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Abstract
In the era of big data analysis, genomics data analysis is highly needed to extract the hidden information present in the DNA 
sequences. One of the important hidden features present in the DNA sequences is CpG islands. CpG Islands are important as 
these are used as gene markers and also these are associated with cancer etc. Therefore, various methods have been reported 
for the identification of CpG islands in DNA sequences. The key contributions of this work are (i) extraction of the periodicity 
feature associated with CpG islands using Short-time Fourier transform (ii) a short-time Fourier transform-based algorithm 
has been proposed for the identification of CpG Islands in DNA sequences. The results of the proposed algorithm amply 
demonstrate its better performance as compared to other reported methods on CpG islands detection.

Keywords CpG islands (CGI) · DNA sequences · Numerical mapping · Short-time fourier transform (STFT)

1 Introduction

In the era of big data analysis, annotation and analysis of 
genomics data are highly needed to tackle current medical 
and societal problems. Genomics data contains deoxyribonu-
cleic acid (DNA) sequences. The DNA sequences have four 
nucleotides: Adenine (A), Guanine (G), Cytosine (C), and 
Thymine (T). DNA sequences have the information about the 
protein-coding regions [1–5], tandem repeats [6–9], intron 
retentions [10], Helitrons [11], and CpG Islands (CGIs) [12] 
etc., which are useful in the genome annotation and associ-
ated with the biological functionalities of an organism. This 
study focuses on the CpG Islands (CGIs) present in the DNA 
sequences. CpG Islands are the regions in DNA sequences 
which consist of high-frequency CG dineucleotide as com-
pared to the non-CGI regions. The ‘p’ in CGI corresponds 
to the phosphodiester bond between C and G nucleotides 
[12]. CGIs act as a gene marker because these are useful 
to detect the first exonic regions, and promoter regions in 

DNA Sequences [13]. Also, the methylated CpG islands are 
associated with the important biological process like human 
malignancies, genome imprinting, X chromosome inactiva-
tion, aging, suppression of repetitive elements, and cancers. 
The Methylation is a process in which a methyl group (CH3) 
is added to the 5-position of the carbon in the pyrimidine 
ring of the cytosines of the CGI [14]. The first method for 
the identification of the CGIs in the DNA sequences has 
been developed by Gardiner-Garden and Frommer (GGF) 
[15], which is based on the following conditions:

 (i) Length of CpG should be at least 200 bps,
 (ii) Concentration C + G nucleotide should be minimum 

50%,
 (iii) Observed/Expected (O/E) ratio should be at least 

equal to 0.6.

Recently, various computational methods have been 
reviewed by Tahir et al. [12]. Some of the methods for the 
identification CGIs in DNA sequences have been discussed 
in this paper. These methods are CpG Cluster [16], IIR fil-
ter [17], FIR filter [18], Discrete Wavelet transform (DWT) 
[19], CpGcluster-TLBO [20] and CpGPNP [21]. Hackenberg 
et al. proposed a method in which the clustering has been done 
using the distance between CpG sites [16]. Vaidyanathan et al. 
developed an IIR filter-based method, in which the 40 filters 
have been used to calculate the weighted log score for the 
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identification of the CGIs. The limitation of this method is its 
computational complexity due to the use of a large number 
of filters [17]. Rushdi and Tuqan proposed a method [18] in 
which Markov chain method and FIR filter together have been 
used for CGI detection. In this method, models for CGI and 
non-CGI have been developed and then FIR filter has been 
used to generate filtered likelihood ratio to detect the CGIs. 
Discrete Wavelet Transform (DWT) based CGI identifica-
tion algorithm has been reported in [19]. It uses DWT along 
with adaptive filtering to identify CGIs. Park et al. proposed 
a sliding window-based method for CpG island detection 
[21]. Cheng et al. proposed a method CpGTLBO, in which 
the clustering method and teaching–learning-based optimi-
zation (TLBO) algorithm has been used. In this approach, 
clustering is used to detect the candidates CGIs and TLBO 
is used to optimize these candidates CGIs with respect to the 
actual CGIs [20]. In this paper, a short-time Fourier transform 
(STFT) based algorithm for CpG islands (CGIs) identification 
has been proposed. The performance of the proposed (STFT 
based) method has been compared with existing methods 
CpGTLBO, CpGPNP, and DWT based method. The remain-
der of the paper is organized as follows: materials and method 
have been explained in Sect. 2, data set and evaluation parame-
ters have been described in Sect. 3, in Sect. 4 results have been 
discussed, and Sect. 5 presents the conclusion of the work.

2  Materials and Method

2.1  Periodicities in CpG Islands

It is reported that CpG islands are high-frequency recurring 
patterns of CG dineucleotide [18] in DNA sequences; there-
fore, we have considered small periodicities as a feature of 
CpG islands. To validate the periodicity feature first we con-
verted the characters A, T, G, C into numeric sequences using 
integer mapping scheme [22] and then computed the STFT of 
all of the 17 CpG island sections present in the DNA sequence 
of L44140 [19, 23] individually. To compute STFT of the 
DNA sequence, DFT has been applied to get the power spec-
trum of windowed sequence with a sliding window approach 
[24]. The N-point DFT of a numeric sequence x(n) at each 
nucleotide position “n” has been calculated as follows [24]: 

where, w(n) =
�
1∕�

√
2�

�
exp

�
−n2∕2�2

�
 , n is the length of 

Gaussian window, � = n∕2� , � is a window shape parameter. 
In this work n = 210, � is 2.5, FFT length N = 2520, and 
k = 0…N−1 have been selected. Using (1), power spectrum 
of the windowed sequence is

(1)X(k) =

N−1∑

n=0

x(n)w(n)e
−j2�nk

N ,

The value of power spectrum with respect to the periodic-
ities i.e. frequency bins k = N∕p for periodicity p = 2 − 10 
has been calculated from the windowed power spectrum 
S1(k) at each nucleotide position using the following 
equation

where n represents the nucleotide position at which window 
is centered and it varies from n = 0…L , where L is the full 
length of DNA sequence. Now, nucleotide position versus 
periodicity plots have been plotted for all 17 CpG islands 
segments and these are shown in Fig. 1.

The dominant periodicities from the nucleotide position-
periodicity plots have been extracted using the following 
criterion:

• Minimum segment length should be twice of the perio-
dicity.

• Minimum periodicity must be considered as dominating 
when the segments are overlapping.

Now, the segments of the detected dominant periodici-
ties have been verified using two conditions of O/E ratio, 
and percentage of GC content as per GGF criterion. If the 
segments of detected periodicities satisfy these two GGF 
conditions for CpG Island then these are considered as veri-
fied dominating periodicities else rejected.

The detected and verified dominating periodicities in 
CpG islands segments of L44140 sequence have been sum-
marized in Table 1.

From Table 1, it has been observed that periodicities 2–10 
are associated with CpG islands. In the next section, an algo-
rithm for CpG islands detection has been proposed using 
these verified dominating periodicities of the CpG islands.

2.2  Proposed Algorithm for CpG Island Detection

In this section, an algorithm has been proposed to identify 
the CpG islands in DNA sequences, which is based on domi-
nant periodicities present in CpG islands. The flow chart of 
the proposed algorithm is shown in Fig. 2.

The DNA sequence having gene bank accession num-
ber L44140 is of Homo sapiens chromosome X region from 
filamin (FLN) gene to glucose-6-phosphate dehydrogenase 
gene. The length of this sequence is of 219,447 bp and it has 
been selected as an example sequence to describe the steps 
of the proposed algorithm, and these are described below

(2)S1(k) = |X(k)|2

(3)S(n, p) = S1(n,N∕p),
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2.2.1  Numerical Mapping

The conversion of the character sequence into numeric 
sequence plays an important role in the digital signal 
processing (DSP) based algorithms to analyze the DNA 
sequences [22]. An example of integer numerical mapping 
scheme is shown in Table 2.

2.2.2  Calculate the Resultant Power Spectrum

By applying short-time discrete Fourier transform, we calcu-
lated the value of power spectrum components correspond-
ing to each dominant periodicities i.e. periodicity 2–10 using 
Eq. 3. The power spectrums corresponding to dominating 
periodicities at each nucleotide position have been then 
combined linearly to get the resultant power spectrum for 
respective mapping scheme ‘a’. The resultant power spec-
trum SRa(n) is calculated as follows

The resultant power spectrum SRa(n) has been plotted in 
Fig. 3.

2.2.3  Identify the Candidate CpG Islands

To identify the candidate CpG Islands from the resultant power 
spectrum, the 10% value of the maximum value of the result-
ant power spectrum SRa(n) has been selected as a threshold 
empirically. The sections for which the peak value of the 
power spectrum is above the threshold have been considered 
as candidate CpG islands.

(4)SRa(n) =

10∑

p=1

S(n, p)

(5)Ya(n) =

{
SRa(n), SRa(n) > Th

0, else,

Fig. 1  Nucleotide position-periodicity plot of 17 CGIs of DNA sequence L44140
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where Th = 0.1 ×max(SRa(n)).
Ya(n) has been plotted in Fig. 4 as a candidate CpG Island.

2.2.4  Verify the Candidate CpG Islands

The Segments corresponding to the detected candidate CpG 
Island have been verified using GGF criteria.

The Za(n) corresponding to the verified detected candidate 
CpG islands has been plotted in Fig. 5.

2.2.5  Combine Mapping Results

To select the appropriate mapping scheme, the performance of 
the proposed algorithm using 12 numerical mapping schemes 
has been compared in Table 3.

From Table 3, it has been observed that the Sn and AC 
of the proposed method for the 24 combinations of integer 
mapping are better as compared to other mapping schemes. 
Therefore, the final spectrum corresponding to CpG islands 
has been calculated by combining the verified spectrums of 24 
mapping schemes and it is computed by the following equation

(6)

Za(n) =

{
Ya(n), if sections of Ya(n) satify GGF Criteria

0, else

(7)SCpG(n) =

24∑

a=1

Za(n), a ∈ (1, 24)

The final spectrum corresponding to CpG islands for the 
proposed algorithm is shown in Fig. 6, where the horizontal 
axis represents the nucleotide position and the vertical axis 
represents the value of the power spectrum corresponding to 
nucleotide positions. To visualize the locations of detected 
CGIs, the final spectrum has been plotted in segments and 
these are plotted in Figs. 7, Fig. 8, Fig. 9, and Fig. 10.

The locations of CpG islands detected using the proposed 
algorithm have been shown in Table 4.

From Table 4, it has been clear that proposed algorithm 
identifies all 17 CpG islands present in the DNA sequence 
(acc. no. L44140) with some false positives. The perfor-
mance of the proposed method has also been compared on 
the basis of the % coverage of the length of the true CpG 
Islands in Table 5.

In Table 5, it has been shown that the performance of the 
proposed algorithm is best amongst all methods with respect 
to percentage coverage of 80%, 90%, and 100% of the length 
of the true CpG Island.

3  Data Set and Evaluation Parameters

3.1  CpG Islands Data Set

To validate the performance of the proposed algorithm, we 
have made our own data set of CpG Islands of 100 DNA 
sequences for the species of human, mouse and fish [25]. 
The DNA sequence data set has been downloaded from the 
National Centre for Biotechnology Information (NCBI) [23]. 

Table 1  Periodicities in CpG 
islands in L44140

S. No Location of CGI as 
per NCBI website

Length of 
CGI (bps)

Detected periodicities in
CpG Island Segments

Verified periodicities 
in CpG Island Seg-
ments

CGI 1 3095–3426 332 4 –
CGI 2 11,638–13,564 1927 3, 6, 7 3, 6
CGI 3 40,983–42,150 1168 3, 5, 6 3, 5, 6
CGI 4 44,799–45,386 588 2, 3, 4, 5, 6, 7 2, 3, 4, 5, 7
CGI 5 48,446–50,350 1905 2, 3, 4, 6, 8, 10 2, 3, 4, 6, 8, 10
CGI 6 59,461–61,404 1944 2, 3, 6, 7 3, 6, 7
CGI 7 67,900–69,472 1573 2, 3, 5, 6, 7, 9, 10 2
CGI 8 81,836–82,633 798 4, 6, 7, 8 4, 6
CGI 9 98,783–99,468 686 2, 3, 6, 7, 10 2, 3, 6, 7, 10
CGI 10 106,826–108,158 1333 3, 4, 6, 7, 8, 9 3, 6, 9
CGI 11 114,316–114,957 642 2, 3, 4, 6, 8, 9 2, 3, 4, 6, 8
CGI 12 128,187–129,236 1050 2, 3, 8, 9, 10 2, 3, 8
CGI 13 148,990–149,796 807 2, 5, 6, 10 2, 6, 10
CGI 14 156,388–157,495 1108 2, 4, 6, 7, 8 2, 6, 7, 8
CGI 15 160,697–161,402 706 2, 5, 6 2, 5, 6
CGI 16 186,412–186,922 511 2, 3, 5 2
CGI 17 216,617–217,876 1260 2, 6, 7 2, 6
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The detailed description of the data set with the accession 
number is shown in Table 6.

3.2  Evaluation Parameters

The performance analysis of the proposed algorithm has 
been carried out over the existing algorithms using the eval-
uation parameters, sensitivity (Sn), specificity (Sp), accuracy 
(AC) [3], and F-Measure [26]. These parameters are defined 
as follows:

Fig. 2  Flow chart of the proposed algorithm

Table 2  Numerical Conversion

DNA Sequence Numerical conversion using integer mapping

ATGCATG [1432143……]

Fig. 3  Resultant power spectrum

Fig. 4  Power spectrum corresponding to the candidate CpG islands
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(8)Sn =
TP

TP + FN

(9)Sp =
TN

TN + FP

where

(10)AC =
Sn + Sp

2

(11)F-measure =
2 × (precision × recall)

precision + recall

precision =
TP

TP + FP
, recall =

TP

TP + FN

Fig. 5  Power spectrum corresponding to the verified candidate CpG 
islands

Table 3  Performance measures in L44140 using 12 Numerical Map-
pings

The bold values represent that the performance of the proposed algo-
rithm is better as compared to the CpGclusterTLBO, CpGPNP, DWT 
based methods in terms of respective parameters

Mapping Performance measure

Sn Sp AC

Atomic 0.0440 0.9767 0.5104
Complex 0.0295 1 0.5148
EIIP 0.4131 0.9538 0.6834
Fourbitbinary 0.0699 0.9888 0.5293
Threebitbinary 0.0154 0.9942 0.5048
Twobitbinary 0.5202 0.9618 0.7410
Integer 0.4758 0.9782 0.7270
Real Number 0.0336 0.9822 0.5079
Modified EIIP 0.5991 0.9492 0.7742
Molecular Mass 0.0440 0.9826 0.5133
Quaternary 0.4152 0.9689 0.6920
Pseudo EIIP 0.5464 0.9656 0.7560
Adding 24 mappings using 

integer mapping
0.9590 0.8285 0.8938

Fig. 6  Final power spectrum corresponding to the CpG islands

Fig. 7  Final power spectrum corresponding to the CpG islands 
(1–55,000 bps)
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True positive (TP) is the correctly predicted locations 
where CpG islands are present, False positive (FP) is the 
falsely detected locations where CpG islands are not pre-
sent, True negative (TN) is the correctly predicted locations 
where CpG islands are not present, and False negative (FN) 
is the missed locations where CpG islands are present. The 
value of both Sn and Sp vary between 0 and 1. The predic-
tion result is considered to be perfect for the ideal case of 
value 1 of Sn and Sp. Accuracy which considers the effect 
of both Sn and Sp simultaneously has also been evaluated. 
The value of AC varies between 0 and 1. The F-measure 

is a measure of an algorithm’s accuracy and it represents 
the harmonic mean of the precision and recall. It is used 
in place of receiver operating characteristics (ROC) if the 
analysis has been done on single threshold only. Its value 
lies between 0 and 1. For better performance, the value of 
F-measure should be 1.

4  Results and Discussion

The performance of the proposed algorithm has been com-
pared with the recently reported methods CpGclusterTLBO, 
DWT based algorithm and CpGPNP. The details of the per-
formance parameters for human, fish and mouse species 
using CpGclusterTLBO, DWT, CpGPNP and proposed 
algorithm are shown in Tables 7, 8 and 9, respectively.

The performance of the proposed method for CpG island 
detection has been compared on the basis of the performance 
parameter Sn, Sp, AC, and F-measure with recently reported 
methods on the DNA sequences data set of human, fish and 
mouse. The comparison has been shown in Tables 7, Table 8, 
and Table 9. From this comparison, it has been found that 
the performance parameters Sn, Sp, AC, and F-measure 
of the proposed method are higher than other methods for 
human and mouse DNA Sequences whereas Sn is slightly 
less than the DWT based method for the DNA sequences 
of Fish. The performance of the proposed method for CpG 
island detection has also been compared with respect to the 
performance parameters Sn, Sp, AC, and F-measure on 100 
DNA sequences of human, mouse and fish, and these are 
shown in Table 10.

Fig. 8  Final power spectrum corresponding to the CpG islands 
(55,001–110,000 bps)

Fig. 9  Final power spectrum corresponding to the CpG islands 
(110,001–165,000 bps)

Fig. 10  Final power spectrum corresponding to the CpG islands 
(165,000–220,000 bps)
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It is observed from Table 10 that the performance of 
the proposed algorithm on 100 DNA sequences of human, 
mouse and fish is better in terms of Sn, Sp, AC and 
F-measure amongst all other recently reported methods.

The performance of the proposed method has also been 
compared using 100 DNA sequences of human, mouse and 
fish on the basis of the % coverage of the length of true 
CpG Islands in Table 11.

It has been observed from Table 11 that the performance 
of the proposed algorithm in the detection of CpG islands is 
the best amongst all methods. The 100 DNA sequences con-
tain 194 CpG islands. Out of which the proposed algorithm 
has detected more number of CpG islands at 80%, 90%, and 
100% portion coverage of the length of true CpG island as 
compared to existing methods.

5  Conclusion

In this paper STFT based algorithm for the identification of 
CpG islands has been studied. The algorithm has been tested 
on data set of 100 DNA sequences for human, mouse and 
fish. The performance of the proposed algorithm is better 
as compared to the reported methods in terms of Sn, Sp, 
AC, F-measure. The number of CGIs has also been detected 
at portion coverage of 80%, 90%, and 100% length of true 
CGIs and found that the proposed algorithm has identified 
more number of CGIs at portion coverage greater than 80%. 
Also, it has been studied that 24 combination of integer map-
ping schemes works better as compared to other mapping 
schemes. In future, the proposed algorithm for the CpG 
island detection in DNA sequences can be tested on non-
human primates.

Table 4  Detected CpG Islands

DNA 
sequence

True location of CpG 
Island

Locations detected by 
proposed algorithm

Start posi-
tion

End posi-
tion

Start posi-
tion

End position

L44140
1 3095 3426 3192 3576
2 11,638 13,564 10,470 14,217

18,353 18,656
25,277 25,597
27,863 28,072
30,464 30,766
34,931 35,166

3 40,983 42,150 41,089 42,737
4 44,799 45,386 43,840 53,495
5 48,446 50,350 43,840 53,495
6 59,461 61,404 56,715 63,740

64,457 64,720
66,726 67,012

7 67,900 69,472 67,102 70,028
76,336 76,687
80,444 80,658

8 81,836 82,633 81,493 83,393
85,176 85,394
86,475 86,879
93,080 93,286
96,768 96,993

9 98,783 99,468 98,000 100,530
10 106,826 108,158 106,816

107,345
107,587

107,300
107,583
107,843

11 114,316 114,947 113,832 115,318
12 128,187 129,236 127,582 129,155

130,652 131,218
131,394 131,879
138,508 139,016

13 148,990 149,796 147,981 151,460
14 156,388 157,495 155,887 157,400
15 160,697 161,402 160,653 163,220

175,115 175,407
184,658 185,511

16 186,412 186,922 186,327 187,110
187,304 187,786

17 216,617 217,876 216,200 219,447

Table 5  Number of CGI detected in DNA sequence L44140

The bold values represent that the performance of the proposed algo-
rithm is better as compared to the CpGclusterTLBO, CpGPNP, DWT 
based methods in terms of respective parameters

Methods Number of CGIs detected at % cover-
age of true CGIs length

80% 90% 100%

CpGclusterTLBO 9/17 5/17 Nil
DWT Nil Nil Nil
CpGPNP 4/17 3/17 2/17
Proposed algorithm 15/17 15/17 12/17
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Table 6  Detailed description of the CpG islands data set

S. no DNA sequence Length 
of DNA 
sequence

Location of CpG Islands as per NCBI website Number 
of CpG 
Islands

Gene Name/Gene ID

HUMAN species
1 AL442638 188247 17,472–17,700, 22,868–23,148, 93,250–93,495, 163,847–

164,132
4 LOC114827838/114827838

2 AC073335 68275 31,813–32,080, 33,619–34,458, 50,802–51,655 3 GTF2IP23/101929580
3 AC073517 67706 35,431–35,977 1 PRKRIP1/79706
4 AC127379 67291 30,060–30,318, 38,447–39,437 2 LRPPRC/10128
5 AC064843 66898 5531–5785 1 TRE-CTC7-1/100189491
6 AC129782 66860 38,868–40,898 1 BAC clone RP11-28O7
7 AC013270 66660 6075–6881, 25,374–26,035, 34,710–36,183, 48,185–48,621 4 ARID5A/10865
8 AC074386 66610 15,847–16,381, 16,593–16,830 2 OR2A1/346528
9 AC092103 66565 24,844–25,119 1 RNU6-1145P/ 106481541
10 AC124014 66552 56,936–57,769 1 IKZF1/10320
11 AL137791 66254 30,724–31,272, 46,196–46,906, 52,979–53,956, 61,007–

62,096
4 Clone RP5-1079D1

12 AC096553 66229 11,867–12,256 1 PER3P1/168741
13 AC105413 65958 50,478–50,751 1 PTPN13/5783
14 AC005003 65750 38,374–41,067 1 PATZ1/23598
15 AC145546 65625 52,797–53,645 1 BAC clone RP11-1415P17
16 AC105402 65449 15,774–16,973, 28,628–28,925 2 KIF5C/3800
17 AC112698 65335 42,309–43,546 1 CDKN2AIP/55602
18 AC104129 65189 2966–3334, 8763–9020, 14,023–14,383, 20,695–20,991, 

26,472–26,735, 28,330–29,188, 31,762–32,009, 55,671–
55,878

8 MAD1L1/8379

19 BN000001 64961 895–1123 1 ELF3/1999
20 AC138782 64744 23,500–24,633 1 SEC24B/10427
21 AC005021 64607 24,663–25,225, 63,177–63,512 2 PON2/5445
22 AC093086 64601 58,914–59,518 1 CAMK2B/816
23 AC005233 64359 16,579–18,003 1 PAC clone RP5-1198O21
24 AC013436 63823 12,411–12,652, 21,066–21,331, 24,980–26,051, 26,467–

26,807, 60,097–60,448
5 ZMIZ2/83637

25 AC131957 63780 45,526–45,799 1 BAC clone RP11-799G14
26 AC004694 63749 9107–9494, 54,481–54,756 2 BAC clone CTB-152H24
27 AC108463 63525 26,008–26,366, 26,575–26,982, 27,079–27,538 3 MIR4435-2HG/541471
28 AC080165 63279 8258–8531 1 LINC01789/105373536
29 AC010890 62764 11,407–11,926, 13,574–13,801, 53,142–53,415, 53,755–

54,041
4 NCKAP5/344148

30 AC108142 62624 8864–11,837 1 TENM3/55714
31 AC080068 62623 535–774 1 LINC01162/104355138
32 AC093785 62466 31,397–31,665 1 LOC105373941/105373941
33 AC003079 62331 50,250–50,471 1 ASB4/51666
34 AC078937 62035 38,149–39,359 1 SLC26A4/5172
35 AC114803 61579 3256–4009, 18,815–19,353, 32,398–32,647, 33,247–33,659, 

36,773–37,302, 39,696–39,964, 55,808–56,144
7 PTPRN/5798

36 AC093652 61340 48,156–49,072 1 FRAS1/80144
37 AC093377 61056 729–1003 1 ST13P2/344328
38 AC073201 60776 9738–11,862 1 BZW2/28969
39 AC113611 60597 8638–9514 1 HTRA3/94031
40 AC099394 60024 2826–4863, 10,806–11,866, 19,723–19,934, 25,482–25,769, 

31,861–32,884, 36,728–36,931, 54,994–55,361
7 TFR2/7036

41 AC098831 59776 39,343–39,572, 51,406–51,689 2 ICA1L/130026
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Table 6  (continued)

S. no DNA sequence Length 
of DNA 
sequence

Location of CpG Islands as per NCBI website Number 
of CpG 
Islands

Gene Name/Gene ID

42 AC074013 59657 22,602–22,873, 51,602–52,508, 53,105–53,331 3 PUS7/54517
43 AC062028 59634 44,629–44,851 1 C2orf50/130813
44 AC106875 59580 4526–5382 1 LPIN1/23175
45 AC023670 59565 25,568–27,400 1 BAC clone RP11-457M7
46 AC079882 59427 39,153–39,736 1 RSPH10B2/728194
47 AC006008 57554 28,800–30,423 1 ACTR3C/653857
48 AC108222 21776 21,237–21,776 1 BAC clone RP11-1180N13
49 AH006464 21230 1187–2051 1 ATP12A/479
50 AC093609 20710 7857–8257 1 LINC02580/100506047
51 AL590794 18042 11,568–12,215 1 Clone RP11-148L13
52 AC136375 17863 16,369–17,534 1 BAC clone RP11-104P1
53 BD432859 14646 2762–2973, 4065–5181 2 TB7
54 AC111201 13470 4327–4727, 5323–5554, 12,500–13,455 3 ANO7/50636
55 NM005876 10782 6154–7734 1 SPEG/10290
56 NM053043 10168 9597–9820 1 RBM33
57 AC093460 10103 6951–7418 1 STARD3NL/83930
58 AC108032 9716 30–269 1 LOC101927687/101927687
59 X86012 9541 335–3853 1 F8A1/8263
60 AC106048 8594 7941–8180 1 SLC8A1/6546
61 AH008870 6797 341–1340 1 ICA1/3382
62 AC079401 6568 3086–3935 1 FAM3C/10447
63 AH007568 6513 543–803, 1212–1430, 1662–2474 3 CAV1/857
64 AC105385 5952 2844–3080 1 BAC clone RP11-115I2
65 AJ308559 5596 1228–1657 1 Plagl1/22634
66 M92844 3889 3198–3889 1 ZFP36/7538
67 AF196313 3700 2092–3580 1 ARHGAP26/23092
68 AF281043 3662 1611–2734 1 HMGB1/3146
69 U48937 3278 2588–3230 1 SCNN1G/6340
70 AF307776 3113 2334–2745, 2791–3064 2 ADRB1/153
71 AJ000757 3046 650–2840 1 GLI3/2737
72 AJ289875 2916 2325–2916 1 PRNP/5621
73 L07287 2704 1–1350 1 RPL26/6154
74 Z92546 73511 20,746–21,240 1 CABIN1/23523
75 AL591222 147211 54,605–55,080, 68,825–69,091 2 SLC24A2/25769
76 AL513502 174636 116,364–117,432 1 ADAMTSL1/92949
77 AL513498 155780 18,305–18,582 1 MLLT3/4300
78 AL357615 171446 56,753–57,030, 59,607–59,874 2 LOC107987055/107987055
79 AL353786 139565 19,000–19,400 1 SPATA7/55812
80 AL121926 139544 102,641–104,201, 126,562–127,299 2 CSTF3/1479
81 AL049547 129811 27,801–29,311, 37,094–37,773, 109,041–110,125, 113,196–

114,024, 126,815–127,265
5 TNXB/7148

82 AL031706 13012 7–552 1 Clone LA16-305F3
83 AL031703 35098 15,319–17,699, 25,107–26,048, 30,327–30,736, 31,615–

32,204
4 CACNA1H/8912

84 AJ006998 123521 11,140–11,417 1 LOC101927745/101927745
85 AL031707 28707 6050–6520, 6693–7445, 24,481–25,248, 28,059–28,669 4 Clone LA16c-313F9
FISH species
86 AL603785 89874 4151–4634 1 Musk/334526
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Table 6  (continued)

S. no DNA sequence Length 
of DNA 
sequence

Location of CpG Islands as per NCBI website Number 
of CpG 
Islands

Gene Name/Gene ID

87 AL672065 82767 44,999–45,681 1 Rsu1/553276
88 AL672083 111516 88,040–88,588 1 Pknox1.2/170445
89 AL691521 109831 34,191–36,572 1 Men1/30130
90 AL672171 114103 50,521–51,167 1 clone BUSM1-270G24
91 AL713869 104577 6954–7435 1 Si:busm1-105l16.2/368709
MOUSE species
92 AJ970309 7050 3025–4010 1 Apaf1/11783
93 AC149868 190971 38,226–39,751, 109,499–110,391, 114,105–114,977, 

167,115–168,150
4 Slc17a7/72961

94 AC125063 194931 97,498–98,367, 99,058–100,402, 106,255–107,246, 
144,134–145,047

4 Pilra/231805

95 AC124505 222439 36,111–37,119, 132,685–133,458, 139,610–140,565, 
202,532–203,418

4 Mapk3/26417

96 AC145199 220892 29,996–30,867, 59,938–60,771, 114,341–115,758, 133,121–
133,903, 204,198–205,934, 217,247–218,028

6 Dmpk/13400

97 AC122821 220013 43,295–44,322, 59,514–60,693, 122,943–123,697, 163,194–
164,078, 185,979–186,978, 218,075–218,923

6 Srrm2/75956

98 AF073797 46872 9395–9666, 18,386–18,651, 32,350–32,477, 33,946–34,206 4 Aire/11634
99 AC126029 212472 5851–6810, 75,564–76,663, 82,722–84,043, 152,561–

153,650, 195,134–196,503
5 Rela/19697

100 AF059580 36326 2076–3209, 2382–3017, 14,983–15,869 3 Zdhhc7/102193

Table 7  Performance comparison for 85 DNA sequences of human

The bold values represent that the performance of the proposed algo-
rithm is better as compared to the CpGclusterTLBO, CpGPNP, DWT 
based methods in terms of respective parameters

Performance 
parameter

Methods

CpGcluster
TLBO

DWT CpGPNP Proposed 
algorithm

TP 71,218 65,822 66,048 78,338
FP 136,172 2,814,422 228,024 130,623
TN 4,444,891 1,772,242 4,358,640 4,456,041
FN 27,735 37,938 37,709 25,419
Sn 0.7197 0.6344 0.6366 0.7550
Sp 0.9702 0.3864 0.9503 0.9715
Ac 0.8449 0.5104 0.7934 0.8632
F-measure 0.4650 0.0441 0.3320 0.5010

Table 8  Performance comparison for 6 DNA sequences of fish

The bold values represent that the performance of the proposed algo-
rithm is better as compared to the CpGclusterTLBO, CpGPNP, DWT 
based methods in terms of respective parameters

Perfor-
mance 
parameter

Methods

CpGcluster
TLBO

DWT CpGPNP Proposed algorithm

TP 2763 3555 3181 3496
FP 27,673 370,842 31,308 12,020
TN 579,762 236,594 576,127 595,415
FN 2464 1672 2046 1731
Sn 0.53 0.68 0.61 0.67
Sp 0.954 0.389 0.948 0.98
Ac 0.742 0.535 0.779 0.825
F-measure 0.1550 0.0187 0.1602 0.3371
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