Some Constructions of \mathcal{T} -Direct Codes over $GF(2^n)$

R.S. Raja Durai and Meenakshi Devi

Abstract. The class of \mathscr{T} -Direct codes are an extension to the class of linear codes with complementary duals. In this paper, a construction procedure that constructs an n^2 -Direct code from an *n*-Direct code is described. Further, the construction procedure is employed recursively to construct $n^{2^{m+1}}$ -Direct codes for $m \ge 0$. Finally, \mathscr{T}^2 -Direct codes are obtained from arbitrary \mathscr{T} -Direct codes with constituent codes of variable rates. The proposed construction procedure, when employed on an existing \mathscr{T} -Direct code, in fact increases the number of constituent codes (users), thereby supporting more users in a multi-user environment.

1 Introduction

A \mathscr{T} -Direct code $(\Gamma_1, \Gamma_2, ..., \Gamma_{\mathscr{T}})$ is constituted by a set of \mathscr{T} *F*-ary linear codes $\Gamma_1, \Gamma_2, ..., \Gamma_{\mathscr{T}}$ with $\Gamma_i \cap \Gamma_i^{\perp} = \{\mathbf{0}\}$, where $\Gamma_i^{\perp} = \Gamma_1 \oplus \Gamma_2 \oplus \cdots \oplus \Gamma_{i-1} \oplus \Gamma_{i+1} \oplus \cdots \oplus \Gamma_{\mathscr{T}}$ is the dual of Γ_i with respect to the direct sum $\Lambda = \Gamma_1 \oplus \Gamma_2 \oplus \cdots \oplus \Gamma_{\mathscr{T}}$ for each $i = 1, 2, ..., \mathscr{T}$. The class of \mathscr{T} -Direct codes are in fact an extension to the class of *linear codes with complementary duals (LCD* codes) [2]. An interesting algebraic characterization of the class of \mathscr{T} -Direct codes is that $G_i G_i^{\mathsf{T}}$ is non-singular [5, Theorem 1], where G_i is the generator matrix of Γ_i for $i = 1, 2, ..., \mathscr{T}$. These class of multi-user codes can be used in a multiple access channel environment for encoding and decoding (or separating the user codewords). A coding problem for the \mathscr{T} -user Binary Adder Channel and \mathscr{T} -user *F*-Adder Channel is addressed via the class

R.S. Raja Durai

Department of Mathematics, Jaypee University of Information Technology Waknaghat, Solan-173 234, Himachal Pradesh, India

e-mail:rsraja.durai@juit.ac.in

Meenakshi Devi Department of Mathematics, Bahra University, Shimla Hills, Waknaghat, Solan - 173 234, India e-mail: meenakshi_juit@yahoo.co.in of \mathscr{T} -Direct codes in [5, 6], where the *F*-Adder Channel is a non-binary channel model (analogues to the so-called binary adder channel) introduced by Urbanke and Rimoldi [3, 4] to model transmission of message symbols, possibly from a finite field *F*, of non-binary type. Unlike the *binary adder channels* which are real-number adder channels, arithmetic operations on the channel alphabets in *F*-Adder Channel are performed under the operations defined in the underlying field *F*.

A construction method (termed as the *distance* construction) for the class of \mathscr{T} -*Direct* codes (defined over $GF(2^n)$) that can increase the minimum distance of the *constituent* codes is proposed in [8], where it is shown that the proposed construction method also increases the number of *constituent* codes from n to 2n - 1 [7], and further to $\frac{n(n+1)}{2}$. This paper generalizes the constructions given in [7, 8] to the constructions of n^2 -*Direct* codes and \mathscr{T}^2 -*Direct* codes, the later class of codes are equipped with variable-rate *constituent* codes. In all the constructions, Kronecker product represented by the symbol \otimes is used as a basic tool. The class of Maximum Rank Distance (MRD) codes introduced by Gabidulin [1] are used to facilitate the results obtained in this paper.

The remaining part of the paper is organized as follows. By making use of the non-commutative nature of Kronecker product, section 2 constructs the class of n^2 -Direct codes from the class of *n*-Direct codes. Section 3 generalizes the construction procedure outlined in section 2 and obtains $n^{2^{m+1}}$ -Direct codes from n^{2^m} -Direct codes for $m \ge 0$. A construction of \mathcal{T}^2 -Direct codes which are equipped with variable-rate *constituent* codes is presented in section 4. Final section draws the conclusion based on the results.

Notation and abbreviation: We use the notation $(\{n_1, n_2, ..., n_{\mathscr{T}}\}, \{k_1, k_2, ..., k_{\mathscr{T}}\}, \{d_1, d_2, ..., d_{\mathscr{T}}\})$ to denote a \mathscr{T} -Direct code constituted by the *constituent* codes $(n_1, k_1, d_1), (n_2, k_2, d_2), ..., (n_{\mathscr{T}}, k_{\mathscr{T}}, d_{\mathscr{T}})$ and is abbreviated as $(\{n_i\}, \{k_i\}, \{d_i\})$. In particular, a \mathscr{T} -Direct code with $k_1 = k_2 = \cdots = k_{\mathscr{T}} = k$ (say) is denoted by $(\{n_i\}, \{k\}, \{d_i\})$ rather than $(\{n_i\}, k, \{d_i\})$ - to distinguish a \mathscr{T} -Direct code from a conventional single user code, namely (n, k, d).

2 Construction of *n*²-*Direct* Codes

Consider an $(\{n\},\{1\},\{n\})$ *n*-Direct code $(\Gamma_1,\Gamma_2,\ldots,\Gamma_n)$ along with the generator matrices of the *constituent* codes:

$$G_1 = \left[\alpha_1^{[1]} \ \alpha_2^{[1]} \ \cdots \ \alpha_n^{[1]} \right] \tag{1}$$

$$G_2 = \left[\alpha_1^{[2]} \ \alpha_2^{[2]} \ \cdots \ \alpha_n^{[2]} \right] \tag{2}$$

and
$$G_n = \left[\alpha_1^{[n]} \alpha_2^{[n]} \cdots \alpha_n^{[n]} \right]$$
 (n)