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Abstract A neural network ensemble (NNE) based computer-
aided diagnostic (CAD) system to assist radiologists in differ-
ential diagnosis between focal liver lesions (FLLs), including
(1) typical and atypical cases of Cyst, hemangioma (HEM) and
metastatic carcinoma (MET) lesions, (2) small and large hepa-
tocellular carcinoma (HCC) lesions, along with (3) normal
(NOR) liver tissue is proposed in the present work. Expert
radiologists, visualize the textural characteristics of regions
inside and outside the lesions to differentiate between different
FLLs, accordingly texture features computed from inside lesion
regions of interest (IROIs) and texture ratio features computed
from IROIs and surrounding lesion regions of interests (SROIs)
are taken as input. Principal component analysis (PCA) is used
for reducing the dimensionality of the feature space before
classifier design. The first step of classification module consists
of a five class PCA-NN based primary classifier which yields
probability outputs for five liver image classes. The second step
of classification module consists of ten binary PCA-NN based
secondary classifiers for NOR/Cyst, NOR/HEM, NOR/HCC,
NOR/MET, Cyst/HEM, Cyst/HCC, Cyst/MET, HEM/HCC,
HEM/MET and HCC/MET classes. The probability outputs
of five class PCA-NN based primary classifier is used to
determine the first two most probable classes for a test instance,

based on which it is directed to the corresponding binary PCA-
NN based secondary classifier for crisp classification between
two classes. By including the second step of the classification
module, classification accuracy increases from 88.7 % to 95 %.
The promising results obtained by the proposed system indicate
its usefulness to assist radiologists in differential diagnosis of
FLLs.

Keywords Focal liver lesions . B-mode ultrasound . Texture
analysis . Neural network ensemble . Computer-aided
diagnostic system . Principal component analysis

Glossary

Anechoic FLL Anechoic focal liver lesion: The focal
liver lesion which appears without ech-
oes on ultrasound.

Atypical cyst Atypical cyst: Appears with irregular,
thickened wall and internal echoes.

Atypical FLL Atypical focal liver lesion: Focal liver
lesion with non-specific sonographic
appearance.

Atypical HEM Atypical hemangioma: Appears as
isoechoic or even hypoechoic lesion.

Atypical MET Atypical metastasis: Appearance is ex-
tremely variable, ranging from anechoic,
hypoechoic, isoechoic, hyperechoic and
even with mixed echogenicity.

Benign FLL Benign focal liver lesion: Non-cancerous
focal liver lesion.

B-mode US B-mode ultrasound: Brightness-mode
ultrasound is a two-dimensional repre-
sentation of echo-producing interfaces in
a single plane.

CYST Liver cyst: Abnormal fluid filled sacs in
the liver.
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FLL Focal liver lesion: Focal liver lesion re-
fers to area of liver tissue damage.

FOS First-order statistics: First-order statistics
estimates the properties of individual
pixel values. These statistics do not con-
sider the spatial interaction that exsisits
between the image pixels.

FPS Fourier power spectrum: Texture de-
scription by means of fourier de-
scriptors provides the means of
multi-scale representation, but these
descriptors lack spatial localization.

GLCM Gray level co-occurrence matrix: Second-
order statistics estimates the properties of
any texture by considering the spatial
interation between two pixels at a time.

GLRLM Gray level run length matrix: Higher-order
statistics estimates the properties of any
texture by considering the spatial interation
between a number of pixels at a time.

GWT Gabor wavelet transform: Another
method of multi-scale texture description
with good spatial localization.

HCC Hepatocellular carcinoma: The most com-
mon primary malignant focal liver lesion.

HEM Hemangioma: The most common pri-
mary benign focal liver lesion.

Hyperechoic FLL Hyperechoic focal liver lesion: The focal
liver lesion with more echogenicity as
compared to the surrounding liver
parenchyma.

Hypoechoic FLL Hypoechoic focal liver lesion: The focal
liver lesion with less echogenicity as
compared to the surrounding liver
parenchyma.

Isoechoic FLL Isoechoic focal liver lesion: The focal
liver lesion with same echogenicity as
that of the surrounding liver parenchyma.

LHCC Large hepatocellular carcinoma: HCC
lesions (>2 cm), appearance as lesion
with mixed echogenicity.

Malignant FLL Malignant focal liver lesion: Cancerous
focal liver lesion.

MET Metastasis: The most common secondary
malignant focal liver lesion.

NOR Normal liver: Normal liver has homoge-
neous texture with medium echogenicity
(i.e., same or slightly increased
echogenicity compared to the right
kidney).

SHCC Small hepatocellular carcinoma: HCC
lesions (<2 cm), appearance vary from
hypoechoic to hyperechoic lesions.

Typical Cyst Typical cyst: Well-defined, round, an-
echoic lesion with posterior acoustic en-
hancement and thin imperceptible wall.

Typical FLL Typical focal liver lesion: Focal liver le-
sions with classic diagnostic sonographic
appearance.

Typical HEM Typical hemangioma: Appears as a well-
circumscribed uniformly hyperechoic
lesion.

Typical MET Typical metastasis: Appears with ‘target’
or ‘bull’s-eye’ appearance.

Introduction

Differential diagnosis in patients with focal liver lesions (FLLs)
using B-mode ultrasound (US) images is broad due to the
existence of a wide variety of sonographic appearances even
with-in individual classes of FLLs [1–4]. Even then, B-mode
US is the first choice for characterization of FLLs mainly due to
its non-radioactive, non-invasive, inexpensive nature and real
time imaging capabilities [5–7]. In comparison to B-mode US,
other imaging modalities like, contrast enhanced US, contrast
enhanced spiral computed tomography (CT) and magnetic
resonance imaging (MRI) offer high sensitivity for characteri-
zation of FLLs, but these imaging modalities are expensive,
pose greater operational inconvenience and are not widely
available [1, 5, 6, 8–13]. Therefore, an efficient computer-
aided classification (CAD) system for classification of FLLs
based on conventional gray scale B-mode US is highly desired.

A neural network ensemble (NNE) based computer-aided
diagnostic (CAD) system for commonly occurring FLLs such
as Cyst, hemangioma (HEM), hepatocellular carcinoma
(HCC), and metastatic carcinoma (MET) along with normal
(NOR) liver tissue is proposed in this paper. A comprehensive
and representative image database consisting of (1) typical
and atypical cases of Cyst, HEM and MET lesions, (2) small
HCC (SHCC) as well as large HCC (LHCC) lesions and (3)
normal liver cases is used for classifier design.

Typical FLLs can be easily diagnosed by radiologist from
their classic sonographic appearances, but differential diagno-
sis in the presence of atypical FLLs is considered to be a
daunting challenge faced by the radiologists during routine
practice [7, 9, 11, 14–17].

The sonographic appearance of normal (NOR) liver is
homogeneous with slightly increased echogenicity as com-
pared to the right kidney [18–20]. All NOR cases are consid-
ered as typical as there is no atypical appearance for NOR liver
tissue. Typical Cyst appears as round, anechoic lesion with
posterior acoustic enhancement and well defined thin imper-
ceptible wall [5, 9, 10, 21]. HEM is the most common primary
benign FLL [1, 7, 9, 17, 22]. Almost 70 % of all the HEM
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cases encountered in routine practice are typical HEMs. Typ-
ical HEM appears as a well circumscribed uniformly
hyperechoic lesion [5, 9, 10, 15, 21–23]. MET is the most
common secondary malignant FLL [2, 7, 9, 21–23]. MET
may occur singly or as multiple deposits of varying sizes. The
typical sonographic appearance of MET lesion is the ‘target’
or ‘bull’s-eye’ appearance (i.e., hypoechoic center surrounded
by a hyperechoic rim) [2, 5, 7, 15, 16, 21, 22, 24]. The sample
images for NOR liver and typical cases of Cyst, HEM and
MET lesions are shown in Fig. 1.

Atypical Cysts appear with internal echoes and thickened
irregular walls. Differential diagnosis of Cystic MET and
atypical Cyst from conventional gray scale B-mode US can
be quite challenging [21, 22]. Atypical HEMs are a great
mimic and definite diagnosis with conventional gray scale
B-mode US is difficult [9]. Atypical HEMs can be isoechoic
or even hypoechoic mimicking the sonographic appearance of
certain atypical metastasis [5, 7]. Atypical MET lesions can
appear with extremely variable sonographic appearances
ranging from anechoic, hypoechoic, isoechoic, hyperechoic
and even with mixed echogenicity [5, 8–10, 23, 24]. Differ-
entiating atypical MET lesions from HCC lesions and HEM
lesions is considerably difficult [9, 11, 16, 21–23, 25].

The sample images for atypical cases of Cyst, HEM and
MET lesions are shown in Fig. 2.

HCC is the most common primary malignant FLL, which
occurs mostly in patients with cirrhosis [2, 5, 6, 8–10, 21, 22,
26]. In fact, in radiology practice, cirrhosis is always considered
as precursor to the development of HCC. The detection of
SHCCs on the top of coarse and nodular cirrhotic liver is
considerably difficult [2, 9, 16, 18] accordingly, only the HCC
lesions developed on cirrhotic liver are considered in this study.

Experienced participating radiologists (co-authors of this
paper) opined that no sonographic appearance can be consid-
ered typical for HCC due to existence of wide variability of
sonographic appearances even within SHCC and LHCC le-
sions. The sonographic appearances of SHCC lesions vary

from hypoechoic to hyperechoic [23]. LHCC lesions appear
frequently with mixed echogenicity [9, 10]. However, the
participating radiologists were of the view that a representative
and comprehensive dataset for designing the classifier should
contain both SHCCs and LHCCs. The size of 13 SHCCs and
15 LHCCs in the acquired image database varied from 1.5 to
1.9 cm and from 2.1 to 5.6 cm, respectively. The sample
images for SHCC and LHCC lesions are shown in Fig. 3.

There are certain disadvantages associated with use of con-
ventional gray scale B-mode US for characterization of FLLs:
(1) limited sensitivity for detection of small FLLs (<2 cm)
developed on cirrhotic liver which is already nodular and
coarse-textured [5, 8–10, 18], (2) in certain cases, sonographic
appearance of HCC and atypical MET lesions are overlapping
[5, 8–10, 18, 24], (3) sonographic appearances of cystic MET
and atypical Cyst are often overlapping [8, 9], (4) sonographic
appearances of HEM sometimes mimic HCC lesions [9, 11, 15,
17, 21–23, 26, 27] and (5) in certain cases, it is difficult to
characterize isoechoic lesions with very slim liver to lesion
contrast [2, 9, 15]. Thus, conventional gray scale B-mode US
offers limited sensitivity for detection and characterization of
FLLs [2, 5, 6, 8–10]. Therefore, it is very much desired to
reduce these limitations and built an efficient CAD system with
a comprehensive training dataset consisting of representative
typical and atypical cases of Cyst, HEM and MET classes and
both SHCC and LHCC variants of HCC image class.

The participating radiologists were of the view that the
training dataset used in the present study is a comprehensive
and diversified set consisting of representative images from
various sub-classes.

There are very few studies in the literature for classification
of FLLs. Brief details of these studies [15, 16, 21–23, 28, 29]
are depicted in Table 1.

Differential diagnosis between FLLs is carried out by ex-
perienced radiologists based on sonographic features which
are visually extractable. It is expected that CAD systems
should yield better accuracy by using sonographic features

Fig. 1 Conventional gray scale B-mode liver US images. a Normal liver
(homogeneous echotexture with medium echogenicity). b Typical cyst
(thin walled anechoic lesion with posterior acoustic enhancement). c

Typical HEM (well circumscribed uniformly hyperechoic appearance).
d Typical MET (‘target’ or ‘bull’s-eye’ appearance, i.e., hypoechoic
center surrounded by a hyperechoic rim)

522 J Digit Imaging (2014) 27:520–537



which cannot be extracted visually. These mathematical de-
scriptors can be morphological features (based on the shape or
contour of the lesion) or textural features (based on intensity
distribution) [30]. Both these morphological as well as textural
features are significant for developing CAD systems for breast
lesions from B-mode US [31–38]. Experienced participating
radiologists were of the view that morphological features does
not give any significant information for characterization of
FLLs from B-mode US and the same is also evident from
other related researches, the proposed CAD systems for

characterization of FLLs from B-mode US have relied on
textural features only [15, 16, 21–23, 28, 29].

The study in [28] used first-order statistics (FOS) and gray
level run length matrix (GLRLM) features for classification
between NOR, HEM and malignant liver lesions by using
linear discriminant analysis and neural network (NN) classi-
fier. The study in [29] used gray level co-occurrence matrix
(GLCM), autocorrelation, Laws’ and edge frequency based
texture features for classification of NOR, Cyst, HEM and
malignant liver lesions by using a NN classifier. Their study

Fig. 2 Sample images for
atypical cases. a Atypical cyst
(internal echoes and irregular
walls). b Atypical HEM
(heterogeneous echotexture). c
Atypical MET (hyperechoic,
heterogeneous echotexture)

Fig. 3 Sample images for SHCC and LHCC lesions. a Hypoechoic
SHCC. b Variant of SHCC with mixed echogenicity (coexistence of
hyperechoic and isoechoic areas). c homogeneously hyperechoic SHCC
d heterogeneously isoechoic SHCC. e–h Heterogeneous echotexture

represents complex and chaotic structure exhibited by LHCC due to
coexistence of areas of necrosis, fibrosis and active growth areas. Note:
Hypoechoic halo formation is visible in f and g. Necrotic area is visible in
the center of LHCC shown in g
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reports maximum correct classification rate of 70% by the use
of GLCM and Laws’ features. In both these researches [28,
29] malignant lesions are considered as a single class; how-
ever, the diagnosis of malignant lesion as HCC or MET is
clinically significant for effective treatment and management
of liver malignancies [6, 9, 16]. In a recent study [16], GA-
SVM based CAD system based on statistical, spectral and

spatial filtering based texture features is proposed for binary
classification between HCC and MET lesions.

Yoshida et al. [23] evaluated the binary classification
between HEM and HCC, HEM and MET as well as
HCC and MET lesions with multi-scale wavelet packet
texture features and NN classifiers. Mittal et al. [15]
used FOS, GLCM, GLRLM, GWT and Laws’ Features

Table 1 Studies on classification of FLLs

Authors (year) Dataset description

Liver image
classes

Patients Images
per class

No. of ROIs ROI
size
(pixels)

Classifier used Distribution of ROIs
for classifier design

Sujana et al. (1996) [28] NOR
HEM
Malignant

– – 113 10×10 Neural network
LDA

Training
NOR (40)
HEM
(15),

Malignant
(30)

Testing
NOR (13)
HEM (5)
Malignant (10)

Yoshida et al. (2003) [23] HEM
Malignant
(HCC +
MET)

44 HEM (17)
HCC (11)
MET (16)

193 64×64 Neural network Cross validation
procedure

HEM (50)
HCC (87)
MET (56)

Poonguzhali et al. (2007)
[29]

NOR
Cyst
HEM
Malignant

– – 120 10×10 Neural network Cross validation
procedure

NOR (30)
Cyst (30)
HEM (30)
Malignant (30)

Mittal et al. (2011) [15] NOR
Cyst
HEM
HCC
MET

88 NOR (16) Cyst
(17) HEM (18)

HCC (15) MET
(45)

800 25×25 Ensemble of
neural
networks

Training
NOR (50)
Cyst (50)
HEM (50)
HCC (50)
MET (50)

Validation
NOR (10)
Cyst (10)
HEM (10)
HCC (10)
MET (10)

Testing
NOR

(172)
Cyst (6)
HEM (30)
HCC (167)
MET (125)

Virmani et al. (2013) [16] HCC
HEM

108 HCC (28)
MET (32)

185 32×32 SVM Training
HCC (50)
MET (50)

Testing
HCC (40)
MET (45)

Virmani et al. (2013) [22],
Yoshida et al. [23]

NOR
Cyst
HEM
HCC
MET

108 NOR (21)
Cyst (12)
HEM (15)
HCC (28)
MET (32)

491
380 IROIs*,
111
SROIs*

32×32 kNN
NN
PNN
SVM

NOR (30)
Cyst (30)
HEM (40)
HCC (50)
MET (50)

NOR (40)
Cyst (25)
HEM (30)
HCC (40)
MET (45)

Present study (2014) NOR
Cyst
HEM
HCC
MET

108 NOR (21)
Cyst (12)
HEM (15)
HCC (28)
MET (32)

491
380 IROIs*,
111 SROIs*

32×32 Ensemble of
neural
networks

NOR (30)
Cyst (30)
HEM (40)
HCC (50)
MET (50)

NOR (40)
Cyst (25)
HEM (30)
HCC (40)
MET (45)

SROIs are extracted to compute texture ratio features, texture features are computed from 380 IROIs. Total instances of feature vectors in the complete
dataset are 380, of which 200 instances are used for training and rest 180 instances are used for testing the classifier

ROIs regions of interest, IROIs inside ROIs*, SROIs surrounding ROIs*, SVM Support VectorMachine, kNN k nearest neighbour,PNN probabilistic NN.
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for classification of NOR, Cyst, HEM, HCC and MET
liver classes by using ensemble of NN classifiers.
Virmani et al. [21, 22] reported the comparative evalu-
ation of CAD systems for FLLs. From studies related to
classification of FLLs [15, 16, 21–23, 28, 29], it is
understood that statistical, spectral and spatial filtering
based Laws’ texture features are important for charac-
terization of FLLs from B-mode US.

As per the best of the author’s knowledge, only one study
in the literature [15] has evaluated the classification between
five liver image classes— Cyst, HEM, HCC, MET and NOR
liver — by using a large feature vector consisting of 208
texture features extracted with statistical, spectral and spatial
filtering based methods and an ensemble based CAD system.
Their CAD system design with two stage classification mod-
ule consisted of total 11 NNs (i.e., a single five class NN in the
first stage and ten binary NNs for the second stage) obtains a
good classification accuracy of 86.4 % with US images en-
hanced with modified anisotropic diffusion method [15]. One
of the limitations of the proposed CAD by Mittal et al. [15] is
that the system does not use any feature selection or feature

dimensionality reduction methodology to get rid of superflu-
ous and redundant features in a large feature set consisting of
208 texture features. Their CAD system design used the same
feature set for design of primary classifier and all the ten
binary NNs; however, it is worth mentioning that not all of
the 208 features are necessary for the binary classification
tasks. In the present work, in order to design an efficient
CAD system based on ensemble of NN classifiers, feature
dimensionality reduction is carried out by using principal
component analysis (PCA) for designing each classifier. In
several studies [15, 23, 28, 29], only ROIs within the lesions
have been considered for computing texture features. Virmani
et al. [16, 21, 22] used both texture and texture ratio features
for classification of FLLs. These studies demonstrate that
texture analysis of regions surrounding the lesion contributes
towards effective characterization of HCC and MET lesions
from B-Mode US images.

Typical FLLs can be easily identified by experienced
radiologists by textural characteristics of regions inside
the lesion but the differential diagnosis between atypical
FLLs and HCCs is often carried out by observing the

Fig. 4 Dataset description. Note: The size of SHCC lesion varied from 1.5 to 1.9 cm and size of LHCC lesion varied from 2.1 to 5.6 cm
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textural characteristics of regions inside and outside of
the lesion [5, 39]. The experienced participating radiol-
ogists opined that the textural analysis of regions sur-
rounding the lesion should contribute towards effective
characterization of FLLs. The present work investigates
the contribution of texture information from inside and
outside the lesion in characterization of FLLs from
conventional gray scale B-mode US.

Materials and Methods

Materials

Dataset Description

A total of 108 B-mode liver US images were collected from
the patients visiting the Department of Radiodiagnosis and
Imaging, Post Graduate Institute of Medical Education and
Research (PGIMER), Chandigarh, India, fromMarch 2010 to
March 2012, after obtaining informed consent from these
patients for using these images for research. The medical
ethics board of PGIMER, Chandigarh, granted the ethical
clearance to carry out this research work. The direct digital
images recorded by using Philips ATL HDI 5000 USmachine
equipped with multi-frequency transducer of 2–5 MHz range
were used. The size of the images is 800×564 pixels with gray
scale consisting of 256 tones. The display system onwhich the
images were viewed was capable of displaying the full acqui-
sition image matrix (i.e., it could display the 800×564 image
with a 1:1 match of image pixels to display pixels).

The description of clinically acquired dataset consisting of
108 B-mode liver US images in terms of (1) distribution of
these images among NOR, typical Cyst, atypical Cyst, typical
HEM, atypical HEM, typical MET, atypical MET, SHCC and
LHCC image sub-classes, (2) distribution of total FLLs in the
dataset among typical, atypical, SHCC and LHCC lesion

categories, and (3) distribution of total ROIs extracted from
the dataset among SROIs and IROIs is shown in Fig. 4.

The final dataset consisting of total 111 SROIs and 380
IROIs was stored in a PC (Pentium Core 2 Duo, 2.67 GHz
with 1.97 GB RAM).

Data Collection Protocols

The following protocols were followed for data collection.
(1) Experienced participating radiologists (co-authors of

this paper) with 13 and 23 years of experience in US imaging
ensured that all the images are of diagnostic quality (free from
artifacts) and confirmed the presence of Cyst, HEM, HCC and
MET lesions using liver image assessment criteria including:
(a) visualization of sonographic appearances, imaging features
of FLLs based on their knowledge and expertise, (b) follow-
up of clinical history of the patient and other associated
findings, and (c) imaging appearance on dynamic helical
CT/MRI/pathological examinations and biopsy, which is an
invasive procedure. (2) Only HCCs evolved on cirrhotic liver
are considered. (3)The distinction between LHCC and SHCC
was made by observing the size of the lesion in transverse and
longitudinal views (HCC lesions less than 2 cm in size are
considered SHCCs).

It must be noted that labeling of HCC lesions as SHCC or
LHCC lesion and labeling of Cyst, HEM and MET lesions as
typical or atypical lesion was done during data collection
solely for the purpose of having representative data in the
training set for designing the classifier.

Selection of Regions of Interest (ROIs)

The following protocols were followed for cropping the ROIs
from the image database:

(1) The ROIs were cropped by an experienced participating
radiologist by using a specially designed ROI manager
software developed in Biomedical Instrumentation

Fig. 5 a–e NOR, Cyst, HEM, HCC and MET image with IROIs and
SROImarked. Note: For NOR image, all IROIs and SROI are taken at the
same depth. A single extreme ROI is considered as SROI. For liver
images with lesions, SROI is extracted from background liver parenchy-
ma surrounding the lesion approximately at the same depth as that of the

center of the lesion by avoiding inhomogeneous areas like blood vessels
and liver ducts. All IROIs are regions well inside the boundary of the
lesions. As shown in e, necrotic area within the lesions is avoided while
cropping IROIs
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Laboratory, Indian Institute of Technology, Roorkee. The
ROI manager software provided the radiologist the flex-
ibility to load the image, choose the ROI size and shape,
move the ROI to any desired location over the image,
freeze the ROI at any location and crop the ROIs together
after the position of all the ROIs for a particular image is
frozen.

(2) Two types of ROIs are used in this study, inside
ROIs (IROIs) and surrounding ROIs (SROIs). For
each Cyst, HEM, HCC and MET lesion maximum
non-overlapping IROIs were cropped from well

within the boundary of each lesion. The necrotic
areas within lesions were avoided while cropping
IROIs (as shown in Fig. 5e).

(3) For each lesion, a single SROI was cropped from sur-
rounding liver parenchyma approximately at the same
depth as that of the center of the lesion by avoiding the
inhomogeneous structures like liver ducts and blood
vessels (as shown in Fig. 5b–e).

(4) For eachNOR image, a single extreme ROI is considered
as SROI and all other ROIs at the same depth are con-
sidered as IROIs. SROIs and IROIs for NOR image were

Fig. 6 Proposed NNE based
CAD system for classification of
FLLs from B-mode US images
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cropped by avoiding the inhomogeneous structures like
liver ducts and blood vessels (as shown in Fig. 5a).

The sample image for NOR, Cyst, HEM, HCC and MET
cases from the acquired image database with ROIs marked are
shown in Fig. 5.

In the present work, two types of features are considered
for analysis, i.e., texture features computed from IROIs and
texture ratio features computed by taking the ratio of texture
feature computed from IROI and texture feature computed
from the corresponding SROI.

It can be noted that the NOR liver image in Fig. 5a contains
four IROIs and a corresponding SROI; thus, four instances of
the texture feature set and four instances of the texture ratio
feature set are obtained. Similarly, fromCyst, HEM, HCC and
MET lesions shown in Fig. 5b–e, 11, four, five and eight
instances of the texture feature set and 11, four, five and eight
instances of the texture ratio feature set are obtained.

Selection of ROI Size

Another concern, while designing a CAD system is with the
choice for the size of ROI. Mittal et al. [15] used an ROI size
of 25×25 pixels while Sujana et al. [28] and Poonguzhali et al.
[29] used an ROI size of 10×10 pixels for computing texture
features. Virmani et al. [16, 21, 22] used an ROI size of 32×32
pixels. It is worth mentioning that the use of 10×10 pixels and
even 25×25 pixels as ROI size yields a smaller number of

pixels in comparison to the minimum 800 pixels required to
estimate reliable statistics [16, 18, 40–42]. Yoshida et al. [23]
used 64×64 pixels as ROI size, possibly because they used
high-resolution scanned images instead of real US images. It
is otherwise difficult to select such a large ROI size keeping in
view the size of small lesions and resolution of images ob-
tained from US machines. The ROI size of 32×32 pixels was
considered appropriate for the present study to estimate reli-
able statistics as well as to extract maximum ROIs from the
acquired image database.

Methods

Proposed NNE Based CAD System

The block diagram of proposed NNE based CAD system
for classification of FLLs from B-mode US images is
shown in Fig. 6.

For implementation of the proposed NNE based CAD
system, the database of 380 non-overlapping IROIs and 111
SROIs was created from 108 clinically acquired B-mode US
liver images. The NNE based CAD system consists of feature
extraction module, and a two-step classification module. Fea-
ture space dimensionality reduction by PCA is considered as
an integral part of both the steps in classification module. In
feature extraction module, 104 texture features and 104 tex-
ture ratio features are computed for all 380 IROIs, resulting in
feature set consisting of 380 texture feature vectors (TFVs) of
length 208. The feature set is normalized using z-score nor-
malization. The normalized feature set is bifurcated into two
disjoint feature sets, i.e., feature set (training data) and feature
set (testing data). PCA is carried out on the feature set (training
data) and reduced training dataset of PCA derived principal
components (PCs) is obtained. The reduced testing dataset is
obtained by projecting the data points of the feature set (test-
ing data) in the direction of PCs of feature set (training data).
Feature space dimensionality reduction by PCA is applied
individually for the design of five class NN primary classifier
in step 1 of the classification module and for the design of ten
mutually independent binary neural network (BNN) second-
ary classifiers in step 2 of the classification module in order to

Table 2 Description of texture feature vectors (TFVs)

TFVs (l)

TFV1: TFV consisting of 104 texture features (6 FOS, 13 GLCM,
11 GLRLM, 2 FPS, 42 Gabor and 30 Laws’ features) computed
from IROIs

104

TFV2: TFV consisting of 104 texture ratio features (6 FOS, 13
GLCM, 11 GLRLM, 2 FPS, 42 Gabor and 30 Laws’ features)
computed by taking the ratio of texture feature computed from
IROI and the corresponding SROI

104

TFV3: combined TFV consisting of 104 texture features (TFV1)
and 104 texture ratio features (TFV2)

208

l length of TFV

Table 3 Classification performance obtained by using FS1, FS2 and FS3

Classification performance — NN classifier

FS OCA ICA (NOR) ICA (CYST) ICA (HEM) ICA (HCC) ICA (MET)

FS1 66.1 77.5 92 50 37.5 77.7

FS2 75 85 76 76.6 60 75.5

FS3 82.7 87.7 92 83.3 87.5 71.1

FS feature set, OCA overall classification accuracy, ICA individual class accuracy
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find out the number of PCs which could provide adequate
discrimination capability in each case.

Feature Extraction Module

In the feature extraction module, initially a wide variety of
visual and nonvisual sonographic features are extracted by
using statistical, spectral and spatial filtering based feature
extraction methods.

FOS Features A total of six FOS texture features — average
gray level, standard deviationFOS, smoothness, third moment,
uniformity and entropyFOS— are computed for each ROI [21,
22, 43].

GLCM Features A total of 13 GLCM mean features —
angular second moment, contrast, correlation, variance, in-
verse difference moment, sum average, sum variance, sum
entropy, entropyGLCM, difference variance, difference entropy,
information measures of correlation-1, and information mea-
sures of correlation-2 are computed for each ROI [21, 22,
44–46].

GLRLM Features A total of 11 GLRLM features— i.e., short
run emphasis, long run emphasis, low gray level run empha-
sis, high gray level run emphasis, short run low gray level
emphasis, short run high gray level emphasis, long run low
gray level emphasis, long run high gray level emphasis, gray
level non uniformity, run length non uniformity and run
percentage are computed for each ROI [21, 22, 47–49].

FPS Features Two spectral features — i.e., radial sum and
angular sum of the discrete Fourier transform are computed
for each ROI [21, 22, 47].

GWT Features Multi-scale features estimated at various fre-
quency and orientations of Gabor filters provide useful de-
scription of texture [15, 21, 22, 50]. Two statistical features—
mean and standard deviation are computed from the 21 fil-
tered ROI images (Gabor outputs) obtained by using a set of
Gabor wavelets at three scales and seven orientations resulting
in 42 (2×3×7) texture features for each ROI.

Laws’ Features Laws’ features determine texture properties
by performing local averaging, edge detection, spot detection,
wave detection and ripple detection in texture [21, 22, 51].
Law’s texture features can be computed by using special 1-D
filters of lengths 3, 5, 7 and 9. Different filter lengths corre-
spond to different resolutions for extraction of texture features
from an ROI. In the present work, 1-D filters of length 5 —
i.e., L5 (Level)=[1, 4, 6, 4, 1], E5 (Edge)=[−1, −2, 0, 2, 1], S5
(Spot)=[−1, 0, 2, 0, −1], W5 (Wave)=[−1, 2, 0, −2, 1] and R5
(Ripple)=[1, −4, 6, −4, 1] are used. Each of these 1-D filters is
associated with the underlying microstructure of texture with-
in the ROI image. A total of 25 2-D filters (Laws’ masks) are
generated by convolving these 1-D filters in a combinatorial
manner [21, 22, 52, 53]. These Laws’ masks are convolved
with the ROI images. A 15×15 square window is applied to
the resulting convolved images in order to compute texture

Fig. 7 Flowchart of the proposed
NNE based CAD system

Table 4 Classification performance obtained by using reduced FS, i.e.,
FS4

NN unit Optimal no. of PCs OCA (%)

Five class PCA-NN based primary NN
NN architecture: (I/H/O)=(6:10:5)
Classes: NOR/CYST/HEM/HCC/MET

6 87.7

OCA overall classification accuracy, I/H/O number of neurons in Input
layer/Hidden layer/Output layer
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energy images (TEIs). Out of 25 Laws’ masks, ten masks are
identical to the other ten, if they are rotated by 90°. TEIs
computed from these pairs of identical masks can be com-
bined to obtain rotation invariant image [15, 16]. Thus, for
each ROI, a total of 15 rotational invariant TEIs are obtained.
Two statistics (i.e., mean and standard deviations) are com-
puted for each rotational invariant TEIs resulting in 30 (15×2)
texture features for each ROI.

For detection and characterization of FLLs initially, three
TFVs are computed using FOS, GLCM, GLRLM, FPS, GWT
and Laws’ texture feature extraction methods. The brief de-
scription of these TFVs is tabulated in Table 2.

Initially, all the three feature sets, i.e., FS1, FS2 and
FS3, consisting of instances of TFV1, TFV2 and TFV3,
respectively, as described in Table 2 are used for classifi-
cation of FLLs from B-mode US images. The FS3
consisting of instances of combined TFV (i.e., TFV3)
was considered for analysis, to investigate the effect of
including texture information from SROIs in differential
diagnosis between FLLs from B-mode US. The classifi-
cation experiments are carried out by using NN classi-
fiers. The classification performance with respect to over-
all classification accuracy (OCA) values and the individ-
ual class accuracy (ICA) values obtained with FS1, FS2
and FS3 is summarized in Table 3.

In Table 3, it can be observed that FS3 yield highest
classification accuracy in comparison to FS1 and FS2 which
justifies the premise that both texture features and texture ratio
features contribute for effective characterization of FLLs from
B-mode US. Thus FS3, consisting of combined TFVs is
considered for all further analysis.

Classification Module

The proposed NNE based CAD system incorporates two steps
in classification module. The first step of the classification
module consists of a single five class NN classifier and the
second step of the classification module consists of ten BNN
classifiers.

The FS3 consisting of instances of combined TFV of
length 208, i .e. , TFV3, is used for the present

classification task. This combined TFV may contain re-
dundant and correlated features, which if used for classi-
fier design can degrade its performance in terms of accu-
racy and reliability. Thus, PCA is used for feature space
dimensionality reduction before classifier design in both
the steps of classification module. The PCA algorithm
ensures that the covariance of any of the components with
any other component is zero. As it is quite possible that
the PCs accounting for a lesser amount of variance in the
data may be significant for the classification task, and also
since the computed PCs are uncorrelated to each other, it
is always reasonable to step through the first few PCs for
building the classification model [21, 22, 54, 55]. In the
present work, the optimal number of PCs to be retained
for classification task is determined empirically by repeat-
ed experiments carried out by stepping through first 15
PCs to build the classification models.

The flow chart showing the working of proposed NNE
based CAD system is shown in Fig. 7.

ClassificationModule (Step 1) The first step of classification
module consists of a single five class PCA-NN based
primary classifier. As shown in Table 3, the FS3 consisting
of instances of combined TFV (i.e., TFV3) yields higher
OCA in comparison with FS2 and FS1. Thus, FS3 is
subjected to feature space dimensionality reduction using
PCA. The number of PCs yielding the maximum OCA are
retained in reduced feature set (FS4) for classifier design. It
is observed that the first six PCs yields maximum OCA of
87.7 %. Thus, reduced features set, i.e., FS4 consisting of
instances of reduced TFVs of length 6 (optimal number of
PCs), is used for the design of the five class PCA-NN
based primary classifier [22]. The classification perfor-
mance obtained by FS4 is shown in Table 4 [22].

For design of each PCA-NN based primary classifier,
the optimal number of neurons in the hidden layer is
obtained by trial-and-error procedure. Experiments were
carried out with different numbers of hidden neurons
and it was observed that for ten neurons in hidden layer
a reasonable tradeoff between accuracy and convergence
is obtained [15, 21, 22].

Fig. 8 The bifurcation of
instances of individual classes in
FS4 (training data) and FS4
(testing data) for five class PCA-
NN based primary classifier
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The bifurcation of instances of individual classes in FS4
(training data) and FS4 (testing data) in case of five class
PCA-NN based primary classifier is shown is shown in Fig. 8.

The five class PCA-NN based primary classifier yields
weightage scores for five liver image classes. Normalization
of this five-dimensional output weight vector makes it anal-
ogous to probability outputs for each class. The prediction of

output weight vector [Wnor Wcyst Whem Whcc Wmet] for
all the 180 TFVs in the FS4 (testing data) is stored for
analysis.

Classification Module (Step 2) The second step of classifica-
tion module consists of ten mutually independent PCA-BNN
based secondary classifiers for NOR/Cyst, NOR/HEM, NOR/

Fig. 9 The bifurcation of
instances of individual classes in
feature set (training data) and
feature set (testing data) for ten
PCA-BNN based secondary
classifiers
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HCC, NOR/MET, Cyst/HEM, Cyst/HCC, Cyst/MET, HEM/
HCC, HEM/MET and HCC/MET classes, respectively. The
output weight vector predicted by five class PCA-NN based
primary classifier for an unknown test instance in FS4 (testing
data) is used to determine the first two most probable classes,
based on which it is directed to the corresponding binary
PCA-NN based secondary classifier for crisp classification
between two classes. The proposed approach can be under-
stood as analogous to first querying about the diagnosis of an
unknown test case with an experienced radiologist with ex-
pertise of providing interpretation among all the five liver
image classes and based on his advice on first two most
probable classes again querying another expert radiologist
which specializes in interpretation of these two most probable
classes only. It is expected that the overall result will improve
by including the second step.

The bifurcation of instances of individual classes in feature
set (training data) and feature set (testing data) in the case of ten
PCA-BNN secondary classifiers is shown is shown in Fig. 9.

The optimal number of PCs and the resulting OCA for all ten
PCA-BNN based secondary classifiers is reported in Table 5.

For designing each PCA-BNN secondary classifier, the
optimal number of neurons in the hidden layer is obtained
by trial-and-error procedure. After repeated experimentation
with different numbers of hidden neurons it was observed that
with four neurons in hidden layer a reasonable tradeoff

between accuracy and convergence is obtained. The output
of the neuron corresponding to the labeled class is set to 1 and
the output of other neurons is set to 0. The learning of the
network is supervised and back propagation algorithm with
adaptive learning rate and momentum is used to obtain the
desired input–output relationship [15].

Results

The brief details of the experiments carried out in this study
are given in Table 6.

Results (Experiment 1)

The classification performance obtained by the five class
PCA-NN based primary classifier, i.e., step 1 of classification
module, is reported in Table 7.

Table 7 shows that out of a total of 180 testing instances, 22
instances are MIs and remaining 158 testing instances are
correctly classified instances. Thus, first step of the classifica-
tion module yields the OCA of 87.7 % (158/180). It can be
noted that 158 out of 180 correctly classified instances
consisted of 33 (out of 40) NOR cases, 24 (out of 25) Cyst
cases, 28 (out of 30) HEM cases, 36 (out of 40) HCC cases
and 37 (out of 45) MET cases. Thus, the first step of classifi-
cation module yields ICAvalues of 82.5 % (33/40), 96 % (24/
25), 93.3 % (28/30), 90 % (36/40) and 82.2 % (37/45) for
NOR, Cyst, HEM, HCC and MET cases, respectively [22].

It can be observed that the 22 misclassified instances (MIs)
out of a total of 180 testing instances consisted of seven (out of
40) NOR cases, one (out of 25) Cyst case(s), two (out of 30)
HEM cases, four (out of 40) HCC cases and eight (out of 45)
MET cases.

Furthermore, it is observed that, from a total of 22 MIs, 17
MIs have the second highest probability for the correct class
and the remaining five MIs have the third highest probability
for the correct class.

The 17 (out of 22) MIs for which the second probability is
for the correct class, consisted of seven (out of seven)
misclassified NOR cases, one (out of one) misclassified Cyst
case, two (out of two) misclassified HEM cases, three (out of
four) misclassified HCC cases and four (out of eight)
misclassified MET cases, respectively.

The five (from a total of 22) MIs for which the third prob-
ability is for the correct class consisted of zero (out of seven)
misclassified NOR cases, zero (out of one) misclassified Cyst
case, zero (out of two) misclassified HEM cases, one (out of
four) misclassified HCC cases and four (out of eight)
misclassified MET cases, respectively. These five MIs are pe-
culiar MIs, as it is observed that for all these instances, there is a
slim difference between the predicted probability values for all
classes and even the highest probability value representing the

Table 5 Optimal number of PCs and resulting overall classification
accuracy for ten PCA-BNN secondary classifiers

NN unit Optimal number of PCs OCA (%)

PCA-BNN1:(2:4:2)-NOR/CYST 2 100

PCA-BNN2:(2:4:2)-NOR/HEM 2 100

PCA-BNN3:(6:4:2) -NOR/HCC 6 98.7

PCA-BNN4:(5:4:2)- NOR/MET 5 96.4

PCA-BNN5:(2:4:2)-CYST/HEM 2 100

PCA-BNN6:(2:4:2)-CYST/HCC 2 98.4

PCA-BNN7:(2:4:2)-CYST/MET 2 95.7

PCA-BNN8:(2:4:2)- HEM/HCC 2 98.5

PCA-BNN9:(3:4:2)-HEM/MET 3 92.0

PCA-BNN10:(2:4:5)–HCC/MET 3 97.6

Table 6 Experiments carried out in the present study

Experiments carried out in the present study

Experiment
no. 1

To obtain Classification performance of five class PCA-
NN based primary, i.e., output of first step of the
classification module

Experiment
no. 2

To obtain Classification performance of Proposed NNE
based CAD system, i.e., output of second step of the
classification module
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predicted class is less than 0.4. This signifies that these peculiar
MIs are confusing cases, as PCA-NN based primary classifier
has assigned a low weightage for all the classes for these cases.
Furthermore, it is noteworthy that these peculiar MIs are ob-
served only for HCC and MET cases.

The prediction of five class PCA-NN based primary clas-
sifier for first two most probable classes in 180 instances of
feature set (testing data) is given in Table 8.

In Table 8, it can be noticed that out of 180 instances in
the feature set (testing data), there is not even a single
instance with CYST and HEM among the first two most
probable classes. This is in agreement with the fact that
there is no overlap between sonographic appearances of
Cyst and HEM image classes. Associated radiologists
opined that while atypical Cyst can overlap significantly
with cystic metastasis cases but there is no overlap even
between atypical cases of Cyst and HEM image classes.

Results (Experiment 2)

In experiment 2, the TFVs corresponding to testing instances
described in Table 8 are fed to corresponding PCA-BNN

based secondary classifiers and the results obtained are report-
ed in Table 9.

Table 9 shows that out of the total 180 testing instances,
nine instances are MIs and remaining 171 testing instances are
correctly classified instances. Thus, the second step of the
classification module yields the OCA of 95 % (171/180). It
can be noted that the 171 (out of 180) correctly classified
instances consisted of 40 (out of 40) NOR cases, 24 (out of 25)
Cyst cases, 29 (out of 30) HEM cases, 38 (out of 40) HCC
cases and 40 (out of 45) MET cases. Thus, second step of
classification module yields ICA values of 100 % (40/40),
96 % (24/25), 96.6 % (29/30), 95 % (38/40) and 88.8 % (40/
45) for NOR, Cyst, HEM, HCC and MET cases, respectively.

It is interesting to note that the first step of the classification
module yielded 22 (out of 180) MIs and by incorporating the
second step of the classification module, the number of MIs is
reduced to 9 (out of 180).

Furthermore, it is observed that the 17 (out of 22) MIs
predicted by the first step of classification module, for which
the second highest probability was for the correct class, 14
(out of 17) cases are correctly classified by the second step of
the classification module and the remaining (3/17) remained
misclassified. The five (out of 22) peculiar MIs, as predicted
by the first step of the classification module, remained
misclassified after the second step also. This is expected as
for these cases the third highest probability prediction is for
the correct class, so these cases were not directed to the correct
BNNs in the second step of classification module. It can be
visualized that 1HEM** correctly classified as HEM by the
first step is misclassified as MET by the second step.

The classification performance obtained by the proposed
NNE based CAD system is summarized in Table 10.

It can be observed that by including the second step in the
classification module, the number of MIs has decreased from
22 (out of 180) to 9 (out of 180); thus, the OCA has increased
from 87.7 % to 95 %.

However, it is worth mentioning that as for five (out of
nine) peculiar MIs, the PCA-NN based primary classifier (first
step of the classification module) has assigned a low
weightage for all the classes (the highest probability being

Table 7 Classification perfor-
mance obtained by the five class
PCA-NN based primary classifier
(Step 1)

CM confusion matrix, OCA over-
all classification accuracy, ICA
individual class accuracy

Classification performance: five class PCA-NN based primary classifier

NN arch. CM OCA (%) ICA (%)

6:10:5 NOR CYST HEM HCC MET 87.7

NOR 33 0 2 4 1 ICA (NOR): 82.5

CYST 0 24 0 0 1 ICA (CYST): 96.0

HEM 1 0 28 0 1 ICA (HEM): 93.3

HCC 1 2 0 36 1 ICA (HCC): 90.0

MET 1 0 4 3 37 ICA (MET): 82.2

Table 8 Prediction of the first two most probable classes by five class
PCA-NN primary classifier for 180 testing instances of the feature set
(testing data)

Class pair Testing
instances (TIs)

Class
pair

Testing
instances (TIs)

NOR/CYST 7 CYST/HCC 22

NOR/HEM 12 CYST/MET 17

NOR/HCC 38 HEM/HCC 8

NOR/MET 20 HEM/MET 37

CYST/HEM Nil HCC/MET 19

TIs=7, for class pair NOR/CYST indicates that for seven of 180 testing
instances, the first highest and the second highest probability predictions
of PCA-NN based primary classifier is among NOR or Cyst classes;
therefore, these seven testing instances will be directed to PCA-BNN
based secondary classifier for NOR/CYST cases
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0.4). The developed CAD system is an interactive system
which displays the weightage [Wnor Wcyst Whem Whcc

Wmet], i.e., probability outputs yielded by PCA-NN based
primary classifier for each test instance. Therefore, for peculiar
MIs having a low highest weightage and slim difference be-
tween all class weightages, it is expected that the radiologist
should consider an alternative approach for confirming the
diagnosis, which may be taking a second opinion from another
expert, patient’s history, other imaging modalities, biopsy, etc.

Analysis of Misclassified Instances

The analysis of MIs predicted by the five class PCA-NN based
primary classifier (i.e., after the first step of the classification
module) and ofMIs predicted by the proposed NNE based CAD
system (i.e., after the second step of the classification module) in
terms of various sub-classes is reported is reported in Table 11.

Table 11 shows that by incorporating step 2 of the classi-
fication module, the ICA values for NOR, atypical HEM,

Table 9 Description of misclassified instances (MIs) predicted by secondary PCA-BNN based classifiers for 180 instances of the feature set (testing
data)

BNN Testing instances Misclassified instances

NOR/CYST 7 (2 NOR, 5 CYST) 2 NOR and 5 Cyst correctly classified, MIs=0

NOR/HEM 12 (4 NOR, 7 HEM, 1 MET*) 4 NOR and 7 HEM correctly classified, MIs=1
[One peculiar case* of MET misclassified as NOR by
first step remains misclassified as NOR by second step]

NOR/HCC 38 (21 NOR, 16 HCC, 1 MET*) 21 NOR and 16 HCC correctly classified, MIs=1
[One peculiar case* of MET misclassified as HCC by
first step is misclassified as NOR by second step]

NOR/MET 20 (13 NOR, 6 MET, 1 HCC*) 13 NOR and 6 MET correctly classified, MIs=1
[One peculiar case* of HCC misclassified as NOR by
first step remains misclassified as NOR by second step]

CYST/HEM Nil Nil

CYST/HCC 22 (14 Cyst, 7 HCC, 1 MET*) 14 CYST and7HCC correctly classified, MIs=1
[One peculiar case* of MET misclassified as HCC by
first step remains misclassified as HCC by second step]

CYST/MET 17 (6 CYST, 11 MET) 5 CYST and 11 MET correctly classified, MIs=1
[One case of Cyst misclassified as MET by first step
remains misclassified as MET (atypical cyst resembling
cystic metastasis]

HEM/HCC 8 (1 HEM, 6 HCC, 1 MET*) 1 HEM and 6 HCC predicted correctly, MIs=1
[One peculiar case* of MET misclassified as HEM by
first step is misclassified as HCC by second step]

HEM/MET 37 (22 HEM, 15 MET) 21 HEM and 14 MET correctly classified, MIs=2
[One case of MET misclassified as HEM by first step
remains misclassified as HEM by second step (atypical
cyst resembling cystic metastasis)]

[1 HEM correctly classified as HEM by first step is
misclassified as MET by second step]**

HCC/MET 19 (10 HCC, 9 MET) 9 HCCand 9 MET correctly classified, MIs=1
[One case of HCC misclassified as MET by first
step remains misclassified as MET by second step]

MIs misclassified instances, TIs testing instances; total TIs=180, total MIs=9. Note: Out of total 9 MIs, 5 are peculiar cases* for which the PCA-NN
based primary classifier has assigned a low weightage for all classes, i.e. the highest weightage assigned to the most probable class is 0.4 and also there is
very small difference between weightages assigned to the other classes. One MI** correctly classified by first step is missclassified by the second step.

Table 10 Classification performance of proposed NNE based CAD
system

Classification performance: NNE based CAD system

CM OCA ICA

NOR CYST HEM HCC MET 95.0

NOR 40 0 0 0 0 ICA (NOR): 100

CYST 0 24 0 0 1 ICA (CYST): 96.0

HEM 0 0 29 0 1 ICA (HEM): 96.6

HCC 1 0 0 38 1 ICA (HCC): 95.0

MET 2 0 1 2 40 ICA (MET): 88.8

CM confusion matrix, OCA overall classification accuracy, ICA individ-
ual class accuracy
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Large HCC and atypical MET cases have increased from
82.5 %, 91.6 %, 87 % and 85 % to 100 %, 100 %, 93.5 %
and 92.5 %, respectively. The ICA values for typical cyst,
atypical cyst, small HCC and typical METs have remained the
same, i.e., 100 %, 91.6 %, 100 % and 60 %, respectively.
However, it can be visualized that ICA for typical HEM cases
has decreased from 100 % to 83.3 %. It is expected that ICA
for typical HEM cases should increase by adding more cases
for classifier design. Overall, by incorporating the second step

of the proposed classification module the ICA values for
typical and atypical cases has increased from 85.9 % and
88.1 % to 95.3 % and 92.1 %, respectively. Given this fact,
conventional gray scale B-mode US has limited sensitivity for
detection and characterization of atypical cases of FLLs, the
performance obtained by the proposed NNE based CAD
system is encouraging.

In Tables 7 and 10, it can be observed that the ICA values
for HCC and MET cases have increased from 90 % and
82.2 % to 95 % and 88.8 %, respectively. These results
indicate that the proposed NNE based CAD system can facil-
itate better management of focal liver malignancies by pro-
viding second opinion in case of highly overlapping sono-
graphic appearances of HCC and MET lesions.

Conclusion

From the experiments carried out in the present study, it is
observed that significant improvement in classification per-
formance is obtained by including the texture ratio features
along with texture features computed from IROIs for charac-
terization of FLLs from B-mode US. Thus, it can be conclud-
ed that the texture analysis of the region surrounding the lesion
significantly contribute towards the differential diagnosis of
FLLs using B-mode US images. Further, it is worth mention-
ing that by application of PCA to feature set consisting of 208
texture features (104 texture features and 104 texture ratio
features); the information required for the classification of
FLLs was squeezed in the first six PCs. It is concluded that
by incorporating the second step of classification module the
OCAvalue increases from 87.7 % to 95 % and ICAvalues for
typical and atypical cases increase from 85.9 % and 88.1 % to
95.3 % and 92.1 %, respectively. The promising results ob-
tained by the proposed CAD system with such a diversified,
comprehensive and representative dataset used in the present
study indicate that the proposed NNE based CAD system can
be routinely used in clinical environment to assist radiologists
in lesion interpretation and differential diagnosis of FLLs
using conventional B-mode gray scale US images.
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Table 11 Analysis of 22 (out of 180)misclassified instances predicted by
five class PCA-NN based primary classifier and nine (out of 180)
misclassified instances predicted by proposed NNE based CAD system

S. no. Five class PCA-NN based
primary classifier

Proposed NNE
based CAD system

1. NOR cases: (40) NOR cases: (40)

MIs: 7
ICA (NOR): 82.5 %

MIs: Nil
ICA (NOR): 100 %

2. Typical Cyst cases: (13) Typical Cyst cases: (13)

MIs: Nil
ICA (Typical Cyst): 100 %

MIs: Nil
ICA (Typical Cyst): 100 %

3. Atypical Cyst cases: (12) Atypical Cyst cases: (12)

MIs: 1
ICA (Atypical Cyst): 91.6 %

MIs: 1
ICA (Atypical Cyst): 91.6 %

4. Typical HEM cases: (6) Typical HEM cases: (6)

MIs: Nil
ICA (Typical HEM): 100 %

MIs: 1
ICA (Typical HEM): 83.3 %

5. Atypical HEM cases: (24) Atypical HEM cases: (24)

MIs: 2
ICA (Atypical HEM): 91.6 %

MIs: Nil
ICA (Atypical HEM): 100 %

6. Small HCC cases: (9) Small HCC cases: (9)

MIs: Nil
ICA (SHCC): 100 %

MIs: Nil
ICA (SHCC): 100 %

7. Large HCC cases: (31) Large HCC cases: (31)

MIs: 4
ICA (LHCC): 87 %

MIs: 2
ICA (LHCC): 93.5 %

8. Typical MET cases: (5) Typical MET cases: (5)

MIs: 2
ICA (Typical MET): 60 %

MIs: 2
ICA (Typical MET): 60 %

9. Atypical MET cases: 40 Atypical MET cases: (40)

MIs: 6
ICA (Atypical MET): 85 %

MIs: 3
ICA (Atypical MET): 92.5 %

10. Total Typical cases: (64)a Total Typical cases: (64)a

MIs: 9
ICA (Typical Cases): 85.9 %

MIs: 3
ICA (Typical Cases): 95.3 %

11. Total Atypical cases: (76)b Total Atypical cases: (76)b

MIs: 9
ICA (Atypical Cases): 88.1 %

MIs: 6
ICA (Atypical Cases): 92.1 %

MIs misclassified instances, ICA individual class accuracy
a Total typical cases in testing dataset=40 NOR+13 CYST+6 HEM+5
MET=64
b Total atypical cases in testing dataset =12 CYST+24 HEM+40 MET=
76
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