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Abstract: A top–down predictor, called TpPred, is developed which consists of 3 

level of hierarchical classification using cascade of neural networks from sequence 

derived features. The 1
st
 layer of the prediction engine is for identifying a query 

protein as transport protein or not; the 2
nd

 layer for the main functional class; and the 

3
rd

 layer for the sub-functional class. The overall success rates for all the three layers 

are higher than 65% that were obtained through rigorous cross-validation tests on the 

very stringent benchmark datasets in which none of the proteins has 30% sequence 

identity with any other in the same class or subclass. TpPred achieved good prediction 

accuracies and could nicely complement experimental approaches for identification of 

transport proteins. TpPred is freely available to be use in-house as a standalone 

version and is accessible at http://www.juit.ac.in/attachments/tppred/Home.html.  

 
Keywords:Transport proteins,hierarchical classification, neural networks, sequence 
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1 Introduction 
Transport proteins are biologically important 

and play indispensable roles in the 

fundamental cellular processes of all 

organisms. They are involved in the 

transport of ions and molecules across the 

membrane, play essential roles in cellular 

metabolism and activities. They mediate the 

entry of nutrients into cytoplasm and the 

extrusion of metabolite wastes, maintain a 

stable internal environment inside the cell by 

regulating the uptake and efflux of ions, 

protect cells from environmental insults, and 

enhance communications between cells 

through the secretion of proteins, 

carbohydrates and lipids [1-3]. Specific 

transporters have been explored as 

therapeutic targets [4-6]. A variety of 

transporters are responsible for the 

absorption, distribution and excretion of 

drugs within the human body which must be 

factored into pharmacological studies [7,8]. 

Different transport systems differ in their 

putative membrane topology, energy 

coupling mechanism and substrate 

specificities [9]. The immense importance of 

studying transport proteins and the enormity 

of the data available on these proteins has 

warranted the systematic annotation and 

classification of transport proteins for 

elucidating the functional mechanisms of 

proteins and biological processes.   

 

Transport proteins have been identified by 

such experimental approaches as absorbance 

spectroscopy, gel electrophoresis, metal-

affinity columns and shift assay, 

chromatography, mass spectroscopy, and 

combined spectroscopic studies. However, 

some of these methods generally require a 

purified or semi-purified target of interest, 

do not facilitate identification of unknown 

targets form complex protein mixtures, or 

require multi-step processes and very 

specialized equipment, which limit their 

application ranges. Therefore, there is need 

to explore other methods including 

computational approaches for facilitating the 

identification of transport proteins to 

complement these experimental methods. 

With the explosion of protein sequences 

entering into databanks, it is highly desirable 

to explore the feasibility of selectively 

classifying newly found protein sequences 

into their respective transport protein classes 

by means of an automated method [10, 11]. 

This is indeed important because knowing 

which protein belongs to which particular 

class may help to deduce its catalytic 

mechanism and specificity, giving clues to 

the relevant biological function. Primary 

sequence of these proteins are readily 

available, therefore a method using the 

sequence derived features will prove a much 

valuable and a cost effective process of 

determining and classifying these proteins 

into broader transporter/non-transporter and 

specifically into major classes and 

subclasses as defined by Transport 

Classification (TC) system 

(http://www.tcdb.org/browse.php) [12].  

So far, sequence alignment and clustering 

are the primary method for predicting the TC 

family, as well as the function of transporters 

[13, 14]. Some transporters are known to 

have no or low homology to other proteins 

of known function [15-18]. A substantial 

portion of transporters in different TC 

families have been found to have very low 

sequence identity to other family members. 

For instance, a member of the multidrug 

transporter family, bmr3, has only 7% 

sequence identity and 17% similarity to 

another family member blt [18]. The 

potassium channel, TASK-2, has 18–22% 

sequence identity to other members of the 

two-pore domain K
+
 channel family, such as 

TWIK-1, TREK-1, TASK-1, and TRAAK 

[19]. Two members of the major facilitator 

family, GlpT and LacY, are 21% identical to 

each other [21]. Thus, the function of some 

of these transporters may be difficult to 

assign based solely on homology, [21, 22] 

and methods that predict protein function 

without the use of sequence similarity are 

needed. 

 

This work explored a machine learning 

method, artificial neural network (NN) that 

predicts transport proteins directly from 

sequence or sequence-derived properties. 

The sequence derived features that were 

used are amino acid composition, pseudo 

amino acid composition and 

physicochemical properties. Using these 

parameters and their combination we have 

developed a cluster of neural networks for 

the hierarchical classification of transport 

proteins in a “top-down” approach.  
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2 Materials and methods 
 

2.1 Preparation of dataset 
All transport proteins used in this study are 

taken from the Transport Classification 

Database (http://www.tcdb.org/) in which 

the proteins are classified on the basis of 

their function [12]. A total of 5,359 transport 

protein sequences taken together, have been 

classified into seven major classes as: 

channels/pores (1139), electrochemical 

potential-driven transporters (1456), primary 

active transporters (2045), group 

translocators (107), transmembrane electron 

carriers (106), accessory factors involved in 

transport (129) and incompletely 

characterized transport systems (377). With 

the aim of avoiding prejudiced learning in 

the networks, we scaled the sequences such 

that the inequality in the data points or 

number of protein sequences in each class 

may be compromised.We reduced the 

proteins in each class with a similarity cutoff 

of 30% using BLASTClust [23]. A negative 

dataset consisting of 2,907 protein 

sequences, representing non-transport 

members is also created from PDB database. 

These datasets are divided into separate 

training, testing and independent evaluation 

sets (Table 1). 

 

2.2 Feature vector construction 

Following three types of discrete feature 

vectors were constructed for each 

protein sequence.  

1. Amino acid composition: Given 

the sequence of a protein, its 

amino acid composition was 

computed and then used to 

generate a set of 20 features 

representing composition of 20 

standard amino acids  in the 

protein sequences that include A, 

C, D, E, F, G, H, I, K, L, M, N, P, 

Q, R, S, T, V, W and Y. These 

features have been widely used in 

predicting different structural 

classes and subcellular localization 

of proteins [10,11,24]. The 

formula used to calculate amino 

acid composition is: 

( )
∑

=

=
20

1

)(

)(

j

jAA

iAA
iAAcomp  

where AA(i) = Frequency of i
th
 

amino acid in the sequence 

 

2. Physicochemical properties: 

Twelve sequence derived 

properties for each protein 

sequence was calculated using 

EMBOSS (EBI) package [25]. The 

parameters include: molecular 

weight, totalcharge, isoelectric 

point, mole percentages of tiny 

(A+C+G+S+T), small 

(A+B+C+D+G+N+P+S+T+V), 

aliphatic (I+L+V), aromatic 

(F+H+W+Y), non-polar 

(A+C+F+G+I+L+M+P+V+W+Y), 

polar 

(D+E+H+K+N+Q+R+S+T+Z), 

charged (B+D+E+H+K+R+Z), 

acidic (B+D+E+Z) and basic 

(H+K+R) amino acids . 

 

 3. Pseudo amino acid composition 

(PseAA): This class of descriptor 

consists of a set of 37 features, 20 of 

which are weighted amino acid 

compositions and rest 17 are 

correlation factors calculated among 

amino acids for each protein sequence 

[26]. 

A protein sequence P with L amino 

acid resides can be represented as: 

LRRRRRP K4321=   

     

  (1) 

where R1 represents the 1
st
 residue 

of the protein P, R2 the 2
nd

 residue 

and so forth. According to the 

simplest discrete model, the amino 

acid composition of the protein 

Pbased on the equation (1) can be 

expressed as:  

[ ]T
fffP 2021 L=

 (2) 

where )20,...,2,1( =ufu  are the 

normalized occurrence frequencies for 
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the 20 native amino acids in P and T 

the transposing operator. The 

additional 17 features are a series of 

rank-different correlation factors 

along a protein chain and were 

calculated as follows.  

A protein sequence P consisting of 

L amino acid resides can be 

represented as: 

[ ] ( )LpppppP
T

<= ++ λλ ,201202021 LL

     (3)  

where20 + λ components are given 

by 

( )

( )




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

+≤≤+
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≤≤
+

=

∑∑

∑∑

==

−

==

λ
τ

τ

τ

λ

λ

20120,

201,

1

20

1

20

1

20

1

u
wf

w
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wf

f

p

k ki i

u

k ki i

u

u

    (4) 

wherew is the weight factor and τk 

is the k
th

 tier correlation factor that 

reflects the sequence order 

correlation between all the k
th

 most 

contiguous residues as formulated 

by 

( )LkJ
kL

kL

i kiik <
−

= ∑
−

= + ,
1

1 ,τ  

     (5)  

with 

( ) ( )[ ]∑
Γ

= ++ Φ−Φ
Γ

=
1

2

,

1
g ikikii RRJ ξξ

      (6) 

whereΦξ(Ri)is the ξ-th function of 

the amino acid Ri, and Гthe total 

number of the functions 

considered. Φ1(Ri), Φ2(Ri) and 

Φ3(Ri) represented respectively the 

hydrophobicity value [27], 

hydrophilicity value [28], and side 

chain mass of amino acid Ri (Table 

2); while Φ1(Ri+k), Φ2(Ri+k) and 

Φ3(Ri+k) are the corresponding 

values for the amino acid Ri+k. 

Therefore, the total number of 

functions considered is Γ=3.  

It can be seen from equation (3) 

that the first 20 components, i.e. 

p1, p2, …, p20 are associated with 

the conventional AA composition 

of protein, while the remaining 

components p20+1, …, p20+λare the 

correlation factors that reflect the 

1
st
 tier, 2

nd
 tier, …, and the λ

th
 tier 

sequence order correlation 

patterns. It is through these 

additional λ factors the important 

sequence-order information are 

incorporated.  

 

 
2.3 System architecture and component of 

NN topology 

The overall classification system consists of 

three layer of successive multilayer feed 

forward (acyclic) artificial NNs (Fig. 1), 

each one with a single hidden layer at which 

the computation takes place. Some common 

features shared by all NNs are the following: 

1. There is full connectivity as every node in 

each network layer is connected to every 

other node in the adjacent forward layer. 

2. There are a small number of nodes in the 

hidden layer responsible for the actual 

learning process carried out by each 

component network. 

3. The activation function on each node is a 

nonlinear, sigmoid logistic function of the 

weighted sum of all synaptic weights (plus a 

constant bias).  

 

NN1 is a binary classifier which classifies an 

input protein sequence as a transport protein 

or non-transport protein. If the input protein 

sequence is classified as a transport protein 

then it is processed by NN2 which gets 

classified into one of the seven main classes 

of transport proteins (channels/pores, 

electrochemical potential-driven 

transporters, primary active transporters, 

group translocators, transmembrane electron 

carriers, accessory factors involved in 

transport and incompletely characterized 

transport systems). Each class (except 

electrochemical potential-driven 

transporters) consists of an independent NN 

[channels/pores (NN3), primary active 

transporters (NN4), group translocators 

(NN5), transmembrane electron carriers 

(NN6), accessory factors involved in 

transport (NN7) and incompletely 

characterized transport systems (NN8)] for 

classification of input protein sequence 

specifically into its functional sub-class. We 

have used three categories of sequence 

derived features such as physicochemical 
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properties, amino acid composition and 

pseudo amino acid composition for training 

of NNs. Using these parameters 

independently and with combination we 

have developed seven neural network 

clusters:, NNAAcomp, NNpseAA, NNprop, 

NNAAcomp+pseAA, NNAAcomp+prop, NNpseAA+prop, 

and NNAAcomp+pseAA+prop. Before the learning 

process, all network synaptic weights are 

initialized to small random values which 

have been optimized to final weights during 

learning process based on backpropagation 

algorithm [29].  

An important issue in the design of a NN 

classification system is the network’s 

generalization, that is, its ability to give 

correct predictions when it is presented with 

unseen examples. With a small number of 

training samples and a relatively large 

number of synaptic weights, there is always 

the possibility that the network’s free 

parameters will adapt to the special features 

of the training data (overfitting). A 

straightforward way to overcome this 

problem is to use sufficient number of 

training examples (usually more than 30 

times the number of adjustable network 

parameters). However, the protein classes 

are unbiased and it is not possible to have 

these many numbers. Therefore to control 

the over fitting in our application, we have 

employed nonconvergent criteria (early 

stopping method); the training process is 

stopped before the optimization procedure 

finished. We follow the common method 

which is to withhold and use part of the 

training data (20%) as an internal validation 

set. Training is stopped at the point at which 

the classification error on the holdout subset 

begins to rise.  

 

In the prediction phase, just like the forward 

pass in learning, network weights are 

globally fixed (those obtained after the 

convergence of the training process) and the 

NN is presented with an unknown example 

for classification. In the same hierarchical 

manner, the input signal propagates once in 

the forward direction and the output value 

constitutes the network’s decision based on 

the already studied training examples. The 

prediction accuracy of the models has been 

validated using self-consistency, jackknife 

and independent data set. For jackknife test 

we randomized the test set for 100 times and 

recorded average performance accuracy. 

 

3 Results and discussion 

Neural network has been successfully used 

previously for predicting the functional 

classes of proteins from sequence-derived 

structural and physicochemical properties 

and irrespective of sequence similarity [30-

32]. However, transport proteins involve a 

substantially more diverse spectrum of 

proteins than most of the other classes of 

proteins. The diverse spectrum of proteins 

poses a more critical test for constructing a 

NN prediction system. In order to assess the 

performance of the TpPred, we applied 

several tests. We created a new independent 

test set with well-characterized protein 

sequences from all level of classes and sub-

classes (Table 1) to evaluate the performance 

of the new integrated system.  In addition we 

have also performed sub-sampling test (self 

consistency test) and jackknife test for 

evaluating the performance of TpPred. These 

validation tests are commonly used for 

measuring the accuracy of a classifier [10, 

33-35]. The performance of neural networks 

with combined features (especially the one 

combined all three types of features) tend to 

perform better than the one using only a 

single type of features or less type of 

features.  

 

3.1 Performance of 1
st
 layer of neural 

network 
The performance and validation results of 

NN1 are given in Table 3. The network 

achieved an overall accuracy of 97.3% and 

88.4% for the training set and test set data 

using combination of sequence derived 

features—amino acid composition, pseudo 

amino acid composition and 

physicochemical properties. While 

considering the validation techniques by 

using an independent data set, self 

consistency test and jackknife test, the 

overall accuracy of the 1st layer of TpPred is 

85.2%, 88.0% and 81.4% respectively. The 

details of the performance accuracy and 

validation results based on different types of 

sequence derived feature have been 

represented in supplementary Table S1. 

 
3.2 Performance of 2

nd
 layer of neural 

network 



IJCB, 1(1), Jain S et al. 2012 

 
51 

The overall success rate in identifying the 

transport proteins among their seven major 

functional classes is 97.5% (using training 

set) and 75.0% (using test set) (Table 4). 

Similarly the overall performance accuracy 

based on three types of validation tests has 

been found to be 79.8% (using independent 

data set), 84.2% (using self consistency test) 

and 68.5% (using jackknife test). The 

corresponding results by TpPred on the data 

set for seven major classes of transport 

proteins using different types of sequence 

derived features are given in supplementary 

Table S2. 

 
3.3 Performance of 3

rd
 layer of neural 

network  
The performance accuracy and validation 

results of NNs in identifying subclasses of 

channels/pores (NN3), primary active 

transporters (NN4), group translocators 

(NN5), transmembrane electron carriers 

(NN6), accessory factors involved in 

transport (NN7) and incompletely 

characterized transport systems (NN8) using 

combination of all sequence derived features 

has been given in Table 5. The 

corresponding results by TpPred on the 

detection of α-type channels (1.A), β-barrel 

porins (1.B), pore-forming toxins (1.C) and 

holins (1.D) are 94.4% (training set), 83.2% 

(test set), 69.5% (independent data set), 

70.0% (self consistency test) and 64.6% 

(jackknife test) on the data set ‘S1’. 

Similarly for the data set ‘S3’ the 

performance accuracy for the detection of P-

P-bond-hydrolysis-driven transporters (3.A), 

decarboxylation-driven transporters (3.B), 

oxidoreduction-driven transporters (3.D) and 

light absorption driven transporters (3.E) is 

95.1% (training set), 95.0% (test set), 73.3% 

(independent data set), 79.3% (self 

consistency test) and 68.5% (jackknife test). 

For the data set ‘S4’, the performance 

accuracy for the detection of 

phosphotransfer-driven group translocators 

(4.A) and acyl CoA ligase-coupled 

transporters (4.C) is 100% (training set), 

100% (test set), 80.4% (independent data 

set), 86.8% (self consistency test) and 73.0% 

(jackknife test). For the data set ‘S5’, the 

performance accuracy for the detection of 

transmembrane 2-electron transfer carriers 

(5.A) and transmembrane 1-electron transfer 

carriers (5.B) is 100% (training set), 100% 

(test set), 95.4% (independent data set), 

96.8% (self consistency test) and 82.7% 

(jackknife test). For the data set ‘S6’, the 

performance accuracy for the detection of 

auxiliary transport proteins (8.A) and 

ribosomally synthesized protein-peptide 

toxins (8.B) that target channels and carriers 

proteins is 97.4% (training set), 100% (test 

set), 83.0% (independent data set), 86.7% 

(self consistency test) and 76.3% (jackknife 

test). The overall accuracy of detection of 

recognized transporters of unknown 

biochemical mechanism (9.A) and putative 

transport proteins (9.B) is 100% (training 

set), 97.8% (test set), 82.2% (independent 

set), 87.8% (self consistency test) and 73.7% 

(jackknife test) for the data set ‘S7’. The 

details of the performance accuracy have 

been represented in supplementary Table S3. 

For the current data sets in which none of the 

protein sequence has ≥30% sequence 

identity to any others in a same class or 

subclass, the overall success rates by the 

TpPred in identifying the main functional 

classes of transport proteins and their 

subclasses is very high. In an earlier study, 

contribution of individual feature property to 

protein classification is investigated by 

separately conducting classification by the 

use of each feature property [36-38]. The 

same method was employed here. An 

analysis on the classification of the group of 

all transport proteins seems to suggest that, 

in order of prominence, the hydrophobicity 

and hydrophilicity play more prominent role 

than other feature properties. 

Hydrophobicity has been shown to be 

important for its membrane binding 

properties. It was also found that polarity 

and solvent accessibility of the binding site 

influences the functional properties of 

proteins [39]. Therefore, our prediction 

results are consistent with these 

experimental findings. Overall TpPred is a 

very powerful predictor in identifying 

transport proteins, their main classes, and 

their subclasses. 

 

 

4 Conclusion 

From a practical point of view, the most 

important aspect of a prediction model is its 

ability to make correct predictions. Till date 

most of the available methods use the 3-D 
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structure of the protein to predict and 

classify transport proteins. This is a very 

tedious job and requires much costlier 

endeavors. The sequence of a protein is an 

important determinant for the detailed 

molecular function of proteins and would 

consequently also be useful for prediction of 

transport protein and classes. Additionally 

much encouraging results have been 

predicted using the sequence derived 

features. Therefore, a much accurate and 

reliable method is that which predicts the 

transport proteins and their classes based on 

both strategies. Cascade of neural networks 

used in this study appears to be a potentially 

useful tool for the prediction of transport 

proteins of different classes. The prediction 

accuracy may be further enhanced with the 

further expansion of our knowledge about 

transport proteins particularly for those 

small transport classes, more refined 

representation of the structural and 

physicochemical properties of proteins, and 

the improvement of prediction algorithms 

such as the better treatment of imbalanced 

dataset.  
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Classes & Subclasses 
Number of 

proteins 

Training 

set 
Test set 

Independent 

set 

1. Channels/pores (S1) 1139 545 157 164 

1.A 481 386 95 50 

1.B 269 212 57 52 

1.C 309 246 63 57 

1.E 38 34 4 5 

2. Electrochemical potential-driven 

transporters (S2) 
1456 558 148 73 

3. Primary active transporters (S3) 2045 896 210 134 

3.A 1612 1280 332 67 

3.B 22 20 2 3 

3.D 370 301 69 61 

3.E 27 24 3 3 

4. Group translocators (S4) 107 90 17 20 

4.A 91 73 18 17 

4.C 12 10 2 3 

5. Transmembrane electron carriers (S5) 106 81 25 21 

5.A 61 50 11 11 

5.B 45 35 10 10 

8. Accessory factors involved in 

transport (S6) 
129 109 20 26 

8.A 94 78 16 17 

8.B 35 26 9 9 

9. Incompletely characterized 

transporters (S7) 
377 268 75 49 

9.A 211 168 43 26 

9.B 164 132 32 23 

The transport proteins are classified at two levels (TC class, and TC subclass) as indicated by a specific 

TC number TC I.X. Here I = 1,…..,9 represents each of the 9 TC classes, X = A, B, C, D, E,… represents 

each of the TC subclasses that belong to a TC class.  

 

 

 

 

 

 

 

 

 

Table 1 Number of transport proteins according to their class and subclass used for training and validation of 

TpPred. 
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Table 2 Hydrophobicity, hydrophilicity and mass of side chain scales for 20 amino acids 

used in calculating pseudo amino acid composition (PseAA). 
 

 

Amino acid Hydrophobicity
a
 Hydrophilicity

b
 Mass of side chain  

A 0.62 -0.5 15 

C 0.29 -1 47 

D -0.9 3 59 

E -0.74 3 73 

F 1.19 -2.5 91 

G 0.48 0 1 

H -0.4 -0.5 82 

I 1.38 -1.8 57 

K -1.5 3 73 

L 1.06 -1.8 57 

M 0.64 -1.3 75 

N -0.78 0.2 58 

P 0.12 0 42 

Q -0.85 0.2 72 

R -2.53 3 101 

S -0.18 0.3 31 

T -0.05 -0.4 45 

V 1.08 -1.5 43 

W 0.81 -3.4 130 

Y 0.26 -2.3 107 

 
a
Hydrophobicity values are from reference [27] 
b
Hydrophilicity values are from reference [28] 
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Table 3 Performance accuracy and validation results of 1
st
 layer of TpPred based on combination 

of pseudo amino acid composition, amino acid composition and physicochemical properties.  
 

 
 

Classes of Train Set Test Set Validation of NN1 (%) 

proteins (%) (%) Independent data set   Self consistency test  Jackknife test 

Transport 98.2 87.7 70.4 81.6 75.9 

Non-transport 96.4 89.1 100.0 94.4 86.9 

Average 97.3 88.4 85.2 88.0 81.4 
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Table 4 Performance accuracy and validation results of 2
nd

 layer of TpPred based on combination of 

pseudo amino acid composition, amino acid composition and physicochemical properties. 

 

 

 

Classes of proteins Training  Test  Validation of NN2 (%) 

 set (%) set 

(%) 

Independent 

data set 

Self 

consistency 

test 

Jackknife 

test 

1.Channels/pores 95.8 66.9 57.9 59.9 46.0 

2.Electrochemical potential- 

driven transporters 
93.9 73.6 84.9 89.9 71.6 

3.Primary active transporters 93.1 70.9 64.2 68.2 52.7 

4.Group translocators 100.0 76.5 90.0 96.0 81.9 

5.Transmembrane electron carriers 100.0 68.0 95.2 97.2 78.6 

8.Accesory factors involved in transport 100.0 85.0 84.6 89.6 73.3 

9.Incompletely characterized transporters 100.0 84.0 81.6 88.6 75.1 

Average 97.5 75.0 79.8 84.2 68.5 
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Table 5 Performance accuracy and validation results of 3
rd

 layer of TpPred based on combination of 

pseudo amino acid composition, amino acid composition and physicochemical properties.  

 

 

 

 

Classes and  Training Set  Test Set  Validation of NNs (%) 

subclasses (%) (%) 
Independent data set  

 Self consistency 

test  
Jackknife test 

1. Channels / pores (NN3) 

1.A 98.7 86.3 40.0 43.9 41.3 

1.B 96.2 86.0 82.7 89.9 76.9 

1.C 94.3 85.7 75.4 81.4 72.3 

1.E 88.2 75.0 80.0 85.0 77.9 

Average 94.4 83.2 69.5 75.0 67.1 

3. Primary active transporters (NN4) 

3.A 99.4 90.1 64.2 70.9 67.0 

3.B 90.0 100.0 66.7 76.2 61.7 

3.D 95.0 89.8 62.3 70.1 59.9 

3.E 95.8 100.0 100.0 100.0 85.6 

Average 95.1 95.0 73.3 79.3 68.5 

4. Group translocators  (NN5) 

4.A 100.0 100.0 94.1 97.3 79.5 

4.C 100.0 100.0 66.7 76.2 66.5 

Average 100.0 100.0 80.4 86.8 73.0 

5. Transmembrane electron carriers (NN6) 

5.A 100.0 100.0 90.9 93.6 76.4 

5.B 100.0 100.0 100.0 100.0 89.0 

Average 100.0 100.0 95.4 96.8 82.7 

8. Accessory factors involved in transport (NN7) 

8.A 98.7 100.0 88.2 91.2 75.3 

8.B 96.1 100.0 77.8 82.2 77.2 

Average 97.4 100.0 83.0 86.7 76.3 

9. Incompletely characterized transporters (NN8) 

9.A 100.0 98.0 85.0 90.4 77.8 

9.B 100.0 97.6 79.5 85.2 69.6 

Average 100.0 97.8 82.2 87.8 73.7 
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Fig. 1 A schematic drawing to classify transport proteins into their seven main functional classes and 

subclasses. The notation for different subclasses are: 1.A, α-type channel; 1.B, ß-barrel porins; 1.C, pore-

forming toxins; 1.H, holins; 3.A, P-P-bond-hydrolysis-driven transporters; 3.B, decarboxylation-driven 

transporters; 3.D, oxidoreduction-driven transporters; 3.E, light absorption-driven transporters; 4.A, 

phosphotransfer-driven group translocators; 4.C, acyl CoA ligase-coupled transporters; 5.A, 

transmembrane 2-electron transfer carriers; 5.B, transmembrane 1-electron transfer carriers; 8.A, auxiliary 

transport proteins ; 8.B, protein-peptide toxins targeted to channels and carriers; 9.A, recognized 

transporters of unknown biochemical mechanism; 9.B, putative transport proteins. 
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