39

8 1 2.32

9 1 0.60

10 1 2.40

11 1 2.32

12 1 1.92

13 1 2.11

14 1 1.70

15 1 2.02

16 1 2.37

17 1 2.26

18 1 1.67

19 1 2.21

20 1 2.45
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Compound No. R-Group
Scaffold Type  

(Fig. 1) Log (PCPDCF)

21 1 1.99

22 1 2.15

23 1 1.99

24 1 2.09

25 1 2.15

26 1 1.04

27 1 1.76

28 1 1.53

29 1 1.00

30 1 1.89

31 1 1.23

32 1 1.92

33 1 2.18

34 1 2.32

35 1 2.06

36 1 1.51

37 1 3.26
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(continued) (continued)

Compound No. R-Group
Scaffold Type  

(Fig. 1) Log (PCPDCF)

38 1 2.33

39 1 2.11

40 1 2.16

41 1 2.00

42 1 2.20

43 1 2.16

44 1 2.26

45 1 2.25

46 1 2.06

47 1 2.07

48 1 2.14

49 1 2.09

50 1 2.20

51 1 2.17

52 1 2.17

53 1 2.08

54 1 1.97
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Compound No. R-Group
Scaffold Type  

(Fig. 1) Log (PCPDCF)

55 1 2.00

56 1 1.97

57 1 1.18

58 1 1.92

59 1 2.11

60 1 0.64

61 1 0.54

62 1 1.76

63 1 1.94

64 1 2.00

65 1 1.41

66 1 1.91

67 1 2.16

68 1 2.17

69 1 2.10

70 1 2.04

71 1 1.86

Compound No. R-Group
Scaffold Type  

(Fig. 1) Log (PCPDCF)

72 1 2.32

73 2 0.79

74 —OH 2 1.19

75 3 1.34

76 3 1.04

77 4 1.72

78 5 1.88

79 5 2.10

80 5 2.10

81 5 2.03

82 3 1.36

83 6 0.90

84 6 0.95

85 6 1.08

86 6 0.90

87 7 2.07

88 7 2.02
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Compound No. R-Group
Scaffold Type  

(Fig. 1) Log (PCPDCF)

89 7 1.98

90 7 1.84

91 7 2.08

92 7 1.97

93 7 2.24

94 7 2.16

95 7 2.04

96 7 1.88

97 7 2.30

98 8 1.61

99 8 0.85

100 9 0.00

101 —NHCH2CH2OH 1 2.08
102 —NHCH2CH2CH3 1 1.84
103 —NHCH2CH2CH2OH 1 1.95

104 1 2.33

105 1 2.14

106 1 2.36

107 1 2.51
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Table 1. (continued) Table 1. (continued)

(continued) (continued)

Compound No. R-Group
Scaffold Type  

(Fig. 1) Log (PCPDCF)

108 1 1.32

109 1 2.08

110 1 2.20

111 1 1.71

112 1 2.00

113 1 1.79

114 1 2.25

115 1 1.81

116 1 2.33

117 1 2.23

118 1 2.45

119 1 2.11

120 1 1.93

121 1 2.20

122 1 1.30

123 1 2.07

124 3 0.95
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descriptors; lead likeness; electronic Wang-Ford atomic charge 
and extended Huckel partial charge functions; bulk; moments; 
orbital energies; molecular connectivity indexes; gravitational 
indexes; hydrophobicity; and steric and thermodynamic factors 

were calculated using ADME Model Builder software package 
(version 4.5).21 These descriptors help differentiate the mole-
cules mostly according to their size, degree of branching, flex-
ibility, and overall shape. Some of the descriptors included in 
the study are listed and described in Table 2.

Screening of descriptors and development of QSAR model

A set of 372 molecular descriptors was calculated using the 
ADME Model Builder software package (version 4.5). A sys-
tematic search in the order of missing value test, zero test, cor-
relation coefficient, and genetic algorithm was performed to 
determine significant descriptors using the ADME Model 
Builder (version 4.5) software package (Fujitsu, Fukuoka, 
Japan). Any molecular descriptor that was not calculated (miss-
ing value) for any number of the compounds in the data set was 
rejected in the first step. Some of the descriptors were rejected 
because they contained a zero value for all the compounds 
(zero tests). To minimize the effect of collinearity and to avoid 
redundancy, a correlation matrix was developed with a cutoff 
value of 0.6, and the variables were physically removed from 
the analysis, which showed exact linear dependencies between 
subsets of the variables and multicollinearity (high multiple 
correlations between subsets of the variables). From the 
descriptors thus remaining, the selection of variables to obtain 
the QSAR models was carried out using a genetic algorithm 
implemented in the ADME Model Builder (version 4.5) soft-
ware package. The genetic algorithm (GA) works in the follow-
ing way: first, a particular number of equations (set at 100 in 
this study) are generated randomly. Then pairs of “parent” 
equations are chosen randomly from this set of 100 equations, 
and progeny equations are generated performing “crossover” 
and “mutations” operations at random. The parameters set used 
for the GA included the following: mutation 0.1, crossover 0.9, 
number of generations 1000, r2 floor limit 50% (lowest accept-
able r2), and objective function r2/N_par. The goodness of each 
progeny equation is assessed by the objective function, which 
is a mathematical function used for ranking the progeny equa-
tion. It favors the equation that has the highest correlation (r2) 
with the biological activity, while minimizing the number of 
molecular descriptors (N_par). Finally, the 2 best equations 
were selected (one with 5 descriptors and the other with 6 
descriptors) based on objective function for comparison. The 
effect of each molecular descriptor on the statistical quality of 
the model developed was assessed by applying the brute-force 
approach. Initially, the QSAR equation was developed by tak-
ing a single descriptor that had the highest correlation with the 
biological activity. To this equation, the second best descriptor 
was added, and likewise we increased the number of molecular 
descriptors one by one and evaluated the effect of adding new 
terms on the statistical quality of the model. The best equation 
was taken on the basis of statistical parameters such as squared 
regression coefficient (r2) and leave-one-out cross-validated 
regression coefficient (q2

cv).

Compound No. R-Group
Scaffold Type  

(Fig. 1) Log (PCPDCF)

125 3 0.60

126 3 1.52

127 7 2.11

128 7 1.89

129 7 1.92

130 7 2.17

PCPDCF, percentage of cellular protein–DNA complex formation.
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Table 1. (continued)

FIG. 1. The various scaffold structures used for building the epi-
podophyllotoxin analogues.
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Validation of the QSAR model

The predictive capability of the QSAR equation was deter-
mined using the leave-one-out cross-validation method. The 
cross-validation regression coefficient (qcv

2) was calculated by 
the following equation:
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where ypred, yexp, and y– are the predicted, experimental, and 
mean values of experimental activity, respectively. Also, the 
accuracy of the prediction of the QSAR equation was validated 
by F-value, r2, and r2

adj. A large F indicates that the model fit is 
not a chance occurrence. It has been shown that a high value of 
statistical characteristics is not necessary as the proof of a 
highly predictive model.22,23 Hence, to evaluate the predictive 
ability of our QSAR model, we used the method described by 
Golbraikh and Tropsha22 and Roy and Roy.23 The values of the 
correlation coefficient of predicted and actual activities and the 
correlation coefficient for regressions through the origin (pre-
dicted vs. actual activities and vice versa) were calculated 
using the regression of analysis Tool-pak option of Microsoft 
Excel, and other parameters were calculated as reported by the 
above authors.22,23 The determination coefficient in prediction, 
q2

test, was calculated using the following equation23:
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where YpredTest
 and YTest are the predicted value based on the 

QSAR equation (model response) and experimental activity 

values, respectively, of the external test set compounds. YTraining 
is the mean activity value of the training set compounds.

We also carried out the leave-10%-out and leave-20%-out 
cross-validation for the training set to further validate the 
QSAR model internally.

To check the intercorrelation of descriptors, variance infla-
tion factor (VIF) analysis was performed. The VIF value is 
calculated from 1/(1 – r2), where r2 is the multiple correlation 
coefficient of one descriptor’s effect regressed on the remain-
ing molecular descriptors. If the VIF value is larger than 10, 
information of descriptors can be hidden by correlation of 
descriptors.24,25

RESULTS AND DISCUSSION

The 130 active compounds with their biological activity in 
terms of PCPDCF were randomly divided into a training set of 
100 compounds and a test set of 30 compounds. With the wide 
range of difference between PCPDCF values and the large 
diversity in the structures, the combined data set of 100 mole-
cules and 30 molecules is ideal as training and test sets, as both 
sets do not suffer from bias due to the similarity of the struc-
tures. The various molecular descriptors (372 in total) as 
described in Table 2 were calculated initially. By applying a 
missing value test, a zero test, a correlation test with a cutoff 
value of 0.6, and a multicollinearity test with a cutoff value of 
0.9, we have discarded the most likely descriptors, resulting in 
218 descriptors. Further additional descriptors were discarded 
by applying the GA, and finally 6 descriptors (2 equations were 
selected: one equation with 5 descriptors and the other with 
additional descriptors in comparison to the previous one) were 
selected for the development of the QSAR equation. The initial 
QSAR equation was developed by considering a single molec-
ular descriptor that showed the highest correlation with the 

Table 2. List of Descriptors Used in the Study

Type Descriptors

E-state indices Electrotopological state indices
Electronic Partial positive surface area, partial negative surface area, relative positive charge, relative negative charge, relative positive charged 

surface area, relative negative charged surface area, weighted positive charged partial surface area, weighted negative charged partial 
surface area, fractional negative charged partial surface area, fractional positive charged partial surface area, Huckel molecular orbital 
indices, highest occupied molecular orbital, lowest unoccupied molecular orbital, free valence value, nucleophilic 
superdelocalizability, free radical superdelocalizability, heat of formation, dipole moments, energy of the highest occupied orbital, 
energy of the lowest unoccupied orbital, electronegativity, hardness

Information content Information of atomic composition index, superpendentivity index
Spatial Radius of gyration, Jurs descriptors, shadow indices, area, density, length-to-breath ratios
Structural Topological symmetry, geometrical symmetry, combined symmetry, conformational flexibility indices, molecular distance edge 

descriptors, moment of inertia indices, geometric moment indices, number of single bonds, number of aromatic bonds
Thermodynamic Average energy, bond strain energy, angle strain energy, nonbonded strain energy, torsional strain energy, total strain energy of molecule
Lead likeness LogP (Meylan, Howard), LogS, LogP (Moriguchi, Hirono)
Topological Wiener index, Kier and Hall molecular connectivity indices, path count and length descriptors, topological polar surface area (TPSA), 

Balaban indices
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biological activity (PCPDCF). To this equation, by applying a 
brute-force approach, we increased the number of parameters 
in the QSAR equation one by one and evaluated the effect of 
adding a new term on the statistical quality of the model. As the 
squared correlation coefficient, r2, can be easily increased by 
the number of terms in the QSAR equation, we took the cross-
validation correlation coefficient, q2

cv, as the limiting factor for 
a number of descriptors to be used in the final model. It was 
observed that the q2

cv value increased until the number of 
descriptors in the equation reached 5, as shown in Table  3. 
With further addition of parameters to the equation with 5 
descriptors, there was a decrease in the q2

cv value of the model. 
So, the number of descriptors was restricted to 5 in the final 
QSAR model. By graphing these molecular descriptors versus 
activity (log PCPDCF), all have poor correlation to experimen-
tal activity of the set of ligands (Table 4).

The best significant relationship for the biological activity 
has been deduced to be

Log PCPDCF = 7.25 + 2.97 * SASA + 0.108 * ES_Sum_aasC –  
    0.0813 * NATM – 2.48 Balaban index – 0.000794 * HOF 

(n = 100; r2
train = 0.721; s = 0.24; PRESS = 6.240; 

r2
adj = 0.707; q2

cv = 0.678; F-test = 48.71)

where n is the number of compounds in the training set, r2
(train) is 

the squared correlation coefficient, s is the estimated standard 
deviation about the regression line, r2

adj is the square of the 

adjusted correlation coefficient for degrees of freedom, F-test 
is the measure of variance that compares 2 models differing by 
1 or more variables to see if the more complex model is more 
reliable than the less complex one (the model is supposed to be 
good if the F-test is above a threshold value), and  q2

cv is the 
square of the correlation coefficient of the cross-validation 
using the leave-one-out cross-validation technique. The QSAR 
model developed in this study is statistically (r2

(train) = 0.721,  
q2

cv = 0.678, F-test = 48.71) best fitted and consequently was 
used for prediction of PCPDCF of the training and test sets of 
molecules as reported in Supplementary Tables S1 and S2. The 
relationships between predicted (both training and test) activi-
ties and the corresponding experimental activities are shown in 
Figures 2 and 3. The r2

(train) and  q2
cv  have values of 0.721 and 

0.678, respectively, which corroborate with the criteria for a 
QSAR model to be highly predictive.22 The standard error of 
estimate for the model was 0.24, which is an indicator of the 
robustness of the fit and suggested that the predicted PCPDCF 
based on Equation (1) is reliable. Leave-10%-out and leave-
20%-out cross-validation for the training set was also per-
formed. The value of r2 and  q2

cv  in all 10 cycles was greater 
than 0.5 (r2 value 0.627-0.809 and  q2

cv value 0.605-0.78) 
using leave-10%-out cross-validation. Based on the leave-
20%-out cross-validation technique, the value of r2 and  q2

cv  
in all 5 cycles was greater than 0.5 (r2 value 0.657-0.794 and  
q2

cv value 0.601-0.752), hence further validating the model 
internally.

Table 3. Statistical Assessment of Quantitative Structure-Activity Relationship (QSAR) 
Equations with Varying Number of Descriptors

No. of  
Descriptors QSAR Equation r2 q2 PRESS F-Value

1 Log PCPDCF = 1.23 + 2.98 * SASA 0.26 0.22 15.17 34.72
2 Log PCPDCF = 0.589 + 3.00 * SASA + 0.148 * ES_Sum_aasC 0.43 0.35 12.67 36.03
3 Log PCPDCF = 1.59 + 2.71 * SASA + 0.148 * ES_Sum_aasC – 0.00277 * NATM 0.48 0.40 11.66 29.14
4 Log PCPDCF = 7.52 + 2.89 * SASA + 0.0906 * ES_Sum_aasC – 0.0818 * NATM – 2.51 * 

Balaban index
0.71 0.67 6.37 58.33

5 Log PCPDCF = 7.25 + 2.97 * SASA + 0.108 * ES_Sum_aasC – 0.0813 * NATM – 2.48 
Balaban index – 0.000794 * HOF

0.72 0.68 6.24 48.71

6 Log PCPDCF = 7.33 + 2.87 * SASA + 0.106 * ES_Sum_aasC – 0.0761 * NATM – 2.39 * 
Balaban index – 0.000757 * HOF + 0.0182 * ESP_minimum

0.73 0.67 6.37 41.12

HOF, heat of formation; NATM, number of atomic classes; PCPDCF, percentage of cellular protein–DNA complex formation; SASA, solvent-accessible surface area.

Table 4. Regression Properties of Molecular Descriptors with Experimental Activities (Log PCPDCF)

Descriptor SASA ES_Sum_aasC NATM Balaban Index HOF

R2 0.261 0.162 0.107 0.039 0.01
Intercept (B) 1.228 1.318 3.281 3.074 2.05
Standard error of B 0.128 0.150 0.391 0.566 0.114

HOF, heat of formation; NATM, number of atomic classes; PCPDCF, percentage of cellular protein–DNA complex formation; SASA, solvent-accessible surface area.

(1)
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The intercorrelation of the descriptors used in the QSAR 
model (1) was very low (below 0.6), which is in conformity to 
the study. For a statistically significant model, it is necessary 
that the descriptors involved in the equation should not be 
intercorrelated with each other.26 To further check the intercor-
relation of descriptors, VIF analysis was performed. In this 
model, the VIF values of these descriptors are 1.02 (solvent-
accessible surface area [SASA]), 1.09 (ES_Sum_aasC), 1.27 
(number of atomic classes [NATM]), 1.34 (Balaban index), and 
1.02 (heat of formation [HOF]), which are less than the thresh-
old value of 10.22,23

Satisfied with the robustness of the QSAR model (devel-
oped using the training set), we have applied the QSAR model 
to a test data set of epipodophyllotoxin analogues. As the 
experimental values of PCPDCF for these inhibitors are already 
available, this set of molecules provides an excellent data set 
for testing the prediction power of the QSAR model for new 
ligands. Supplementary Table S2 represents the predicted 
PCPDCF of the test set based on Equation (1). The overall root 
mean square error (RMSE) between the experimental and pre-
dicted PCPDCF was 0.194, which revealed good predictability. 
The estimated correlation coefficients (r2

(test)) and the cross-
validated correlation coefficient (q2

cv(test)) between experimental 
and predicted PCPDCF was 0.689 and 0.623, respectively, 
thereby indicating the good external predictability of the QSAR 
model. Coupled with the good predictive ability of the QSAR 
model developed in this study, we believe that this model 
would perform well as rapid screening tools to uncover new 
and more potent anticancer drugs based on epipodophyllotoxin 
derivatizations.

Descriptors interpretation

Based on the developed QSAR model, it is observed that the 
important molecular descriptor that contributes to the potentiat-
ing activity is the solvent-accessible surface area (Jurs-SASA). 

10.1177_1087057110380743-fig2.tif

FIG. 2. Relationship between predicted and experimental percent-
age of cellular protein–DNA complex formation (PCPDCF) as per 
Equation (1) of the training set compounds.

10.1177_1087057110380743-fig3.tif

FIG. 3. Relationship between predicted and experimental percent-
age of cellular protein–DNA complex formation (PCPDCF) as per 
Equation (1) of the test set compounds.

It includes both shape and electronic information to character-
ize the molecules. This descriptor has the largest contribution 
to the bioactivity with a positive 36% contribution. The next 
largest contribution to bioactivity is from the Balaban J-index27 
with a negative 32% value (since the coefficient is negative). 
The Balaban index is a type of topological descriptor and cal-
culated based on the 2D structure of the molecule. It is 
inversely proportional to the electronegativities and covalent 
radii of the atoms in the molecules. The third largest contribu-
tion to the biological activity comes from the descriptor ES_
Sum_aasC with a positive 22.2%. It is the E-state index of an 
atom type that is the sum of the standard value for the atom 
type and the perturbation from the other atoms in the molecule. 
In this descriptor, “a” represents an aromatic bond, “s” is the 
single bond, and “C” is the carbon atom. Hence, it describes the 
electrotopological state index of the aromatic carbon atoms 
linked by single bonds. This is well supported if we compare 
the molecules consisting of aromatic rings and the molecules 
consisting of no aromatic rings. In general, substitution of aro-
matic groups in the scaffold structure (R group) has a higher 
complex formation. The contributions of the other two descrip-
tors, NATM and HOF, are very low with a contribution of 7% 
and 1.4%, respectively. The descriptors that have been used for 
constructing the QSAR model in the present work encoded 
electronic, geometrical, and topological aspects of molecules.

CONCLUSION

We have compiled a virtual library of epipodophyllotoxin 
analogues built through structural modification of the scaffold 
structure of natural podophyllotoxin. QSAR modeling was done 
to get insights into ligand–TP-IIα interactions and corresponding 
PCPDCF of epipodophyllotoxin analogues. We have demon-
strated that the QSAR model developed in this study can be 
applied to estimate the PCPDCF with a high level of accuracy 
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for a diverse set of epipodophyllotoxin analogues. Using a com-
bination of topological and electrotopological state indices, as 
well as electronic and thermodynamic descriptors of chemical 
structures, we have built several robust QSAR models with high 
values of q2

cv (for training sets) and predictive r2
test (for test sets). 

The calculated PCPDCF value of a set of structural analogues 
demonstrates good linear correlation to the experimental 
PCPDCF value. This model could be useful to predict the range 
of activities for new epipodophyllotoxin analogues. The infor-
mation we have expressed in this study may lead to the design 
(synthesis) of more potent epipodophyllotoxin derivatives for 
inhibition of human TP-IIα (anticancer activity) and facilitate the 
search for related structures with similar biological activity from 
a large number of databases.
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