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Abstract
Cloud computing is the most prominent computing paradigm in the present era of 
information technology. However, data centers needed for hosting cloud services 
demand huge amount of electrical energy and release harmful gases to the atmos-
phere. To ensure a sustainable future, there is a need to focus on energy efficiency in 
cloud computing. Early literature pertaining to energy consumption in cloud com-
puting is primarily focused on individual sub-domains like scheduling techniques, 
optimization, and green computing metrics. Research literature on cloud resource 
optimization is found to be the most discussed but less structured. This paper intends 
to provide a complete picture of energy efficiency in cloud computing. It also clas-
sifies heuristics-based optimization methods and the dynamic power management 
techniques. The survey shows the research trends based on regions, journals, confer-
ences, etc., in the domain of energy efficiency in cloud computing. The study con-
cludes with research issues and future research directions.

Keywords Energy-aware scheduling · Heuristics · Optimization · Cloud computing · 
Bibliographical analysis · Green cloud

1 Introduction

Energy consumption and greenhouse gas (GHG) emission by Information and Tech-
nology (IT) industry is increasing due to technological advances. It poses a severe 
threat to the environment. The threat is drastically increasing due to the increased 
use of computing in all aspects of life. According to Times report (2014), in the next 
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half a decade, online users are expected to increase by 60% which will result in an 
increase in data consumption. It was predicted that data consumption would triple 
in 2012–2017, amounting to approximately 121 exabytes [1]. An IBM report “Ten 
key marketing trends in 2017” states that 2.5 exabytes of data are generated and con-
sumed every day amounting to approximately 900 exabytes a year [2]. Internet users 
increased by 50% in 2018 [3]. As a consequence, there is an exponential increase in 
power requirement for data centers. This leads to severe environmental issues [4]. 
The demand for cooling infrastructure to control heat dissipation in data centers 
will also increase. Cooling infrastructure again would cause overhead by consum-
ing more power and releasing GHGs. Maximum emission is due to electricity, air 
conditioning (AC), steam and gas supply [5]. According to a report of International 
Energy Outlook, during 2010–2040, the consumption of energy in the world will 
increase by 56%. Major consumers will be IT organizations [6]. The fact that the 
world will face an energy crisis is certain. So, it is a necessity to monitor energy 
consumption for a sustainable future. According to the World Wide Fund for Nature 
(WWF) report “A lack of access to energy is one of the main causes of poverty.” The 
world needs a drastic reduction in carbon dioxide  (CO2) emissions within the next 
few years to avoid catastrophic climate [7].

Cloud Computing (CC) offers a promising solution for energy efficiency as it pro-
vides a virtualized environment which leads to multi-tenancy. Tarandeep et al. [6] 
state that “Cloud installations have higher server utilization levels and infrastructure 
efficiencies. Due to improvements in utilization levels achieved without compro-
mising the desired performance, the role of CC in achieving energy efficiency has 
gained researchers’ attention.” The continuous acceptance of CC will reduce energy 
consumption in the data center by 31% during 2010–2020 [8]. Efforts are made by 
various organizations (Facebook, Google, and Amazon) to build energy-efficient 
data centers, and the research community has already taken it as a challenge [9].

Energy efficiency in CC has its own research problems and challenges as defined 
in Sect. 8. This article focuses on scheduling as it serves as a generic solution by 
effectively mapping tasks to efficient resources. Scheduling enhances other energy-
efficient optimization solutions as discussed in Sect. 2.2. Several researchers have 
focused on energy efficiency, and a lot of literature is available. Further, most of the 
literature is published in conferences due to the dynamic nature of this domain [10]. 
As per our knowledge, a survey article has not been framed which addresses energy-
efficient scheduling through heuristic-based optimization techniques and provides 
metrics on green cloud computing (GCC). Integration of sub-domains (scheduling 
techniques, optimization, and green computing (GC) metrics) is required to provide 
a complete overview of energy efficiency. Beloglazov et al. [11] presented a pioneer-
ing survey on energy-aware data centers and CC systems. It provides a taxonomy of 
hardware techniques, but it has a limited focus on scheduling techniques. Yu et al. 
[12] presented scheduling algorithms for grid computing specifically. Wu et al. [13] 
presented workflow scheduling for CC. The article mainly focused on scheduling 
techniques in contrast to energy awareness. Kaur and Chana [6] presented a survey 
on techniques for achieving energy efficiency in CC, but it did not provide a classi-
fication of heuristics-based optimization algorithms. Another Pioneering survey by 
Jing et al. [14] focused on processor server storage and cooling infrastructures. So, 
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there is a need for a precise and concise survey to build a background for further 
research. The WWF report concludes on increasing the research on energy aware-
ness and production of renewable energy. It indicates that the current expenditure on 
research and development on energy efficiency is €65 billion a year globally, out of 
about € 900 billion total expenditure across the globe on research and development 
in all segments. This expenditure must be increased twice in the next decade [7].

This survey is framed to provide a clear view of energy efficiency in CC through 
scheduling-based optimization. This survey makes it clear that scheduling- or heu-
ristics-based optimization algorithms are a key solution for achieving energy effi-
ciency in CC as discussed in Sect. 2.2. The survey tries to deliver a concise knowl-
edge base about GCC using heuristics-based optimization techniques. The article 
discusses various concepts of energy efficiency and classifies the literature accord-
ing to dynamic power management and heuristics-based optimization techniques.

The survey consists of nine sections. It is framed in a sequential manner cover-
ing all aspects related to energy efficiency using a problem-solving approach. Other 
sections are framed in the following manner: Sect. 2 describes the background on 
GC, CC, and their integration. It explains various energy-aware optimizations and 
concludes that scheduling is a holistic solution. Section 3 defines research questions 
and the adopted methodology for the survey. Section 4 presents a detailed overview 
of scheduling, energy efficiency, and their interrelation following a W4 approach. 
Section 5 gives details about the solution (optimization). Classifications of dynamic 
power management and heuristics-based optimization methods are presented. Sec-
tion 6 describes metrics to measure the effectiveness of the solution. Section 7 pro-
vides global analysis to discover recent research trends. Section 8 provides research 
issues and a strategy for future research. Finally, conclusive remarks are provided in 
Sect. 9.

2  Background and motivation

Energy consumption in the data center has got ample consideration recently, but still 
many issues have not been addressed yet [15]. These issues are described in Sect. 8. 
A sustainable future needs energy-efficient techniques and reduction in GHG emis-
sion by cloud data centers.

2.1  Cloud computing and green computing

The National Institute of Standards and Technology (NIST) defines CC as “a model 
that facilitates expedient and dynamic access to a large pool of computing resources 
which can be shared, dynamically allocated, and discharged without much manage-
rial involvement or service provider interaction” [15]. Virtualization allows several 
Virtual Machines’ (VMs) generation on a single physical machine [16].

GC includes planning, developing, consuming, and organizing of computing ser-
vices in an environmentally friendly approach to promote sustainability [17, 18]. 
CC along with GC can prove to be a boon by employing energy-efficient computing 
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practices at various service models. Service models are Infrastructure as a Service 
(IaaS), Software as a Service (SaaS), and Platform as a Service (PaaS) [19].

Figure  1 illustrates the GCC framework. Thus, application software, platform, 
tools, and infrastructure must be energy-efficient to promote GCC practices. Details 
regarding GCC techniques will be discussed in Sect. 2.2.

Cloud service providers (CSPs) deliver services to users by ensuring the security 
of data, quality of service (QoS), load balancing and traffic management as per the 
Service Level Agreement (SLA). Scheduling constitutes a generic solution for man-
aging all these requirements [10]. Challenges in CC include (1) energy efficiency (2) 
QoS (3) SLA compliance (4) load balancing (5) security (6) traffic management and 
(7) cost-effectiveness.

These problems are addressed by using energy-efficient equipment, cost-effective 
provisioning, routing protocols, and encryption algorithms, etc. But scheduling can 
constitute a generic solution. Energy efficiency: Resources should be scheduled in 
such a manner that it minimizes carbon footprint by balancing the trade-off between 
overutilization and underutilization of resources.

Scheduling can be a solution in maintaining QoS-based application performance 
in the cloud. SLA compliance: CSPs have to complete the task on time and in the 
specified budget without affecting the reliability. So, optimized resource manage-
ment requires scheduling based on makespan, deadline, and budget constraints. Load 
balancing requires mapping of VM resources to physical resources which involves 
scheduling algorithm. Security: Tasks are mapped to private or secure resources 
through scheduling. Traffic management: Data routing and forecasting techniques 
are in the solution domain, which involves scheduling for accessing cloud services 
efficiently. Cost-effectiveness: In this case, VM resources are scheduled in such a 
way that the total cost of deployment is reduced. Table 1 summarizes the literature 
to make it evident that scheduling is a generic solution for most of the issues in CC.

CC has transformed the way computing services are delivered. Although it 
brought a revolution in our lives, it cannot be considered a disruptive technology 
alone as addressed by [34]. Resources in data centers consume 3% of global energy 

Fig. 1  Green cloud computing framework
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which is likely to get triple in the next decade. They are also responsible for 2% of 
GHG emission which will be 16% in the near future. It has been predicted in the 
year 2047 that there would be an enormous temperature on earth which leads to 
unsuitable living conditions [37]. So, CC may not be disruptive. But CC services 
availed in an energy-efficient manner can be disruptive. Major IT organizations have 
initiated efforts toward GCC. Apple as a leader has committed using renewable 
energy to power its iCloud. The organization deployed geothermal and solar energy 
to power its data centers. Google, Yahoo, and Facebook have started using renew-
able energy in their data centers as reported by Greenpeace [38].

2.2  Energy‑efficient approaches for green cloud computing

There are three types of energy-efficient optimization techniques for cloud comput-
ing: (1) Infrastructure-based optimization which deals with infrastructural changes 
like making green buildings using energy-efficient equipment, air-conditioned 
racks, perforated tiles, floor raising, and other cooling equipment [39] for ther-
mal management of data centers. Energy-efficient power distribution and energy 
star rating equipment [40] are infrastructure-based solutions, but are expensive to 
implement [41] and provide a limited reduction in energy consumption. Figure  2 
represents infrastructure-based optimization in CC. (2) Hardware-based optimiza-
tion: It includes employing multi-core architectures, voltage, frequency scaling, 
parallel architectures, energy-efficient hardware components, dynamic component 
deactivation, and consolidation. Angel et  al. [42] were able to obtain significant 
energy consumption reduction using approximation algorithms on unrelated par-
allel machines. Dynamic voltage–frequency scaling (DVFS) practices are used on 
computing components for assisting the dynamic amendment of their performance 
uniformly to power consumption. Major techniques used are DVFS and DVFS with 
slack reclamation. DVFS and slack reclamation are described in detail in Sect. 5.1.

Figure 3 shows the architecture of a system using DVFS. A significant part of 
the research community is working on power management and scaling methods 

Fig. 2  Infrastructure-based optimization techniques
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(Sect. 5.1). Liu [4] presents a renewable energy-based uninterrupted power supply 
scheme with an inbuilt central controller for power management. DVFS was used to 
tune the power demand of the server to get the efficient power point. Integer linear 
programming was also used. Results showed that the proposed framework improved 
backup energy capacity by 28%. Energy-efficient hardware components include effi-
cient network and storage devices. A framework that implemented control strategies 
for the network and used network devices for local control mechanism was designed 
resulting in power savings [43]. Consolidation means to combine or integrate into 
one. Resources can be consolidated onto a lesser number of machines by halting 
underutilized machines to manage energy consumption. Consolidation can be per-
formed at various levels: (a) VM consolidation, (b) server consolidation, and (c) 
task consolidation. Figure 4 represents the VM consolidation technique.

Consolidation results in optimization of hardware or infrastructure, but it involves 
the use of migration algorithms that come under software-based optimization. 
Further, hardware-based solutions are not sufficient unless resources are properly 

Fig. 3  Architecture of a system using DVFS

Fig. 4  VM consolidation technique
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utilized. Utilization of resources depends upon scheduling. So, scheduling helps to 
optimize the infrastructure and hardware usage too. As per the literature, energy effi-
ciency was not much achieved even after infrastructure or hardware changes due to 
poor design of software and programs. So, software-based optimizations are neces-
sary. (3) Software-based optimizations include resource scheduling, allocation tech-
niques, migration algorithms, throttling, and use of parallel programs. Scheduling 
is a holistic approach used everywhere. Being a non-polynomial (NP) Hard prob-
lem, scheduling can be done by various optimization techniques (as discussed in 
Sect. 5.2). The literature shows that scheduling algorithms have been widely used 
for minimizing energy consumption. Diaz et al. [44] utilized heuristics as a base of 
a scheduling algorithm to map the task on the heterogeneous system while reducing 
energy consumption. A model that used bi-level multi-objective programming for 
the locality and energy-aware multiple jobs scheduling was proposed, and numerical 
experiments indicated the effectiveness of algorithm [45] for reducing consumption 
of energy.

3  Research methodology

Table  2 illustrates the objectives and limitations of existing surveys. Surveys of 
highly reputed journals (SCI) with significant citations, most relevant subtopics are 
taken into consideration.

A total of 879 articles were excluded by reviewers on the basis of relevance, 671 
were excluded on the basis of research contribution, and 256 were excluded on the 
basis of abstracts. Finally, 103 articles were left that clearly focused on the objec-
tives of the survey. 245 references of publications published after the year 2010 
were identified, and 167 were eliminated due to redundancy. Some not relevant arti-
cles included data networks (39), microprocessors (29), grid computing (10), and 
other irrelevant topics. The remaining 78 were inspected by reviewers, and 46 were 
included according to inclusion criteria (Fig. 5). The total articles left after this pro-
cedure were 156. The inclusion criterion was related to energy-aware scheduling in 
CC through optimization, measuring performance through GC metrics and GCC. 
Classification criteria (dynamic power management and heuristics- or scheduling-
based optimization techniques) are finalized, and the literature is classified as dis-
cussed in Sect. 5. Table 3 illustrates the sets of keywords used in the title of surveyed 
articles, and these articles are classified in Sect. 5. Figure 6 shows the percentage of 
articles included in the survey according to keywords occurring in the title. Table 4 
lists research questions and motivation.

4  Scheduling: a problem

Scheduling, in general, is a process of mapping of tasks to resources or target 
machines based on a criterion. Inefficient scheduling may result in performance deg-
radation. According to the literature, scheduling is classified into three types: static, 
dynamic, and hybrid scheduling.
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In static scheduling, the task execution environment and its characteristics are 
known in advance. Mapping of tasks to resources is determined before execution. 
At compilation time, information about cost and execution time is known. Jing 
Mei et al. developed an energy-aware scheduling algorithm by minimizing duplica-
tion and assuming task execution time, data size, and task dependencies are known 
before execution [52].

Fig. 5  Exclusion and inclusion criterion

Table 3  Sets of keywords in title of surveyed articles

S. no. Name of set Keywords

1 S_1 Energy
2 S_2 Energy, scheduling
3 S_3 Genetic/evolutionary approach
4 S_4 Genetic/evolutionary approach, energy
5 S_5 Genetic/evolutionary approach, energy, scheduling
6 S_6 Green cloud
7 S_7 Green cloud, scheduling
8 S_8 Optimization
9 S_9 Optimization, energy
10 S_10 Optimization, scheduling
11 S_11 Optimization, energy, scheduling
12 S_12 Heuristic
13 S_13 Heuristic, energy
14 S_14 Heuristic, energy, scheduling
15 S_15 Resource management
16 S_16 Miscellaneous
17 S_17 Scheduling
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In dynamic scheduling, tasks are mapped to resources at runtime. Execution 
time and cost are available at runtime. A dynamic scheduling algorithm based 
on earliest deadline first (EDF) and power scaling method was used in hard real-
time systems to reduce energy consumption [53]. Another dynamic scheduling 
algorithm used a multi-objective function to decrease the consumption of energy. 
The algorithm used resource allocation methods based on heuristics and was 

Fig. 6  Frequency of articles 
surveyed according to keywords 
in title
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Table 4  Research questions and motivation

Research questions Motivation

1. What are the basic concepts related to energy 
efficiency, scheduling, and heuristics-based 
optimization in CC and where should one start 
from in order to pursue research in this particu-
lar area?

There is a necessity for the article which provides 
an insight to energy-aware scheduling, all related 
terms, and state of the art

2. Why is energy efficiency important? One needs to understand the role of energy in CC 
for optimum utilization of resources and environ-
mental sustainability

3. Why focus on the consumption of energy in 
CC?

It is essential to know the harms CC is causing

4. What is the need for integration of energy 
efficiency and scheduling?

One should know the generic solution used in all 
energy efficiency techniques

5. How optimization can be a solution? Decision problem employs the use of optimization 
algorithms

6. Which methods/techniques are used in energy-
aware scheduling?

One should get to know the algorithms used in 
energy-aware scheduling

7. Which criteria are used for scheduling and what 
is their role?

There is a need to understand the importance of 
parameters

8. What are the metrics for GC? There is a need to know the standards which can 
measure the effectiveness of data centers

9. What are the current trends of research in this 
area?

One should know the current state of research in 
this field and their limitations

10. What are gaps in previous studies? It is essential to have knowledge about what is yet 
to be done

11. What are future directions for research/strate-
gies?

There is a need to know the areas that need attention 
and future research plan
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employed on parallel task-based applications. The results indicated significant 
energy savings for different scenarios. In directed acyclic graphs (DAG) types 
of embarrassingly parallel, matrix multiplication, and scatter–gather, the average 
energy savings were − 22.44%, − 33.17%, and − 31.50%, respectively [54].

Hybrid scheduling is a combination of both dynamic and static scheduling 
strategies. Cost and execution time can be predicted at compilation time, but tasks 
can be assigned to resources only at runtime. Thus, it is statically planned, but 
dynamically scheduled. An energy-efficient algorithm which helped in achieving 
energy efficiency in smartphones used both dynamic and static scheduling prac-
tices. Results indicated significant improvements in energy savings [55].

Other than these types, the term “workflow scheduling” is commonly found in 
the literature. Workflow is a paradigm that represents various applications which 
are computationally complex. It is automation of procedure to process data by fol-
lowing certain rules. It represents various applications such as big data process-
ing, scientific applications, web applications, data analysis [13, 19]. Many work-
flow applications are migrated to CC because of its ability to signify an extensive 
range of activities. Types of workflows are (1) abstract, (2) concrete, (3) business, 
and (4) scientific workflows. Abstract workflows provide tasks in an abstract form 
without describing specific resources and providing flexibility to users. It gives 
only service semantic information. Concrete workflows describe tasks for specific 
resources and give both service semantic and execution information [56]. Busi-
ness workflows focus on control flows, and data are processed by machines. Sci-
entific workflows are more abstract focusing on data flows based on data depend-
encies and processed by humans or machines [19]. Workflow is denoted by DAG 
where tasks are represented by vertices and edges depict dependencies. Through 
efficient workflow scheduling, optimal utilization of resources can be achieved.

Workflow scheduling can be separated into—(1) scheduling process, (2) sched-
uling tasks, and (3) scheduling resources [51]. Process scheduling focuses on 
scheduling criteria and techniques for schedule generation. Task scheduling con-
stitutes mapping of tasks to target machines. Liu et al. presented Voltage Island 
Largest Capacity First (VILCF) algorithm to schedule periodic tasks on a multi-
core processor. The algorithm was based on DVFS and outperformed the exist-
ing algorithms for the multi-core voltage island [57]. Precedence constrained 
scheduling of parallel tasks on many-core processors was carried out by Keqin 
Li. Comparison with optimal algorithms proved its effectiveness [58]. Global task 
scheduling approaches used for prediction were discussed for mapping of tasks 
to their desired targets [21]. In resource scheduling, the execution model (public, 
private, and hybrid) and provisioning model are considered. Thread scheduling 
is necessary for the tiled multi-core environment to compensate for thread sen-
sitivity toward shared resources [59]. Resource management was done through 
scheduling in the MapReduce model of cloud service (Cura) for providing cost-
efficient services [60].

As per the literature, significant work is done on resource provisioning and 
task scheduling because these are the main steps to execute a workflow in CC 
[13].
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4.1  W4 approach

W4 (What, Where, When, Why) approach is used to define all aspects related to 
energy-aware scheduling.

4.1.1  What is scheduling?: an NP‑hard/complete problem

A problem is a decision problem if its solution is either “yes” or “no.” Scheduling 
tasks on target systems is a decision problem [57]. Decision problems are of follow-
ing types:

P class—A problem is said to be in P class if it is solvable in polynomial time 
means O (nm) in the worst case, where m is a constant. NP class—A problem is said 
to be NP if for instances where answers are yes can be tested in polynomial time. 
In this category of the problem, it is easy to check the correctness of the solution. 
NP-Hard class—There are some problems that cannot be solved directly; they are 
reduced to other problems. In addition, if the time taken for reduction is polyno-
mial times, then they are reducible. If in NP class, all problems can be reduced in 
polynomial time to the other problem then they are NP-Hard. Also, for an NP-Hard 
problem, it is not compulsory to be in NP. In other words, if an algorithm takes huge 
time and is not feasible, then it is NP-Hard. NP-Complete class—Those problems 
which are NP-Hard and reside in NP Class too are NP-Complete [61].

There are different perspectives of researchers regarding scheduling. It is NP-
Hard as mentioned in [12, 62]. However, scheduling is classified as an NP-Complete 
problem in [63, 64]. Therefore, this creates confusion. According to our view, the 
problem is NP-Hard if one can design a solution algorithm, but its execution takes 
huge time and is not feasible, e.g., if one maps a very large number of tasks say 
5,000,000 tasks on computer systems in a certain short deadline, an algorithm can 
be designed, but it would not be feasible to schedule, i.e., NP-Hard. If one has to 
schedule 10 tasks, then this is possible, so it becomes NP-Complete.

4.1.2  Where energy‑aware scheduling?

Energy-aware scheduling can be deployed with multi-core architectures, virtualiza-
tion techniques, bio-inspired techniques, power-aware techniques, thermal-aware 
techniques. In all of these methods, scheduling algorithms are used as discussed 
in Sect.  2.2. Therefore, energy-aware scheduling becomes a holistic solution for 
achieving energy efficiency in CC.

4.1.3  When energy‑aware scheduling?

Scheduling is based on criteria, which focus on one or more parameters [13]. These 
parameters can be objective or subjective. Objective parameters are measured 
directly, and output is numerically specified, e.g., time, cost, energy consumption, 
etc. Subjective parameters cannot be measured directly, e.g., fault tolerance can 
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be measured through reliability. Energy-aware scheduling is done based on energy 
or power consumption criteria. Various parameters used for achieving energy effi-
ciency are discussed in Sect. 5. Scheduling is classified as follows:

4.1.3.1 Best‑effort scheduling (MIN–MAX) In this scheduling, only one objective 
is focused upon without considering other objectives such as QoS factors, e.g., 
considering time as the only constraint without focusing on cost/energy or only 
energy-aware scheduling without focusing on QoS (minimizing SLA violations). 
The current state of the art in achieving energy efficiency in CC has limited focus 
on QoS [24, 65, 66].

4.1.3.2 QoS‑constrained workflow scheduling This type of scheduling is more used 
in actual applications. There is always a trade-off; if one tries to minimize certain fac-
tor, other automatically increases. Therefore, to handle the trade-off, it is done. The 
aim is to optimize one parameter while applying the constraint to another parameter. 
The goal is to generate a schedule in accordance with the preferable parameter meet-
ing specified QoS constraints. Verma et al. presented a heuristic for scheduling work-
flow tasks having the budget and deadline constraints. The valuable trade-off was 
found between execution time and cost under these constraints. The simulation was 
performed with synthetic workflow applications to test the efficiency of presented 
heuristic. Results confirmed that offered heuristic decreased the cost keeping makes-
pan as low as possible [67]. In another work on spectrum sensing, energy consump-
tion was minimized by developing energy-efficient methods for body sensor networks 
while keeping satisfactory sensing quality [68]. In deadline-constrained workflow 
scheduling, one tries to minimize the cost while fulfilling timing constraints. Netjinda 
et al. focused on optimization of the cost of IaaS cloud services while executing scien-
tific workflow within particular deadline constraints. Swarm optimization techniques 
were used. The results showed improvements in comparison with other algorithms 
by decreasing the total cost [34]. In budget-constrained workflow scheduling, execu-
tion of the workflow is completed while maintaining budget constraints. Kumar et al. 
proposed a scheme for SLA negotiation for budget, energy, and time. Authors made 
a strategy for making a cost-effective schedule without sacrificing performance. The 
simulation was performed for the evaluation of the proposed scheme which indicated 
it is worth [35].

4.1.3.3 Multi‑criteria workflow scheduling In this type of scheduling, many 
parameters are considered simultaneously which conflict often. It could be QoS-
constrained even. In [16], VM consolidation was performed using prediction algo-
rithms. Novel multi-criteria techniques were employed for selection of overloaded 
hosts and appropriate VMs. Results showed 98.11% reduction in a metric com-
posed of migrations, violations in SLA, and consumption of energy.

Aggregation approach uses a simple average of an objective function to select 
a final solution. Mukhopadhyay et  al. [69] reported a work that performed the 
final selection of solution based on aggregation function and optimization of 
aggregated fitness function.
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£-approach User does not always know to keep a certain constraint for one crite-
rion. Therefore, mostly for solving a bi-criteria problem, this approach is used [70].

4.1.3.4 Pareto approach In this approach, solutions cannot be more optimized across 
any dimension without being deteriorated across another dimension at the same time 
[71]. Solution set obtained after using the Pareto approach is called Pareto optimal 
solution. In [72], two scheduling problems based on Pareto optimization were inves-
tigated. The maximum earliness cost was the objective in the first and in the second, 
maximum earliness cost was objective for one agent, and total earliness cost was 
objective for a second agent. As per authors, problems could be fixed in polynomial 
time by predicting Pareto optimal points.

4.1.4  Why energy‑aware scheduling?

Energy consumed by IT equipment (in data centers) is increasing at an extremely 
high rate, and release of GHGs from them is making earth unfit to live. Energy-
aware scheduling is ubiquitous and must be used for a sustainable future. Otherwise, 
it will have adverse effects on the environment. For optimal use of resources (in data 
centers) and to achieve QoS, energy-efficient scheduling plays a major role. Underu-
tilized resources being idle consume power at leisure, and on the other side, overuti-
lized resources degrade the performance.

5  Optimization: a solution

Scheduling is a decision problem as discussed in Sect.  4.1.1, so it cannot have a 
precise solution. Heuristics-based optimization techniques can assist in generat-
ing an optimal solution, where the objective is either to minimize or maximize a 
certain parameter. Parameters are finalized as per criteria which could be single or 
multi-objective.

To solve the energy-aware scheduling problem (optimization problem), various 
methods/techniques are available. Energy-aware scheduling focuses upon energy 
and/or power as a criterion for scheduling. According to Beloglazov and Buyya 
[11], the rate at which a system carries out work is power, whereas energy is total 
work done at a definite time interval as illustrated in Eq. (1).

According to [11], a decrease in the consumption of power does not always 
decrease energy consumption. For example, if there is a decrease in power consumed 
(decreasing CPU’s load), then the program may take longer time thus consuming 
more energy. Power is of two kinds—(1) static and (2) dynamic. Static power or 
leakage power is power consumed by the system not in functioning state. It depends 
upon low-level system design, i.e., transistors and processor technology. Therefore, 
it is difficult to reduce. Dynamic power depends upon usage scenarios, the voltage 
that is supplied and frequency of the clock. It can be reduced by reducing voltage 
and clock frequency. Power is a significant design constraint for computing systems. 

(1)Energy = Work = Power ∗ Time
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Power efficient computing is the main focus during research. However, due to the 
close correlation, energy and power are used interchangeably in the literature. The 
survey classifies various methods for reducing power or energy consumption.

5.1  Dynamic power management methods for optimization

The methods for dynamic power management are shown in Fig. 7.
Dynamic performance scaling DVFS reduces power consumption by frequency 

scaling (up/down) according to the requirement. If a CPU runs at a lesser frequency, 
less voltage will be required and hence less power consumption. Therefore, voltage 
and frequency are balanced dynamically, resulting in decreased power consumption. 
It may take longer time if a processor is working at lower frequencies. Processor’s 
governor monitors this process to regulate the performance. Generally, the processor 
starts at lower frequencies and steadily increases with workloads and so is energy 
consumption. A major challenge is to reduce power consumption through DVFS 
while handling deadline constraints. In [73], authors tried to decrease energy con-
sumption by making CPU work at lower frequencies as long as task deadlines could 
be guaranteed.

Slack reclamation is a technique that can be used with DVFS in order to meet 
timing constraints for completion of tasks. In parallel processing, many tasks exe-
cute simultaneously. Further, if completion of a task depends upon two preceding 
tasks and these two tasks complete at dissimilar times, a task that completes earlier 
can manage addition runtime called as slack. This additional time can be used by 
DVFS for energy efficiency [74].

Dynamic Component Deactivation (DCD) It involves deactivating or shutting 
down components, which are at idle (not used) state. DCD has transition overhead, 
which is insignificant in the case of small problems. However, such transitions can 
cause performance degradation and delays drawing additional power in some cases. 
Therefore, a transition is only required when the idle timing period is sufficient to 
pay off for overhead during transitions. In real life scenarios, it is impossible to pre-
dict future workload. Therefore, an estimation of actual transition requires historical 
data or some system model [75, 76].

Table  5 compares power reduction techniques. Most of the work is based on 
benchmarks or synthetic datasets in contrast to real data. Most commonly used sim-
ulators are CloudSim, Sniper, McPat in contrast to testbed or the experimental envi-
ronment. DVFS in combination with other techniques is used for reducing power 
consumption, and most results are objective in nature (numerically specified). Future 
work includes implementation of the real-time environment while scheduling more 

Fig. 7  Methods for dynamic power management
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number of jobs, considering platform heterogeneity, network characteristics, com-
munication costs, etc. The criteria or objective is to decrease power based on some 
parameters (objective or subjective). Various parameters used in power scaling are:

Sudhanshu et al. [63] developed a hierarchical framework for the management of 
power on many-core tiled processors. Weighted speed up, system throughput, cache-
to-cache transfers were employed to improve system performance with DVFS and 
a special thread scheduler. In [77], parameters targeted were servers used, energy 
consumption, cumulative machine uptime (CMU) for energy savings while guaran-
teeing SLAs. A heuristic based on DVFS was proposed to combine different virtu-
alized clusters on physical machines for batch-oriented cases. Morteza and Mehdi 
[78] provided an approach for analyzing and modeling of the real system serving 
stochastic workloads. Accuracy in terms of the average temperature of each core, 
thermal parameters including ambient temperature, convection resistance, convec-
tion capacitance, and others including relative error, and absolute error were focused 
upon to reduce power consumption. In [79], power consumption, performance over-
head, execution time, CPU utilization were the parameters used. A scheme was 
devised which could estimate and regulate power consumption and its impact on 
performance to suit power capping schemes.

In [80], parameters were energy performance ratio, power, runtime performance, 
energy consumption, and energy delay product (EDP) index. The major thought was 
to examine latency characteristics. In [55], energy consumption per cycle, time and 
energy overhead parameters were focused upon. Energy-aware dynamic task sched-
uling (EDTS) algorithm was developed to test online communications between tasks 
and reduce the overall consumption of energy. The designed algorithm made use of 
static scheduling algorithm’s results and blindly minimized consumption of energy. 
In [73], cloud servers’ performance, VM overhead, resource, and CPU utilization 
were the parameters employed for improving performance in a cloud data center and 
also to make it energy efficient. Babukarthik et al. [81] focused on the number of 
processors, tasks, and speed of execution to minimize energy consumption while 
scheduling tasks. A hybrid algorithm was proposed with the advantage of ACO, 
cuckoo search, and voltage scaling. In [20], deadline, VM overhead, performance 
metrics, makespan, energy consumption, energy cost,  CO2 emission, provider’s per-
formance, the resource utilization rate were examined maintaining SLA and QoS 
constraints. The problem of scheduling scientific workflow applications in a time-
dependent environment was addressed.

In [82], makespan, resource utilization, given deadline were the parameters to mini-
mize the total energy consumption of scientific workflow. Tasks were allocated to 
heterogeneous machines having a deadline and different frequency capabilities. The 
proposed algorithm worked repeatedly for further scaling of frequency. In [83], perfor-
mance, energy-related metrics were taken into consideration to reduce energy consump-
tion. Authors presented a code scheduling approach that used DVS and power gating. 
The objective was to minimize consumption of power during application execution.

In [84], makespan, energy, schedule length ratio (SLR), and energy consump-
tion ratio (ECR) were focused upon to address the problem of scheduling of 
precedence constrained parallel applications on multiprocessor computer sys-
tems. Algorithms with the incorporation of relative superiority metric (RS) and 
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makespan-conservative energy reduction technique (MCER) greatly contributed 
to reducing energy consumption. The energy saving of energy-conscious schedul-
ing (ECS) and  EC+ idle was enabled by making use of the DVS technique. In [85], 
deadline constraints, execution time, and speed were the parameters used. An online 
scheme was presented to allocate speeds to hard real-time workloads on systems fac-
ing thermal problems. In [86], system performance, core utilization of active nodes, 
and node utilization were focused upon to target interference that applications expe-
rience at an inter-core granularity. Authors presented a model for improving system 
performance using slack-based scheduling. In [87], DVFS improved makespan by 
more than 65% and at the same time improved the dynamic energy by about 20%.

From the above-mentioned literature, it is found that the number of processors, 
servers, cores, resources, nodes, and CPU utilization are the most preferred parame-
ters used in power scaling methods. It is considered to be the most favored technique 
for hardware-based optimization as the frequency of publications in this domain has 
increased in the last years (Sect. 7).

5.2  Heuristics‑based optimization methods

Software-based optimizations include resource scheduling, allocation techniques, 
throttling, and use of parallel programs. Being an NP-Hard problem, scheduling is 
performed by using various software-based optimization techniques—heuristics and 
metaheuristics. Figure 8 shows the classification of optimization techniques used in 
energy-aware scheduling.

Heuristics are usually dependent on the problem type, whereas metaheuristics do 
not depend on the type of problem and can be applied to any problem [88]. Heuris-
tics are generally based on the local search.

Metaheuristics are the advanced version of heuristics based on the generalized 
local search or global search and can be thought of guiding principle to design 
underlying heuristics [89].

Approximate Algorithms Heuristics have less time complexity than traditional 
methods. The aim of heuristic is to yield rapidly a solution that is decent enough for 

Fig. 8  Classification of heuristics-based optimization methods/techniques
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resolving the problem. Heuristics are based on theories or experimental experiences, 
but approximation algorithms have a solid theoretical foundation.

Global search [90, 91] Heuristics are generally based on local search, whereas 
the metaheuristics do not get stuck in local optima as they use generalized local 
search or global search. In a global search, whole solution space is searched to find 
a minimum or maximum value. Generally, methods used in global search do not use 
greedy approach because entire search space needs to be examined and globally best 
is selected. They could utilize dynamic methods.

Local search Local search finds a minimum or a maximum solution in local 
space. Local search algorithms find an estimated optimal solution out of possible 
candidate solutions by moving from one solution to others within a time interval. 
These algorithms may use greedy approaches. Works on the local search are [90, 92, 
93].

Greedy methods Greedy methods make the best choice at a particular instant of 
time. Thus, the local optimal solution is selected with an expectation that it would 
lead to a global best solution. At each step, greedy decisions are made to ensure the 
optimization of an objective function. The greedy algorithm cannot go backward to 
change the decision. [94–97] use greedy algorithms for scheduling.

Dynamic methods In dynamic programming, the problem is distributed into 
smaller problems, and each smaller problem is solved only once, resulting in a 
decrease in the number of computations. The solution is stored for next time usage. 
This method is advantageous when there is an exponential growth of repeating 
subproblems as a function of the size of the input. Authors in [98] used dynamic 
programming to find an approximate method for energy-efficient scheduling. Both 
dynamic and greedy approaches can be applied to the same problem; the differ-
ence is that the greedy approach does not reconsider its decision, whereas dynamic 
approach may keep on refining choices. Heuristics can be implemented indepen-
dently or in combination with other optimization algorithms to give better efficiency.

Methods based on these techniques are described as follows:
A deterministic model produces a single outcome at every instant based on 

all given input values. Deterministic methods employ state space search algo-
rithms. Probabilistic methods are based on randomness for the accomplishment of 
objectives.

State Space Search visits the entire space to reach a solution following certain 
rules. Informed search use heuristics (a function whose result indicates the next 
move). A branch and bound algorithm selects the optimum answer of an optimiza-
tion problem. The entire space of the solution domain is examined for searching the 
best solution. The limits in objective function are merged with the last best solu-
tion. It continues to improve the solution once originated. Parts of solution space 
are found completely keeping the path with the lowest cost as a target [98, 99]. In 
the state space search, many states are traversed to reach a final state or goal state. 
Sequences of actions, which lead to the goal state, constitute the solution [100]. In 
hill climbing, the search continues in the direction which optimizes the cost using a 
greedy approach. There are many variants of hill climbing—the best neighbor, the 
first or nearest neighbor. The best-first search uses an evaluation function based on 
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heuristic to explore the graph. The best-first search can be optimized to reduce the 
memory required and is called the beam search.

Table  6 compares the state space search (informed search) deterministic opti-
mization methods used in energy-aware scheduling. Maximum datasets are either 
randomly generated. Mostly simulations are performed, and the results obtained are 
numerically specified (objective). Future scope includes increasing the complexity 
of networks and consideration of system components (disk, main memory, and com-
munication networks) for energy efficiency. The objective is to decrease energy con-
sumption based on some parameters (objective or subjective) that are as follows:

In [101] nominal execution time, nominal system utilization, system slackness, 
resource utilization were the parameters used. The focus was on the allocation of 
resources and robustness based on QoS constraints. Szynkiewicz et al. focused on 
traffic difference, power reduction, and QoS constraints. Design of a framework for 
centralized and hierarchal variants for a low energy-consuming network was made. 
Two control levels were implemented, network-based mechanism and local mecha-
nism. Network-wide optimization problem was formulated in two ways, and an effi-
cient algorithm was developed to solve it. Total system runtime, utility, QoS, aver-
age energy, and power consumption were the parameters used in [43]. A general 
adaptive task model was presented by utilizing existing ways of real-time adaptation 
for fault tolerance and graceful degradation [102]. Optimal solutions using heuris-
tics were presented to get maximum advantages within the limited energy budget 
and a known time to recharge. A design space exploration (DSE) [103] method was 
developed to present architecture having multiple cores and optimal scheduling. Its 
efficiency was proved with large and hard graph problem. In [104], the technique 
used was Spreading Activation Partial Order Planner (SA-POP). Other techniques 
based on precedence constraints were applied to find harms and enhance ordering 
restrictions for autonomous coordination.

It is found that nominal execution time, total system runtime, utility, number 
of cores, number of buses, system utilization are the most preferred parameters in 
deterministic methods. As per the literature, deterministic algorithms are generally 
used with power scaling and genetic techniques.

Queuing Theory: It comes under the category of probabilistic methods. In the 
queuing theory [105], queues are presented and analyzed. Construction of models is 
done to estimate the length of queues and their waiting time. Queues are represented 
in mathematical equations for proving theorems known as Markov chains. Various 
scheduling policies can be used at queuing nodes and represented mathematically. 
First come first-serve (FCFS) [89] algorithm schedules processes by managing tasks 
or resources in order of their arrival times. It works on the principle of first in, first 
out (FIFO). The other algorithm is last in, first out (LIFO). It serves the task which 
has shorter waiting time first. Minimum completion time (MCT) and minimum 
execution time (MET) [106] are two heuristic algorithms. Min–Min and Max–Min 
are also two heuristics based on MCT and MET. Min–Min [106] picks the machine 
which gives MCT and assigns the smallest task to that machine. It increases the 
value of makespan, but does not consider the availability of resources while schedul-
ing. Thus, completion and execution time come to be almost the same [106]. Other 
algorithms include priority-based scheduling using priority queues where jobs are 
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executed on the basis of size, time, etc. These include EDF, Shortest Job First (SJF), 
Earliest Finish Time (EFT), Heterogeneous Earliest Finish Time (HEFT), etc.

Table 7 compares queuing theory techniques based on dataset, tools, techniques, 
results, and future scope. Mostly synthetic datasets and real-world traces are used 
for evaluation. Techniques such as FCFS, HEFT, EDF are used, and most of the 
results are objective.

In [107], energy consumption, slack factor, good state probability, bad state 
probability, number of nodes were the parameters used for scheduling of periodic 
messages and to decrease overall consumption of energy in a wireless network. 
Thanavanich and Uthayopas [108] used a metric called SLR and ECR to balance 
energy consumption and makespan simultaneously. Two energy-efficient cloud-
based scheduling approaches called Enhancing Heterogeneous Earliest Finish Time 
(EHEFT) and Enhancing Critical Path on a Processor (ECPOP) were proposed. 
They tried to achieve more energy reduction and satisfy performance constraints. 
The proposed approach used performance metric ratio of effectiveness (RE) to find a 
processor which is ineffective. In [82], makespan, utilization, user deadline were the 
parameters used to allocate tasks on heterogeneous machines with a deadline and 
diverse frequency capabilities. Authors relied upon the fact that even the minimum 
frequency may not always prove to be energy efficient.

In [74], makespan, energy, SLR, and ECR were the parameters used on multi-
processor computer systems. Algorithms with RS and MCER significantly con-
tributed to reducing energy consumption. In essence, an energy saving of ECS and 
 EC+idle was enabled due to the exploitation of the DVS technique. In [85], dead-
line constraints, execution time, and speed were parameters used. An online scheme 
was presented which considered deadline constraints while providing speeds to 
systems processing real-time workloads having thermal issues. In [34], execution 
time, makespan, and total cost were used to optimize the cost of purchasing IaaS to 
achieve scientific workflow execution within specific deadlines. Authors used PSO 
along with VNS to optimize numerous factors such as a number of machines, price, 
scheduling to minimize total cost. Jingcao and Marculescu et  al. [109] developed 
an effective scheme for energy-aware scheduling, which considered a delay in com-
munication by parallel scheduling of transactions with computation for Network-on-
Chip (NoC) architectures. They also handled execution time and cost. Zhang et al. 
[110] simulated the thermal-aware task scheduling algorithm and thermal-aware 
task scheduling algorithm-backfilled based on thermal information and resource 
information obtained in the Center for Computational Research (CCR) log files. 
Data center average, maximum temperature, job response time, impact on the envi-
ronment, consumed power were measured.

It is clear that QoS parameters, benchmark programs, and real data are also 
focused upon while reducing energy consumption. EFT and other algorithms based 
on EFT are most widely used algorithms in queuing theory. Network characteristics, 
power consumption by hardware components, and cost of data transfer are not con-
sidered significant in queuing theory methods.

Bin packing is a probabilistic heuristic technique which aims to switch off idle 
servers by packing the hosts on available VMs [111]. It involves VM migrations 
on physical machines to fulfill requests by utilizing a minimum number of servers 
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[112]. It uses next-fit, first-fit and best-fit scheduling algorithms. The next fit algo-
rithm utilizes the same bin, used during the last processed item. First fit is a modi-
fication of the next fit; it examines earlier bins and selects the best. Best fit selects 
bin with minimum space wastage and is considered to be finest. First fit decreasing 
(FFD) and best fit decreasing (BFD) are modifications of these algorithms that are 
based on sorting.

Table  8 compares bin packing-based energy-aware scheduling techniques. The 
data include real measurements, real-time traces, and synthetically generated data-
sets. Experiment setups include either hardware devices or simulators. Techniques 
include MBFD, minimum migrations (MM), best-fit heuristics.

Taheri et al. [113] tried to decrease the consumption of energy in CC data centers 
revising VM scheduling method while keeping QoS parameters as high as possible. 
In [114], an investigation was performed to find performance assurances that could 
be severely proven for heuristics (MM and MBFD) according to capacity and num-
ber of hosts to indicate the effectiveness of approximation. Viswanathan et al. [115] 
proposed a novel resource heuristic framework that used a best-fit heuristic for real-
location of unfinished tasks to alternate (backup) service providers. Zeng et al. [116] 
targeted energy-efficient scheduling of real-time periodic tasks. Some constraints 
like idle power, ineffective speed, and application-specific power characteristics, 
etc., were also associated with them. An adaptive minimal bound first-fit (AMBFF) 
algorithm was proposed for both dynamic-priority and fixed-priority multiprocessor.

In [117], the objective was to provide a computational cost and performance ben-
efit analysis of schemes in terms of both feasibility and overall energy consump-
tion. Experimental evaluation was performed to check the impact of partitioning 
heuristics, admission control algorithms, and speed assignment schemes by intro-
ducing a hybrid metric. Kandhalu et al. [118] studied energy-efficient scheduling of 
periodic real-time tasks with implicit deadlines on-chip multi-core processors using 
normalized power consumption to indicate its performance. In [77], parameters tar-
geted were servers used, energy consumption, cumulative machine uptime (CMU) 
for energy savings while guaranteeing SLAs. In [73], cloud servers’ performance, 
VM overhead, resource, and CPU utilization were used to improve performance and 
energy efficiency. In [119], Hancong et al. proposed a scheduling approach named 
pre-ant policy. It consisted of a model for prediction using mathematics and a sched-
uler using improved ant colony algorithm.

In bin packing techniques, power is not aggressively reduced without consider-
ing performance. Most used algorithms are best-fit heuristics and modified best, and 
worst fit algorithms.

Metaheuristics are heuristics about heuristics, and they provide better results by 
avoiding local optima. They can be based on local search, global search, and both. 
So, there is an overlapping classification as shown in Fig. 8. There are many clas-
sifications related to these heuristics/metaheuristics-based optimization techniques. 
Figure 8 lists only algorithms related to energy-aware scheduling in CC. They can be 
put under multiple classes like swarm intelligence in nature-inspired, or Tabu search 
can come under memory-based metaheuristics. Therefore, to explain all the possible 
permutations is beyond the scope. So, algorithms used in energy-aware scheduling 
are covered and classified in the best possible way.
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Trajectory-based methods use a single search strategy, and they focus on a single 
candidate solution. Trajectory-based algorithms that use both local search and global 
search are simulated annealing, Tabu search, iterated local search, variable neigh-
borhood search, greedy randomized adaptive search procedure (GRASP). However, 
algorithms that use global search are generally population-based metaheuristics 
which use multiple candidates as search points, and characteristics of the population 
are used to guide the search. Examples are ant colony optimization (ACO), particle 
swarm optimization (PSO), and cuckoo Search.

Iterated local search is an improvement of local search in which search is repeated 
each time starting from a different state using certain criteria until the best solution 
is found. It helps to avoid getting stuck in local optima. Memory might be used to 
keep a record of previously visited states. Variable neighborhood search is based on 
dynamically changing neighbors. Random neighbors list can be made, but the cer-
tain sequence is to be followed. Iterated local search is applied and move to the next 
state is possible only if a better solution can be generated. Simulated annealing is 
inspired by metallurgical annealing. It is the type of trajectory-based metaheuristic 
that is used to generate global optimum in the large search space as per the objective 
function.

Tabu search uses improved local search and memory to avoid cycles. Memory 
records recently visited states and prevented moving toward them. The best state 
that has not been visited yet is chosen in each iteration until the algorithm is stopped 
at a terminating condition.

GRASP generates solution using dynamic constructive heuristic and randomiza-
tion. The next state is chosen at random. It continues to improve the solution until 
the best is found.

Table  9 compares (metaheuristics) techniques based on trajectory methods. In 
[120], completion time, disc utilization, processor utilization, the power consumed 
were used for scheduling of VMs to physical machine considering energy efficiency, 
synchronizing utilization of the processor, disc, and cost of migration. In [121], the 
number of migrations, performance degradation due to migrations, SLA violations 
were the parameters considered to evaluate the proposed framework that consoli-
dates VMs while taking care of QoS. Alkhashai et al. [122] considered makespan, 
utilization of resources and, cost for scheduling of tasks in a cloud environment. The 
proposed algorithm was able to reduce time, cost, and increase resource utilization. 
In [123], to maintain energy performance trade-off, a mechanism was introduced 
that focused on probability functions and a number of cycles generated to reduce 
carbon footprints.

It can be seen that CloudSim and MATLAB are the most widely used tools in the 
case of trajectory-based methods and results are objective in nature. However, real 
cloud implementation is lacking behind.

Population-based metaheuristics are further divided into evolutionary algorithms 
and algorithms based on swarm intelligence.

Evolutionary algorithm (EA) EA is a subgroup of evolutionary computation, 
which is based on metaheuristic technique. It uses various nature-inspired mech-
anisms such as reproduction, mutation, and crossover. Genetic algorithms [88, 
124] are a most popular type of EA.
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Table 10 compares techniques based on genetic algorithms. In [125], for effi-
cient scheduling, Multi-objective genetic algorithm (MOGA) was proposed which 
considered both optimization and global makespan to reduce energy consump-
tion. Kołodziej et  al. [126] formulated task scheduling for CC as a bi-objective 
minimization problem having makespan and energy consumption as criteria and 
QoS constraints. Youness et  al. [103] focused on average deviation from opti-
mality, number of cores, execution time, and scalability. A design space explora-
tion (DSE) methodology was proposed to create architectures with multiple cores 
and optimal scheduling. In [127], cost of storage, computation, and data transfer 
were considered. In [128], performance, resource utilization, number of servers 
were considered. To reduce the number of running servers and resource wast-
age, a hybrid algorithm was proposed. In [129], parameters that were focused 
upon included makespan, VM resource utilization, the degree of imbalance, 
performance.

Few works on evolutionary algorithms have actually focused on QoS parameters. 
Researchers employed various techniques based on genetic algorithms for saving 
energy, but results cannot be compared or correlated because of different constraints 
and scenarios.

Swarm intelligence [130] is based on mutual behavior of a population of agents 
occurring in nature. It motivates from the behavior of animals as a group, how they 
interact and communicate among themselves. Metaheuristics-based swarm intelli-
gence algorithms for scheduling include (1) ACO [131] which is inspired by the 
behavior of ants to discover the shortest path to the source of food. (2) PSO [131] is 
motivated by the social behavior of particles. PSO generally combines local search 
and global search methods for resource allocation. Cuckoo search [132] is moti-
vated by blood parasitism of cuckoo species. Table 11 compares swarm intelligence-
based energy-aware scheduling techniques on the basis of dataset, tools, techniques, 
results. Synthetically generated dataset and real-world traces are used for evalua-
tion. Techniques like PSO, ACO, cuckoo Search are employed, and most results are 
objective. The main aim is to save energy by using different parameters.

Babukarthik et al. [81] focused on quality of schedule, number of tasks, number 
of processors, and speed of execution to minimize energy consumption while sched-
uling tasks. In [133], makespan, cost, job rejection ratio, number of jobs meeting 
the deadline, and user satisfaction were considered. Authors designed and developed 
CLOUD Resource Broker (CLOUDRB) for effective management of resources in 
the cloud. Jeyarani et al. [134] proposed an adaptive power-aware virtual machine 
provisioner (APA-VMP) which drew minimum power without compromising per-
formance. In [135], a strategy for scheduling and resource provisioning for differ-
ent workflows on IaaS was presented. It optimized application execution cost main-
taining deadline constraints. In [34], execution time, makespan, and the total cost 
were the parameters used to optimize the cost of purchasing IaaS to achieve sci-
entific workflow execution within specific deadlines. In [119], Hancong et al. pro-
posed a scheduling approach named pre-ant policy. Faragardi et al. [22] presented 
a scheme for the allocation of resources considering energy efficiency, reliability, 
timing constraints, memory limitation, etc. Reliability and quality of schedule were 
also considered.
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Most used algorithms are PSO and ACO which helped to satisfy the goal of 
reducing energy consumption.

Miscellaneous techniques Table  12 compares these techniques. Experimental 
setup includes real cloud deployments; CloudSim is the most used simulator. Most 
of the result analysis is objectively discussed. Future work includes considering 
more constraints, implementation in a real environment, and developing a generic 
framework for energy savings.

6  Performance metrics for green cloud computing

Performance metrics for the green data center are categorized as basic metrics and 
extended metrics [46]. The basic metrics are a measure of environmental friendli-
ness of data centers. The extended metrics are functions of basic metrics that gener-
ate detailed view about data center [49].

6.1  Basic metrics

These are used to illustrate the efficiency of data centers in terms of environmental 
effect.

6.1.1  Greenhouse gas emission

GHGs are gases in the atmosphere that absorb and produce heat rays in the thermal 
infrared range. GHG is  CO2 which constitutes 9–26% of effect [141]. Power con-
sumed in data centers is enormous, and GHGs are released during power genera-
tion which causes harsh effects on the environment. Thus, GHG emission should be 
measured to check how green a data center is.

6.1.2  Humidity

Moisture content in the air is called humidity [142]. Hardware failures are caused 
due to high humidity. The quantity of water in the air is measured by relative humid-
ity. Relative humidity difference (RHD) (Eq. (2)) is the difference between the rela-
tive humidity of return air and air supply in the data center:

6.1.3  Thermal metrics

They play a significant role in maintaining the data center’s efficiency.

(2)RHD = Return air relative humidity − Supply air relative humidity
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6.1.3.1 Data center temperature To attain system reliability, an optimal temperature 
range is between 20 to 24 °C [143]. If data center temperature is higher than 30 °C [144], 
it is recommended that no costly IT equipment should be kept there.

British thermal unit (BTU): Solutions for cooling a server room or a data center are 
governed by British Thermal Unit (BTU) [145]. A BTU is the measure of energy that 
is needed for increasing temperature of a pound of water by 1 °F.

Airflow performance index: It indicates the efficiency of the data center from a ther-
mal point of view.

Cooling system efficiency metric: These include airflow efficiency (AE), cooling 
system efficiency (CSE), cooling system sizing (CSS), and water economizer utiliza-
tion (WEU). AE (Eq. (3)) indicates how efficiently air passes through a data center.

CSE (Eq. (4)) is a measure of total efficiency in terms of cooling equipment usage, 
power withdrawn for cooling. It is defined as:

CSS (Eq. (5)) is a ratio of installed chilling capacity to highest chilling load [146].

WEU (Eq. (6)) is a measure of savings in energy by using a water-sider economizer 
system.

WEU provides information on energy savings by using a water-side economizer 
system.

6.1.4  Power/energy metrics

They include Data Center Infrastructure Efficiency (DCiE or DCE), Power Usage 
Effectiveness (PUE), Heating, Ventilation and Air Conditioning (HVAC) System 
Effectiveness, Space, Watts and Performance (SWaP), Data Center Energy Productiv-
ity (DCeP). DCiE is widely accepted by industry [147, 148]. DCiE is calculated as 
mentioned in Eq. (7).

PUE [147] measures the energy consumed by IT and non-IT equipment (cooling 
devices). It is defined in Eq. (8).

(3)AE = 1000 ×
The overall power of fan

Overall airflow of the fan

(4)CSE =
Average power used by cooling systems

Average load to be cooled

(5)CSS =
Installed capacity for cooling

Highest load for cooling

(6)WEU =
Water economizer hours

24 × 365

(7)DCiE =
Power consumed by IT devices

Overall facility power

(8)PUE =
1

DCiE
=

Overall facility power

Power consumed by IT devices
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The HVAC System Effectiveness (Eq.  (9)) is a ratio of energy consumed by 
IT devices to HVAC (electrical energy for cooling, movement of a fan) system 
energy.

where IT is total electrical energy consumed annually by IT devices. HVAC, fuel, 
steam, chilled water is annual electrical energy required for HVAC, fuel, steam, 
chilled water, respectively.

SWaP (Eq. (10)) measures energy efficiency by considering space, energy, and 
performance together [149].

where performance is measured by using benchmarks set by the industry. Space is a 
measure of the height of the server in rack units. Power is in watts, which is used by 
the system during benchmark runs.

The DCeP (Eq.  (11)) [150, 151] measures useful work done in comparison 
with consumption of energy.

6.2  Extended metrics

Extended metrics give detailed information about the data center and are catego-
rized into multiple indicators and total cost of ownership.

6.2.1  Multiple indicators

Multiple indicators include data center indicators and data center sub-level 
indicators.

Data center indicators include server utilization, network utilization, storage 
utilization, and data center utilization.

Server usage measures actions of the processor in contrast to its maximum 
capability during uppermost frequency state. Network usage is the ratio of band-
width consumed to bandwidth capacity in the data center. Storage usage is a per-
centage of storage consumed compared to total storage within the data center. 
Data center utilization indicates the amount of power consumed by IT equipment 
comparative to the real capability of the data center.

Data center sub-level indicators Power, cooling, airflow, weight, and area con-
stitute sub-level indicators [147]. They help to measure various inefficiencies in 
data centers.

(9)HVAC Effectiveness =
Energy consumption by IT devices

HVAC + (Steam + Chilled Water + Fuel) × 293
,

(10)SWaP =
System Performance

Rack Space × Consumption of Power

(11)DCeP =
Useful work done

Total energy consumption
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6.2.2  Total cost of ownership (TCO)

TCO signifies cost required to buy, construct, run, and maintain a data center [152]. 
TCO includes capital expenses which include initial investments, cost of cooling 
equipment, power consumption, space, and operational expenses, etc. So, the cost of 
the data center should be in terms of dollars per watt. Generally, power and cooling 
forms 80% of the capital cost and rest 20% is spent on construction of data center 
[153]. Operational cost includes monthly costs of running a data center [153], e.g., 
implementation techniques, climate costs, etc.

The studies that have measured the values of these metrics to find the efficiency 
of data centers are [37, 146].

7  Global analysis

The rapid development of CC has escalated the need of energy efficiency. Accord-
ing to the best of our knowledge, there is a scarcity of broad scientometric analy-
sis (empirical study) which provides a view of the present status of research in this 
domain. There is a need to explore the trends of research in this evolving field. Sci-
entometric analysis [154] has been conducted to find global research trends which 
can serve as a direction for further research activities, collaborative research, shar-
ing of knowledge. Publications mentioned in Sect.  5 are included in the analysis 
to examine research in this field. This survey evaluates the publications according 
to global regions, journals, conferences, year of publishing, the research commu-
nity, and fund provisioning. The discussion below is based on trends found from this 
analysis. Peer researchers may interpret the trends differently.

Figure 9 illustrates the frequency of publications in various conferences and jour-
nals on energy-aware scheduling in CC. Journal considered are “Journal of Super-
computing (JSC), Journal of Parallel and Distributed Computing, Future Generation 
Computer Systems (FGCS), IEEE Transactions on Parallel and Distributed Comput-
ing (ITPD) and IEEE Communication Surveys and Tutorials (ICST).” Trends indi-
cate that research work in this domain is published equally in journals and confer-
ences. The reason may be the evolving and dynamic nature of the topic itself [10]. It 

Fig. 9  Journal- and conference-wise publications in all sub-domains in energy-aware scheduling



4799

1 3

Toward energy‑efficient cloud computing: a survey of dynamic…

can also be analyzed that FGCS and JSC are most preferred journals in the research 
community. Figure 10 illustrates a geographical viewpoint of this research domain. 
It is clear that Asia, North America, and Europe are more active research continents, 
whereas others contribute least. Asian people contribute a major part (43.33%) in 
this research domain.

Figure 11 illustrates a more detailed viewpoint by providing insights on pub-
lication details. European researchers prefer to publish a major part of their 
research contribution in conferences and FGCS. North America publishes a major 
part of research contribution in conferences. Asia prefers to publish in FGCS, 
JSC, and conferences, whereas Australia and Africa have the least contribution. 
African researcher prefers to publish in conferences. Australian researcher prefers 
to publish in ITPD and JSC. Figure 12 illustrates the frequency of publications 
annually in this domain. The year 2016 depicts maximum frequency (21.66%) 
of publications. Coming years may have an increase in contribution or publica-
tions. Table 13 shows the comparative analysis of published and funded work in 
all sub-domains. DVFS has a maximum number of publications which account 
for 23.33% of total publications. Out of this 23.33% of total publications, 13.33% 
have got grants. In miscellaneous field, 13.33% of publications are funded out of 

Fig. 10  Continent-wise publications in all sub-domains in energy-aware scheduling

Fig. 11  Continent-wise publications according to journals and conferences
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total 16.66%. Minimum funding is in a subdomain of trajectory-based methods in 
which only 1.6% works have got funding out of a total of 6.66%. Figure 13 illus-
trates the contribution in research by different groups in this domain. Academic 

Fig. 12  Year-wise publications in all sub-domains in energy-aware scheduling

Table 13  Comparative analysis 
of published and funded

Sub-domains Funded (%) Total 
papers 
(%)

DVFS 13.33 23.33
State space search 5 8.33
Queuing theory 6.66 13.33
Bin packing 5 13.33
Trajectory-based 1.6 6.66
Genetic algorithms 8.33 10
Swarm intelligence 3.33 13.33
Miscellaneous 13.33 16.66

Fig. 13  Research contribution by different groups
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research contribution is major in contrast to minor contribution from the collabo-
rative effort of academia and industry. Research institutes of industry lack behind.

8  Research issues and a strategy for future research

Energy efficiency in CC is an active and vast research area. Literature indicates 
that researchers are working on a particular sub-part of the solution. The problem 
of energy consumption is addressed by using various mechanisms such as vir-
tualization, multi-core architectures, parallel processing, power-aware methods, 
thermal-aware methods, bio-inspired methods. These mechanisms in turn use 
various optimization/scheduling algorithms like PSO, ACO, HEFT, FCFS, best 
fit, genetic algorithm, etc. Limited research is carried on investigating the trade-
off between energy efficiency and QoS compliance as per SLA. However, QoS 
is the foremost parameter of concern for cloud clients. To explore both perfor-
mance and energy efficiency, the challenges include maintaining the reliability 
of a server because power cycling may reduce it, performing VMs consolidation 
without affecting QoS, accurate application performance management in a virtu-
alized environment while maintaining SLA [65]. Major issues on energy optimi-
zation for CC are listed below:

• Much work is done on the development of energy-efficient framework using con-
solidation techniques, but that is not generic [77].

• How to balance energy efficiency and VM placement [66].
• Solution for VM performance degradation [121, 155].
• Implementation of optimization techniques for energy efficiency in the cloud 

environment taking into consideration a very high number of jobs [73, 81].
• Investigation of the impact of network characteristics, communication cost, over-

head, system components like the disk, main memory while scheduling applica-
tions on cloud [82].

• The research in the area of harvesting renewable energy at different sites of a 
data center is at its initial stage. The challenge is to minimize nonrenewable 
energy usage, carbon cost and to investigate the effect of inter-region migration 
of VMs [156].

• Another issue is to select the VM that is to be migrated keeping in considera-
tion the running application, SLA, data transfer, etc., and in some cases, multiple 
VMs are to be migrated. So, sharing of network resources effectively is a chal-
lenge [156].

• Performance management by synchronization with SLAs for the satisfaction of 
users [65].

• Minimizing energy consumption considering heterogeneous workloads and runt-
ime migrations of VMs [156].

• Storing a large amount of data and its processing can lead to energy wastage. 
So, streamlining data storage, processing, energy consumption simultaneously is 
another issue [6].
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A strategy for future research must address these issues. Work in harvest-
ing renewable energy (data centers) is in its early stages. So a scheduling strategy 
employing heuristics-based optimization techniques that can migrate VMs to hosts 
of a green data center is needed. The solution should be generic and also take into 
account CPU utilization, RAM, network and storage devices. The new scheduling 
strategy should provide compliance to new paradigms of fog and edge computing 
by providing low-latency services to users so as to consider QoS factors (energy 
consumption and performance). Constraints associated with applications like speed, 
power in an idle state, power characteristics of an application [114] should be incor-
porated in the proposed strategy. The design strategy should also consider those 
applications in which execution time is not known beforehand [34].

9  Conclusion

CC has brought a revolution in today’s world by changing the way of delivering 
computing services. Almost all the online users use it in a direct or an indirect way. 
However, CSPs and cloud users face a lot of challenges. Challenges are to provide 
(1) energy efficiency (2) QoS (3) SLA compliance (4) load balancing (5) security 
(6) traffic management, and (7) cost-effectiveness. Energy efficiency is a major chal-
lenge as data centers consume tremendous power and release GHGs, deteriorating 
the environment. This survey presents a taxonomy of energy-aware optimizations, 
dynamic power management methods. It is justified that heuristics-based optimiza-
tion (scheduling) is a generic solution for achieving energy efficiency in CC.

This survey shows that (1) probabilistic algorithms specifically genetic algo-
rithms (PSO, ACO) and bin packing-based algorithms (best fit, EFT, WFD) are the 
most extensively used techniques for reducing energy consumption. (2) DVFS is the 
commonly used method for power saving. (3) CloudSim is the widely adopted simu-
lator for evaluation and validation in contrast to real data center implementation. (4) 
Benchmark programs and real-world traces are the commonly used sources of data. 
(5) Majorly used parameters are resource utilization, number of cores, node utiliza-
tion, number of servers, and CPU utilization in contrast to QoS as per SLA compli-
ance. (6) Widely focused GC metrics are GHG emission and PUE which tells the 
environmental friendliness of a data center.

Many factors such as network characteristics, communication cost, overhead, 
energy consumption by system components like the disk, main memory were 
ignored in past research studies. There is a need to design scheduling algorithms 
which consider the energy consumed by these factors and also work for heterogene-
ous workloads. Paper also classifies the results into (1) objective results (numeri-
cally specified) (2) subjective results (no discrete values). Most of the previous 
research contributions have objective results. The rapid increase in objective work 
in this domain indicates its dynamism. The paper concludes by a comprehensive sci-
entometric analysis based on publications while considering bibliometric parameters 
for analysis. The outcome of this can serve as a direction for future research contri-
bution. Future work will concentrate on the implementation of techniques for energy 
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efficiency in CC and also on investigating the use of scheduling techniques in newly 
emerged fog and edge environment.

Funding This research did not receive any specific grant from funding agencies in the public, commer-
cial, or not-for-profit sectors.
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