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Abstract
Thiswork examines the existence of the solutions of a class of three-point nonlinear boundary
value problems that arise in bridge design due to its nonlinear behavior. Amaximum and anti-
maximum principles are derived with the support of Green’s function and their constant sign.
A different monotone iterative technique is developed with the use of lower solution x(z) and
upper solution y(z). We have also discussed the classification of well ordered (x ≤ y) and

reverse ordered (y ≤ x) cases for both positive and negative values of sup
(

∂ f
∂w

)
. Established

results are verified with the help of some examples.

Keywords Monotone iterative technique · Reversed ordered upper–lower solutions · Three
point BVPs · Bridge design · Nonlinear ODEs · Green’s function

Mathematics Subject Classification 34L30 · 34B27 · 34B15

1 Introduction

The study of bridge designs have their own importance, like suspension bridge has nonlin-
ear behaviors (such as large oscillation, traveling wave) that are very difficult to analyze.
McKenna and Lazer (1990) show that linear model is inadequate to describe this type of
nonlinear behavior. Several nonlinear models are summed up in Drábek et al. (2003) (see
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also references therein) that describes the behavior of suspension bridges. In past years, there
are several collapse of suspension bridge, e.g., TacomaNarrows Bridge, Golden Gate Bridge,
Brooklyn Bridge etc. If we mention the collapse of Tacoma Narrows Bridge, it happened
due to a jumping or asymmetric type of non-linearity. Drábek et al. (2003) further concluded
that if a system is asymmetric and having a large uni-directional load then the system shows
multiple oscillatory solutions, i.e., oscillations are directly proportional to asymmetry and
unidirectional load.

The motivation came from paper (McKenna and Lazer 1990), where authors have studied
the existence and multiplicity of periodic solutions of possible mathematical models for the
nonlinear behavior of a suspension bridge. In this work, they considered the road-bed as a
one-dimensional vibrating beam which is governed by the following equations

wt t + E Iwzzzz + δwt = −kw+ + W (z) + ε f (z, t),

w(0, t) = w(L, t) = wzz(0, t) = wzz(L, t) = 0.

Here L is length of beam,w(z, t) is downward deflection, k is spring constant, W (z) is weight
per unit length of the bridge pushing it down, and ε f (z, t) is the external forcing term. If
W (z) = W0 sin (z/L), f (z, t) = f (t) sin (z/L), and w(z, t) = w(t) sin ( z/L), then we get

w′′(z) = f (z, w,w′), (1.1)

where

f (z, w,w′) =
{

δw′ + E I
(

π
L

)4
w + kw − W0 − ε, w > 0,

δw′ + E I
(

π
L

)4
w − W0 − ε, w < 0.

InGeng andCui (2010), Verma and Singh (2014), Zou et al. (2007), authors have discussed
that large size bridges are often constructed with multi-point supports which refers to multi-
point boundary conditions. To highlight the position or angle of the bridge, different types
of boundary conditions can be taken near the endpoints.

Nonlinear boundary value problems (NLBVPs) have been discussed by many researchers
in recent decades (Verma et al. 2020), like shooting method (Taliaferro 1979), topological
degree method (Lloyd 1978), topological transversality (Granas 1976), theory of fixed point
index (Webb 2012), upper–lower solutions method (Coster and Habets 2006), monotone iter-
ative techniques (MIT) (Cherpion et al. 2001), Quasilinearization (O’Regan and El-Gebeily
2008) etc.

Literature shows that the coupled technique, monotone iterative technique (MIT) in the
presence of upper–lower solutions is an efficient method for the study of two point as well
as multi-points NLBVPs (Cherpion et al. 2001). The concept of MIT was introduced by
Picard (1893). Later Gendzojan (1964), discussed the coupled technique for the following
second-order two-point BVPs,

w′′(z) + f (z, w,w′) = 0, w(a) = 0, w(b) = 0. (1.2)

Here nonlinear function f is dependent on the derivative of solution w. The approximating
scheme for the above problem (1.2) is as follows,

−x ′′
n + μ(z)x ′

n + γ (z)xn = f (z, xn−1, x ′
n−1) + μ(z)x ′

n−1 + γ (z)xn−1,

xn(a) = 0, xn(b) = 0, (1.3)

−y′′
n + μ(z)y′

n + γ (z)yn = f (z, yn−1, y′
n−1) + μ(z)y′

n−1 + γ (z)yn−1,

yn(a) = 0, yn(b) = 0, (1.4)
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whereμ(z) and γ (z) are functions of z related to f . ForDirichlet BVPsBernfeld andChandra
(1977), considered the following iterative scheme,

−w′′
n (z) + λwn(z) = f (z, wn−1, w

′
n) + λwn−1(z), wn(a) = wn(b) = 0.

A different concept was introduced by Omari (1986) for Dirichlet BVPs, where he assumed
that the nonlinear function f (z, w,w′) is one sided Lipschitz inw and Lipschitz inw′. Omari
used the following approximation scheme

w′′
n (z) − 2k|w′

n(z) − w′
n−1(z)| + λwn(z) = f (z, wn−1, w

′
n−1) + λwn−1(z),

wn(a) = wn(b) = 0.

MIT in the presence of upper and lower solutions are studied by several researchers (see book
Coster and Habets 2006). In all the studies, the usual order (x ≤ y) is considered, where x
and y are lower and upper solutions respectively. In reverse order (x ≥ y) case for two point
BVPs, first study was done by Amann et al. (1978). Omari and Trombetta (1992) used MIT
with upper and lower solutions, when they appear in reverse order. In this study, they have
considered the following periodic BVPs

−w′′(z) + cw′(z) + f (z, w) = 0, w(a) = w(b), w′(a) = w′(b),

and the following approximations scheme

−w′′
n (z) + cw′

n(z) + Kwn(z) = − f (z, wn−1) + Kwn−1(z),

wn(a) = wn(b), w′
n(a) = w′

n(b).

Cabada et al. (2001) studied the existence and approximation of solutions for the Neumann
two-point BVPs by using lower and upper solutions in reverse ordered case. They have
developed the following approximation scheme,

w′′
n − 2k|w′

n − w′
n−1| + γwn = f (z, wn−1, w

′
n−1) + γwn−1,

w′
n(a) = w′

n(b) = 0. (1.5)

Recently, this coupled technique is also successively used for the existence of solution of
three point or multi-point BVPs, like Li et al. (2008) discussed the existence and uniqueness
results for the class of three point NLBVPs with the help of MIT and upper–lower solutions.
Recently, authors (Singh and Verma 2013), used the following approximation scheme for the
second order differential equation with different types of boundary conditions

− w′′
n+1(z) − λwn+1(z) = f (z, wn, w′

n) − λwn .

In this article, we introduce a different type of monotone iterative technique, as follows

−w′′
n+1(z) − μw′

n+1(z) − γwn+1(z) = f (z, wn, w′
n) − μw′

n − γwn,

w′
n+1(0) = 0, wn+1(1) = δwn+1(η),

and establish the existence of solution for the following three-point NLBVPs

w′′(z) + f (z, w,w′) = 0, z ∈ I0 = (0, 1), (1.6)

w′(0) = 0, w(1) = δw(η), (1.7)

where I = [0, 1], η ∈ I0, δ > 0, and f : I × R
2 → R is continuous. Making use of

some sufficient conditions, uniform convergent sequences are generated with the support of
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maximum and anti-maximum principles. The distinction of well and reverse ordered cases

are also analyzed for sup
(

∂ f
∂w

)
> 0 and sup

(
∂ f
∂w

)
< 0.

This paper is organized in the following manner. In Sect. 2, we describe some preliminary
results. Section 3 deals the Green’s function and its constant sign. In Sect. 4, maximum, anti
maximum principle and upper–lower solutions are discussed. Sections 5 and 6 are used to
establish the main result and for the construction of examples. In Sect. 7, we have concluded
the paper and in the appendix, we have drawn a flow chart (Fig. 6) which simplifies the results
we have obtained in this article.

2 Preliminaries

This section describes the linear model of three-point NLBVPs (1.6) and (1.7). Consider the
non-homogeneous three-point linear BVPs,

− w′′(z) − μw′(z) − γw(z) = h(z), z ∈ I0, (2.1)

w′(0) = 0, w(1) = δw(η) + b, (2.2)

where b is any constant, h ∈ C(I ), γ ∈ R, and μ is some positive real number.
To solve this problem, we consider the following Cauchy problem

w′′(z) + μw′(z) + γw(z) = 0, z ∈ I0, (2.3)

w′(0) = 0, w(1) = δw(η). (2.4)

The solutions of problem (2.3) and (2.4) are described as follows:

1. If μ2 − 4γ = −k2 < 0, then the solution will be

w(z) = e− μz
2

[
c1 cos

(
kz

2

)
+ c2 sin

(
kz

2

)]
. (2.5)

2. If μ2 − 4γ = k2 > 0, then the solution will be

w(z) = e− μz
2

[
c1 cosh

(
kz

2

)
+ c2 sinh

(
kz

2

)]
. (2.6)

3. If μ2 − 4γ = k2 = 0, then the solution will be

w(z) = e− μz
2 [c1 + c2z] . (2.7)

Here k is some positive real number.

3 Derivation of solution for linear BVPs

This section provides the solution of linear three point BVPs (2.1) and (2.2). Based on
the solutions of the problem (2.3) and (2.4), we derive the Green’s function g(z, t) for the
following three cases

(I) μ2 − 4γ = −k2 < 0,
(II) μ2 − 4γ = k2 > 0,
(III) μ2 − 4γ = k2 = 0.
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3.1 Case I:�2 − 4� = −k2 < 0

(A0): Suppose that the following inequalities hold

(a) there exists γ > 0 and k ∈ (0, π
2 ) such that μ2 − 4γ = −k2 < 0;

(b) e
ημ
2

(
μ sin

( k
2

) + k cos
( k
2

))−δeμ/2
(
μ sin

(
ηk
2

)
+ k cos

(
ηk
2

))
< 0, δeμ/2 sin

(
ηk
2

)
−

e
ημ
2 sin

( k
2

) ≤ 0.

Lemma 3.1 The solution of nonhomogeneous linear BVPs (2.1) and (2.2) is given by

w(z) = be− μz
2 e

μ(1+η)
2

(
μ sin

( kz
2

) + k cos
( kz
2

))

e
ημ
2

(
μ sin

( k
2

) + k cos
( k
2

)) − δeμ/2
(
μ sin

(
ηk
2

)
+ k cos

(
ηk
2

)) −
∫ 1

0
g(z, t)h(t)dt,

(3.1)

where g(z, t) is the Green’s function of (2.3) and (2.4), which is defined as

g(z, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2e
1
2 μ(t−z)

(
μ sin

(
kz
2

)
+k cos

(
kz
2

))(
δeμ/2 sin

(
1
2 k(η−t)

)
+e

ημ
2 sin

(
1
2 k(t−1)

))

k
(
e

ημ
2

(
μ sin

(
k
2

)
+k cos

(
k
2

))
−δeμ/2

(
μ sin

(
ηk
2

)
+k cos

(
ηk
2

))) , 0 ≤ z ≤ t ≤ η,

2e
1
2 μ(t−z)

(
μ sin

(
kt
2

)
+k cos

(
kt
2

))(
δeμ/2 sin

(
1
2 k(η−z)

)
+e

ημ
2 sin

(
1
2 k(z−1)

))

k
(
e

ημ
2

(
μ sin

(
k
2

)
+k cos

(
k
2

))
−δeμ/2

(
μ sin

(
ηk
2

)
+k cos

(
ηk
2

))) , t ≤ z, t ≤ η,

2 sin
(
1
2 k(t−1)

)
e
1
2 μ(η+t−z)

(
μ sin

(
kz
2

)
+k cos

(
kz
2

))

k
(
e

ημ
2

(
μ sin

(
k
2

)
+k cos

(
k
2

))
−δeμ/2

(
μ sin

(
ηk
2

)
+k cos

(
ηk
2

))) , z ≤ t, η ≤ t,

e
1
2 μ(t−z)

(
2δeμ/2 sin

(
1
2 k(t−z)

)(
μ sin

(
ηk
2

)
+k cos

(
ηk
2

))
−2e

ημ
2 sin

(
1
2 k(1−z)

)(
μ sin

(
kt
2

)
+k cos

(
kt
2

)))

k
(
e

ημ
2

(
μ sin

(
k
2

)
+k cos

(
k
2

))
−δeμ/2

(
μ sin

(
ηk
2

)
+k cos

(
ηk
2

))) , η ≤ t ≤ z ≤ 1.

If (A0) holds, then g(z, t) ≥ 0.

Proof The Green’s function for the linear BVPs (2.3) and (2.4), is defined as follows,

g(z, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g1(z, t) = e− μz
2

[
a1 cos

( kz
2

) + a2 sin
( kz
2

)]
, 0 ≤ z ≤ t ≤ η;

g2(z, t) = e− μz
2

[
a3 cos

( kz
2

) + a4 sin
( kz
2

)]
, t ≤ z, t ≤ η;

g3(z, t) = e− μz
2

[
a5 cos

( kz
2

) + a6 sin
( kz
2

)]
, z ≤ t, η ≤ t;

g4(z, t) = e− μz
2

[
a7 cos

( kz
2

) + a8 sin
( kz
2

)]
, η ≤ t ≤ z ≤ 1.

(3.2)

Using the properties of Green’s function, we have the following two sets of system of equa-
tions

⎛
⎜⎜⎜⎝

1 0 −1 0
0 1 0 −1

−μ k 0 0

0 0 e
μη
2 cos

( k
2

) − δe
μη
2 cos

(
kη
2

)
e

μη
2 sin

( k
2

) − δe
μη
2 sin

(
kη
2

)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

a1
a2
a3
a4

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

2e
μt
2 sin kt

2
k

− 2e
μt
2 cos kt

2
k
0
0

⎞
⎟⎟⎟⎟⎠

;
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⎛
⎜⎜⎜⎝

1 0 −1 0
0 1 0 −1

−μ k 0 0

δe
μ
2 cos

(
kη
2

)
δe

μ
2 sin

(
kη
2

)
−e

μη
2 cos

( k
2

) −e
μη
2 sin

( k
2

)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

a5
a6
a7
a8

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

2e
μt
2 sin kt

2
k

− 2e
μt
2 cos kt

2
k
0
0

⎞
⎟⎟⎟⎟⎠

.

Using above set of equations, we can compute the values of all coefficients i.e., ai ’s, i =
1, 2, . . . 8. Finally, under the assumption (A0), we can easily establish the sign of Green’s
function, i.e., g(z, t) ≥ 0. Hence the result.

It is easy to see that the three-point linear BVPs (2.1) and (2.2) is equivalent to

w(z) = be− μz
2 e

μ(1+η)
2

(
μ sin

( kz
2

) + k cos
( kz
2

))

e
ημ
2

(
μ sin

( k
2

) + k cos
( k
2

)) − δeμ/2
(
μ sin

(
ηk
2

)
+ k cos

(
ηk
2

))

−
∫ 1

0
g(z, t)h(t)dt .

��

3.2 Case II:�2 − 4� = k2 > 0

(A1) Assume that

(a) there exist γ ∈ R, such that μ2 − 4γ = k2 > 0;

(b) e
ημ
2

(
μ sinh

( k
2

) + k cosh
( k
2

)) − δeμ/2
(
μ sinh

(
ηk
2

)
+ k cosh

(
ηk
2

))
> 0 and

δeμ/2 sinh
(

ηk
2

)
− e

ημ
2 sinh

( k
2

) ≤ 0.

Lemma 3.2 The solution of nonhomogeneous linear BVPs (2.1) and (2.2) is given by,

w(z) = be− μz
2 e

μ(1+η)
2

(
μ sinh

( kz
2

) + k cosh
( kz
2

))

e
ημ
2

(
μ sinh

( k
2

) + k cosh
( k
2

)) − δeμ/2
(
μ sinh

(
ηk
2

)
+ k cosh

(
ηk
2

))

−
∫ 1

0
g(z, t)h(t)dt, (3.3)

where g(z, t) is the Green’s function of (2.3) and (2.4), which is defined as,

g(z, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2e
1
2 μ(t−z)

(
μ sinh

(
kz
2

)
+k cosh

(
kz
2

))(
δeμ/2 sinh

(
1
2 k(η−t)

)
+e

ημ
2 sinh

(
1
2 k(t−1)

))

k
(
e

ημ
2

(
μ sinh

(
k
2

)
+k cosh

(
k
2

))
−δeμ/2

(
μ sinh

(
ηk
2

)
+k cosh

(
ηk
2

))) , 0 ≤ z ≤ t ≤ η,

2e
1
2 μ(t−z)

(
μ sinh

(
kt
2

)
+k cosh

(
kt
2

))(
δeμ/2 sinh

(
1
2 k(η−z)

)
−e

ημ
2 sinh

(
1
2 k(1−z)

))

k
(
e

ημ
2

(
μ sinh

(
k
2

)
+k cosh

(
k
2

))
−δeμ/2

(
μ sinh

(
ηk
2

)
+k cosh

(
ηk
2

))) , t ≤ z, t ≤ η,

2 sinh
(
1
2 k(t−1)

)
e
1
2 μ(η+t−z)

(
μ sinh

(
kz
2

)
+k cosh

(
kz
2

))

k
(
e

ημ
2

(
μ sinh

(
k
2

)
+k cosh

(
k
2

))
−δeμ/2

(
μ sinh

(
ηk
2

)
+k cosh

(
ηk
2

))) , z ≤ t, η ≤ t,

2e
1
2 μ(t−z)

(
δeμ/2 sinh

(
1
2 k(t−z)

)(
μ sinh

(
ηk
2

)
+k cosh

(
ηk
2

))
+e

ημ
2 sinh

(
1
2 k(z−1)

)(
μ sinh

(
kt
2

)
+k cosh

(
kt
2

)))

k
(
e

ημ
2

(
μ sinh

(
k
2

)
+k cosh

(
k
2

))
−δeμ/2

(
μ sinh

(
ηk
2

)
+k cosh

(
ηk
2

))) , η ≤ t ≤ z ≤ 1.

(3.4)

If (A1) holds, then g(z, t) ≤ 0.

Proof Proof is similar to the proof given in Lemma 3.1. ��
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3.3 Case III:�2 − 4� = 0

(A2) Assume that

(a) γ = μ2

4 ;

(b) (μ + 2)e
ημ
2 − δeμ/2(ημ + 2) < 0 and δηeμ/2 − e

ημ
2 ≤ 0.

Lemma 3.3 The solution of linear BVPs (2.1) and (2.2) is given by

w(z) = be− μz
2 e

μ(1+η)
2 (2 + zμ)

e
ημ
2 (2 + μ) − δeμ/2 (2 + μη)

−
∫ 1

0
g(z, t)h(t)dt, (3.5)

where g(z, t) is the Green’s function of (2.3) and (2.4), which is defined as,

g(z, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μz+2)e
1
2 μ(t−z)

(
δeμ/2(η−t)+(t−1)e

ημ
2

)

(μ+2)e
ημ
2 −δeμ/2(ημ+2)

, 0 ≤ z ≤ t ≤ η,

(μt+2)e
1
2 μ(t−z)

(
δeμ/2(η−z)+(z−1)e

ημ
2

)

(μ+2)e
ημ
2 −δeμ/2(ημ+2)

, t ≤ z, t ≤ η,

(t−1)(μz+2)e
1
2 μ(η+t−z)

(μ+2)e
ημ
2 −δeμ/2(ημ+2)

, z ≤ t, η ≤ t,

e
1
2 μ(t−z)

(
δeμ/2(ημ+2)(t−z)+(z−1)e

ημ
2 (μt+2)

)

(μ+2)e
ημ
2 −δeμ/2(ημ+2)

, η ≤ t ≤ z ≤ 1.

If (A2) holds, then g(z, t) ≥ 0.

Proof Proof is similar to the proof given in Lemma 3.1. ��

4 An approximation scheme

In this section, we derive maximum and anti maximum principle to prove monotonicity.
We also define upper and lower solutions and establish a new approximation scheme for
three-point BVPs.

Proposition 4.1 Assume that (A0), (A2) hold, and w ∈ C2(I ) satisfies

− w′′(z) − μw′(z) − γw(z) ≥ 0, z ∈ I0,

w′(0) = 0, w(1) ≥ δw(η).

Then w(z) is non positive, ∀z ∈ I .

Proof Using Eqs. (3.1) and (3.5), and conditions (A0), (A2), we can show effortlessly that
w(z) is non positive, ∀z ∈ I . ��
Proposition 4.2 Suppose that (A1) holds and w ∈ C2(I ) satisfies

− w′′(z) − μw′(z) − γw(z) ≥ 0, z ∈ I0,

w′(0) = 0, w(1) ≥ δw(η).

Then w(z) is non negative, ∀z ∈ I .

Proof Proof of this proposition is similar to the proof of above Proposition 4.1. ��
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Fig. 1 Well and reverse order case

Definition 4.1 The function x(z) ∈ C2(I ) is called a lower solution of the NLBVPs (1.6)
and (1.7), if

L0(z, x) = −x ′′(z) − f (z, x, x ′) ≤ 0, z ∈ I0,

x ′(0) = 0, x(1) ≤ δx(η),

and the function y(z) ∈ C2(I ) is called an upper solution of the NLBVPs (1.6) and (1.7), if

U0(z, y) = −y′′(z) − f (z, y, y′) ≥ 0, z ∈ I0,

y′(0) = 0, y(1) ≥ δy(η).

Here, we introduce a different approximation scheme (for three point NLBVPs) (1.6) and
(1.7), which is defined as

− w′′
n+1(z) − μw′

n+1(z) − γwn+1(z) = f (z, wn, w′
n) − μw′

n − γwn, (4.1)

w′
n+1(0) = 0, wn+1(1) = δwn+1(η). (4.2)

The sequences of lower solution (xn)n , (with x0 = x), and upper solution (yn)n , (with
y0 = y), are defined using the above said approximation scheme (4.1) and (4.2), as follows,

− x ′′
n+1(z) − μx ′

n+1(z) − γ xn+1(z) = f (z, xn, x ′
n) − μx ′

n − γ xn, (4.3)

x ′
n+1(0) = 0, xn+1(1) = δxn+1(η). (4.4)

−y′′
n+1(z) − μy′

n+1(z) − γ yn+1(z) = f (z, yn, w′
n) − μy′

n − γ yn, (4.5)

y′
n+1(0) = 0, yn+1(1) = δyn+1(η). (4.6)

5 Main results

This section gives the main results, i.e., existence results for NLBVPs (1.6) and (1.7). This
section is divided into the following two subsections based on reverse and well ordered lower
and upper solutions (see Fig. 1)

(I) Reverse order case: μ2 − 4γ ≤ 0, i.e., μ2 − 4γ = −k2, or μ2 − 4γ = 0.
(II) Well order case: μ2 − 4γ > 0, i.e., μ2 − 4γ = k2.
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5.1 Lower and upper solutions in reverse ordered (x ≥ y)

This subsection deals with the reverse order lower and upper solutions i.e. x ≥ y. The
following results help us to establish the existence results for the three-point NLBVPs (1.6)
and (1.7).

Lemma 5.1 Let γ > 0 be such that μ2 − 4γ = −k2 < 0, γ − L ≥ 0, and 2N − μ ≤ 0,
then for all z ∈ I ,

(γ − L)

(
μ sin

(
kz

2

)
+ k cos

(
kz

2

))
− 2γ (N (signw′) + μ) sin

(
kz

2

)
≥ 0, (5.1)

whenever

H1 = (γ − L)

(
μ sin

(
k

2

)
+ k cos

(
k

2

))
− 2γ (N (signw′ + μ) sin

(
k

2

)
≥ 0, (5.2)

where L, N ∈ R
+ and 0 < μ ≤ π

2 .

Proof We can represent the inequality (5.1) in the following two ways

(γ − L)

(
μ sin

(
kz

2

)
+ k cos

(
kz

2

))
− 2γ (N + μ) sin

(
kz

2

)
≥ 0, when w′ ≥ 0.

(5.3)

(γ − L)

(
μ sin

(
kz

2

)
+ k cos

(
kz

2

))
+ 2γ (N − μ) sin

(
kz

2

)
≥ 0, when w′ ≤ 0.

(5.4)

To begin with inequality (5.1), we have to prove the inequalities (5.3) and (5.4) separately.
For the inequality (5.3): We consider the function,

(γ − L)

(
μ sin

(
kz

2

)
+ k cos

(
kz

2

))
− 2γ (N + μ) sin

(
kz

2

)
,

which is non-increasing. Thus for all z ∈ I , we have

(γ − L)

(
μ sin

(
kz

2

)
+ k cos

(
kz

2

))
− 2γ (N + μ) sin

(
kz

2

)

≥ (γ − L)

(
μ sin

(
k

2

)
+ k cos

(
k

2

))
− 2γ (N + μ) sin

(
k

2

)
≥ 0.

Hence the result.
Making use of similar analysis, we can prove the inequality (5.4). ��

Lemma 5.2 Let γ > 0 be such that μ2 − 4γ = 0, γ − L ≥ 0, 2N − μ ≤ 0, and (γ − L) −
γ

(
N (signw′) + μ

) ≥ 0, then for all z ∈ I ,

H2 = (γ − L)(2 + μz) − 2γ (N (signw′) + μ)z ≥ 0, (5.5)

where L, N ∈ R+ and 0 < μ ≤ π
2 .

Proof See the proof of Lemma 5.1. ��
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5.1.1 Inequalities based on Green’s function

Here, we prove some inequalities based on Green’s function.

Lemma 5.3 Let (A0) be true and γ − L ≥ 0, 2N −μ ≤ 0, and H1 ≥ 0 (defined in Eq. (5.1))
hold, then for any z, t ∈ I and z 
= t, we have

(γ − L)g(z, t) + (N (signw′) + μ)
∂g(z, t)

∂z
≥ 0, (5.6)

where L, N ∈ R+ and 0 < μ ≤ π
2 .

Proof The inequality (5.6) can be written in the following ways

(γ − L)g(z, t) + (N + μ)
∂g(z, t)

∂z
≥ 0, when w′ ≥ 0. (5.7)

(γ − L)g(z, t) − (N − μ)
∂g(z, t)

∂z
≥ 0, when w′ ≤ 0. (5.8)

The inequalities (5.7) and (5.8) must be shown independently to prove the inequality (5.6).
For the inequality (5.7): Making use of Eq. (3.2), we substitute the values of gi (z, t) and
∂gi (z,t)

∂z , i = 1, . . . , 4, in Eq. (5.7). Now applying the Lemma 5.1, we get,

(γ − L)gi (z, t) + (N + μ)
∂gi (z, t)

∂z
≥ 0, for all i = 1, . . . , 4.

Similarly, we can prove the inequality (5.8). ��
Lemma 5.4 Let (A2) be true and γ − L ≥ 0, 2N −μ ≤ 0, and H2 ≥ 0 (defined in Eq. (5.5)),
then for any z, t ∈ I and z 
= t, we get

(γ − L)g(z, t) + (N (signw′) + μ)
∂g(z, t)

∂z
≥ 0, (5.9)

where L, N ∈ R+ and 0 < μ ≤ π
2 .

Proof Using Lemma 5.2 and following the similar analysis of Lemma 5.3, we get the required
proof. ��

5.1.2 Existence theorem for three-point NLBVPs (reverse ordered case)

Throughout this subsubsection, we consider the following assumptions

(RO) Assume that

(a) there exists x and y ∈ C2(I ) given by definition 4.1, such that ∀z ∈ I , x ≥ y;
(b) f : U → R such that f is continuous on U , where U := {(z, w, v) ∈ I × R

2 :
y(z) ≤ w ≤ x(z)};

(c) there exists L ≥ 0 such that ∀ (z, w1, v), (z, w2, v) ∈ U w1 ≤ w2 ⇒ f (z, w2, v) −
f (z, w1, v) ≤ L(w2 − w1);

(d) ∃ N ≥ 0 such that ∀ (z, w, v1), (z, w, v2) ∈ U | f (z, w, v2) − f (z, w, v1)| ≤
N |v2 − v1|;

where μ2 − 4γ ≤ 0, i.e. μ2 − 4γ = −k2, or μ2 − 4γ = 0. Based on these assumptions, we
further divide this subsubsection into the following two cases
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5.1.3 Case I:�2 − 4� = −k2 < 0

Theorem 5.1 Let (A0) and (RO ) be true. Further assume that γ − L ≥ 0, 2N −μ ≤ 0, and
H1 ≥ 0, defined in Lemma 5.1 and

F(z, x, y, x ′, y′) = f (z, y(z), y′(z)) − f (z, x(z), x ′(z)) − μ(y − x)′ − γ (y − x)

≥ 0, for all z ∈ I , (5.10)

then (xn)n and (yn)n introduced in (4.3) and (4.4) and (4.5) and (4.6) respectively converge
in C1(I ) monotonically such that

y ≤ u ≤ v ≤ x, ∀z ∈ I ,

where v and u are solutions of NLBVPs (1.6) and (1.7).

To demonstrate the above theorem, we require to prove various consequences which are as
follows.

Proposition 5.1 Let μ2 − 4γ = −k2 < 0. Further assume that

(i) (A0) and (RO) are true;
(ii) ∃ γ > 0 and 0 < μ ≤ π

2 such that γ − L ≥ 0, 2N − μ ≤ 0, and H1 ≥ 0. Then
the functions (xn)n and (yn)n defined recursively by (4.3) and (4.4) and (4.5) and (4.6)
respectively, such that for all n ∈ N

(a) xn+1 ≤ xn,

(b) yn+1 ≥ yn .

Proof Let xn be a lower solution of (1.6) and (1.7) and xn+1 is given by (4.3) and (4.4).
We observe that w(z) = xn+1 − xn satisfy (2.1) and (2.2), where h(z) ≥ 0, and b ≥ 0.
Hence by making use of Proposition 4.1, it can be written as xn+1 ≤ xn . Similarly we can
get yn+1 ≥ yn .

For proving the claim (a) for n = 0 we need to show x1 ≤ x0, which comes after the
above discussion, i.e., claim (a) holds for n = 0. Now we show if it is true for n − 1, then it
will be true for every n.

Let w = xn − xn−1, where xn−1 is a lower solution of (1.6) and (1.7) and xn ≤ xn−1. We
have

−x ′′
n − f (z, xn, x ′

n) ≤ L(xn−1 − xn) + N |x ′
n − x ′

n−1| + μ(xn − xn−1)
′ + γ (xn − xn−1),

= (γ − L)w + (N (signw′) + μ)w′.

As w satisfies −w′′ − μw′ − γw = x ′′
n−1 + f (z, xn−1, x ′

n−1) ≥ 0, w′(0) = 0, w(1) ≥
δw(η), with h(z) = x ′′

n−1 + f (z, xn−1, x ′
n−1) ≥ 0, Now to prove claim, we need to show

(γ −L)w+(N (signw′)+μ)w′ ≤ 0. And for this it is adequate to demonstrate the following

(γ − L)

(
μ sin

(
kz

2

)
+ k cos

(
kz

2

))
− 2γ (N (signw′) + μ) sin

(
kz

2

)
≥ 0,

and, (γ − L)g(z, t) + (N (signw′) + μ)
∂g(z, t)

∂z
≥ 0, z 
= t, ∀z ∈ I .

Using Lemmas 5.1 and 5.3, we can obtain the requirements. Thus we deduce that xn+1 ≤ xn .
Making use of a similar process we can prove yn+1 ≥ yn . ��
Proposition 5.2 Assume that
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(i) (A0) and (RO) are true;
(ii) ∃ 0 < μ ≤ π

2 such that γ − L ≥ 0, 2N −μ ≤ 0. Also if H1 ≥ 0, and F(z, x, y, x ′, y′) ≥
0, defined in Lemma 5.1 and Eq. (5.10) respectively, are valid. Then the sequences (xn)n

and (yn)n introduced in (4.3) and (4.4) and (4.5) and (4.6) respectively, are such that
xn ≥ yn, ∀n ∈ N .

Proof See Proposition 3.3 of Singh and Verma (2013). ��

5.1.4 Case II:�2 − 4� = 0

To prove the existence result for this case, we follow the same analysis as we did in Theo-
rem 5.1.

Theorem 5.2 Let (A2) and (RO ) be true. Further assume that γ = μ2

4 such that γ − L ≥ 0,
2N − μ ≤ 0, and H2 ≥ 0 (see Lemma 5.2) and F(z, x, y, x ′, y′) ≥ 0 (see Eq. (5.10)), then
the sequences (xn)n and (yn)n introduced in (4.3) and (4.4) and (4.5) and (4.6) respectively
converge in C1(I ) monotonically such that

y ≤ u ≤ v ≤ x, ∀z ∈ I ,

where v and u are solutions of NLBVPs (1.6) and (1.7).

Proposition 5.3 Let μ2 − 4γ = 0. Further assume that

(i) (A2) and (RO ) are true;
(ii) ∃ γ = μ2

4 , where 0 < μ ≤ π
2 , such that γ − L ≥ 0, 2N −μ ≤ 0, and H2 ≥ 0. Then the

sequences (xn)n and (yn)n introduced in (4.3) and (4.4) and (4.5) and (4.6) respectively
are such that,

(a) xn+1 ≤ xn, ∀ n ∈ N ,

(b) yn+1 ≥ yn, ∀ n ∈ N .

Proof Making use of the Lemmas 3.3, 5.2 and 5.4 and using the arguments similar to the
proof of Proposition 5.1, we can prove this proposition. ��

In the similar manner, we can demonstrate the following results.

Proposition 5.4 Assume that

(i) (A2) and (RO ) are true;
(ii) ∃ γ = π2

4 , where 0 < μ ≤ π
2 , such that γ − L ≥ 0, 2N − μ ≤ 0, and H2 ≥ 0. Also

if F(z, x, y, x ′, y′) ≥ 0, defined in Eq. (5.10), is valid. Then ∀ n ∈ N , the sequences
(xn)n and (yn)n given by (4.3) and (4.4) and (4.5) and (4.6) respectively, are such that
xn ≥ yn .

5.1.5 Priory bound

Lemma 5.5 If f (z, w,w′) satisfies the following assumption,

(HR) let ϕ : R+ → R+ is such that ∀(z, w, v) ∈ U , | f (z, w, v)| ≤ ϕ(|v|), and

max
z∈I

x − min
z∈I

y ≤
∫ ∞

l0

ξ dξ

ϕ(ξ)
,
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where ϕ is continuous and l0 = 2max{supz∈I |x(z)| , supz∈I |y(z)|}, then ∃ r > 0 such that
any solution w ∈ [x(z), y(z)] of

U0(z, w) ≥ 0, z ∈ I0, (5.11)

w′(0) = 0, w(1) ≥ δw(η), (5.12)

satisfies ‖w′‖∞ ≤ r , ∀ z ∈ I .

Proof We prove the above results in the following cases.

Case (i): If w(z) is not monotone on I0, let us take an interval (z0, z] ⊂ I0 such that
w′(z0) = 0 and w′(z) > 0 for z > z0. Using (HR), i.e., | f (z, w, v)| ≤ ϕ(|v|) in (5.11) and
then integrating from the limit z0 to z, we get

∫ w′

0

ξ dξ

ϕ(ξ)
≤ max

z∈I
x − min

z∈I
y.

Using (HR), we have r > 0, such that
∫ w′

0

ξ dξ

ϕ(ξ)
≤ max

z∈I
x − min

z∈I
y ≤

∫ r

l0

ξ dξ

ϕ(ξ)
≤

∫ r

0

ξ dξ

ϕ(ξ)
.

This gives w′(z) ≤ r .

Now if we take the interval in which w′(z) < 0 for z < z0 and w′(z0) = 0, the proof is
similar to above proof, hence we get −w′(z) ≤ r and hence the outcome follows.

Case (ii): If w in I0 is such that w′(z) < 0 in z ∈ (0, 1], then ∃ τ ∈ I0 such that −w′(τ ) ≤
2|x(τ )|. Now using (HR) in (5.11) and then integrating from the limit z to τ , we get

∫ −w′

0

ξ dξ

ϕ(ξ)
≤ max

z∈I
x − min

z∈I
y.

Using (HR), we have r such that
∫ −w′

0

ξ dξ

ϕ(ξ)
≤ max

z∈I
x − min

z∈I
y ≤

∫ r

0

ξ dξ

ϕ(ξ)
.

This gives −w′ ≤ r .

Case (iii): If w increases monotonically in I0, i.e., w′(z) > 0 in z ∈ (0, 1]. Proof of this case
is also similar to the case (ii), hence, we get w′ ≤ r . ��
Lemma 5.6 If f (z, w,w′) satisfies (HR), then ∃ r > 0 such that the solution w ∈ [y(z), x(z)]
of

L0(z, w) ≤ 0, z ∈ I0, (5.13)

w′(0) = 0, w(1) ≤ δw(η), (5.14)

satisfies ‖w′‖∞ ≤ r , ∀ z ∈ I .

Proof Proof of this lemma follows from the proof of the above lemma. ��
Proof of Theorem 5.1 (Theorem 5.2) Using the Propositions 5.1 and 5.2 (5.3 and 5.4 for The-
orem 5.2), we can easily show that

x = x0 ≥ x1 ≥ · · · ≥ xn ≥ · · · ≥ yn ≥ · · · ≥ y1 ≥ y0 = y. (5.15)
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From (5.15), we have, (xn)n and (yn)n satisfy the conditions of monotone convergence
theorem, hence they converge to v(z) and u(z) such that

v(z) = lim
n→∞ xn(z) and u(z) = lim

n→∞ yn(z),

such that ∀ n, xn ≥ u ≥ v ≥ yn . It follows that (xn)n given by (4.3) and (4.4) is equibounded
(EB) and equicontinuous (EC) in C1(I ) (using Lemma 5.6 and relation (5.15)). It implies
that any subsequence (xnm )m of (xn)n is EB and EC in C1(I ) and due to Arzela–Ascoli
theorem we prove that (xnm )m contains a subsubsequence which converges in C1(I ). From
uniqueness of limit and monotonicity, we have xn → v in C1(I ). As any (xnm )m of (xn)n

contains a subsubsequence, which converges to v in C1(I ) it follows that xn → v in C1(I ).
Similarly, using Proposition 5.1 and Lemma 5.5, we show that (yn)n converges to u in C1(I ).

Using the property of derivative and taking limit in (4.3) and (4.4) and (4.5) and (4.6)
respectively along with (xn)n and (yn)n respectively, it can be easily seen that u and v are
solutions of (1.6) and (1.7). ��

5.2 Well order lower-upper solutions (x ≤ y)

In this section, we prove the following inequalities to establish the existence of solution
of NLBVPs (1.6) and (1.7). The lower and upper solutions appear in well ordered for the
existence results. Throughout this subsection, we consider μ2 − 4γ > 0 i.e., μ2 − 4γ =
k2 > 0.

Lemma 5.7 If γ < 0 is such that μ2 − 4γ = k2 > 0, L + γ ≤ 0, and N − μ ≤ 0 then for
all z ∈ I ,

(γ + L)

(
μ sinh

(
kz

2

)
+ k cosh

(
kz

2

))
− 2γ (N (signw′) + μ) sinh

(
kz

2

)
≤ 0,

whenever (γ + L)k − 2γ (N (signw′) + μ) ≤ 0, where L, N ∈ R+ and 0 < μ ≤ π
2 .

Proof We observe that

(γ + L)

(
μ sinh

(
kz

2

)
+ k cosh

(
kz

2

))
− 2γ (N (signw′) + μ) sinh

(
kz

2

)

≤ (
(γ + L)k − 2γ (N (signw′) + μ)

)
cosh

(
kz

2

)
+ μ(γ + L) sin

(
kz

2

)
≤ 0, z ∈ I ,

only if (γ + L)k − 2γ (N (signw′) + μ) ≤ 0. This completes the proof. ��
Lemma 5.8 If γ > 0 be such that μ2 − 4γ = k2 > 0, γ − L ≤ 0, and (N − μ) ≤ 0, then
for all z, s ∈ [0, 1] such that s ≤ z, and s is fixed, we have

(γ − L) sinh
k

2
(z − s) + 1

2

(
N

(
signw′) + μ

)

×
(

k cosh
k

2
(z − s) − μ sinh

k

2
(z − s)

)
≥ 0. (5.16)

Whenever

H3 = (γ − L) sinh
k

2
+ 1

2

(
N (signw′) + μ

) (
k − μ sinh

k

2

)
≥ 0, (5.17)

where L, N ∈ R+, 0 < μ ≤ π
2 and k − μ sinh k

2 > 0.
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Proof We can rewrite the inequality (5.16) in the following ways

(γ − L) sinh
k

2
(z − s) + 1

2
(N + μ)

×
(

k cosh
k

2
(z − s) − μ sinh

k

2
(z − s)

)
≥ 0, when w′ ≥ 0. (5.18)

(γ − L) sinh
k

2
(z − s) − 1

2
(N − μ)

×
(

k cosh
k

2
(z − s) − μ sinh

k

2
(z − s)

)
≥ 0, when w′ ≤ 0. (5.19)

To prove the inequality (5.16), we have to show the inequalities (5.18) and (5.19).
For the inequality (5.18): Consider the function,

(γ − L) sinh
k

2
(z − s) + 1

2
(N + μ)

(
k cosh

k

2
(z − s) − μ sinh

k

2
(z − s)

)
.

Since the above expression is non increasing. Thus for all z, s ∈ [0, 1] such that s ≤ z, we
have

(γ − L) sinh
k

2
(z − s) + 1

2
(N + μ)

(
k cosh

k

2
(z − s) − μ sinh

k

2
(z − s)

)

≥ (γ − L) sinh
k

2
+ 1

2
(N + μ)

(
k − μ sinh

k

2

)
≥ 0.

Hence the result.
Similarly, we can prove for the inequality (5.19) . ��

5.2.1 Inequalities based on Green’s function

Lemma 5.9 Let (A1) be true and γ < 0 such that γ + L ≥ 0, N − μ ≤ 0 and (γ + L)k −
2γ (N (signw′) + μ) ≤ 0, then ∀ z, t ∈ I and z 
= t, we have

(γ − L)g(z, t) + (N signw′) + μ)
∂g(z, t)

∂z
≥ 0. (5.20)

Proof The inequality (5.20) can be written in the following ways

(γ − L)g(z, t) + (N + μ)
∂g(z, t)

∂z
≥ 0, when w′ ≥ 0. (5.21)

(γ − L)g(z, t) − (N − μ)
∂g(z, t)

∂z
≥ 0, when w′ ≤ 0. (5.22)

To prove the inequality (5.20), we have to show the inequalities (5.21) and (5.22).
Making use of Eq. (3.4), we substitute the values of gi (z, t) and ∂gi (z,t)

∂z , i = 1, . . . , 4, in
Eq. (5.21). Now applying the Lemma 5.7, we get,

(γ − L)gi (z, t) + (N + μ)
∂gi (z, t)

∂z
≥ 0, for all i = 1, . . . , 4.

Similarly, we can prove for prove the inequality (5.22). ��

123



262 Page 16 of 22 M. Singh et al.

Lemma 5.10 Let (A1) be true and γ, L > 0 such that γ − L ≤ 0, N − μ ≤ 0 and H3 ≥ 0,
then we have

(γ − L)g(z, t) + (N signw′) + μ)
∂g(z, t)

∂z
≥ 0,

where L, N ∈ R
+ and H3 is defined in Eq. (5.17).

Proof Proof is similar to the proof of Lemma 5.9. ��

5.2.2 Existence theorem for nonlinear three point BVPs (well ordered case)

Throughout this subsection, we consider the following assumptions

(WO ): Assume that

(a) ∃ x and y ∈ C2(I ) given by Definition 4.1 such that x ≤ y, ∀ z ∈ I ;
(b) f : Ũ → R such that f is continuous on Ũ , where Ũ := {(z, w, v) ∈ I × R2 :

x(z) ≤ w ≤ y(z)};
(c) ∃ L ≥ 0 such that ∀ (z, w1, v), (z, w2, v) ∈ Ũ ,

(i) when γ < 0, w1 ≤ w2 ⇒ f (z, w2, v) − f (z, w1, v) ≥ −L(w2 − w1);
(ii) when 0 < γ <

μ2

4 , w1 ≤ w2 ⇒ f (z, w2, v) − f (z, w1, v) ≥ L(w2 − w1);
(d) ∃ N ≥ 0 such that for all (z, w, v1), (z, w, v2) ∈ Ũ , | f (z, w, v2) − f (z, w, v1)| ≤

N |v2 − v1|.
Where μ2 − 4γ = k2 > 0. Based on γ sign such that μ2 − 4γ > 0, we further divide, this
subsubsection into the following two cases:

5.2.3 Case I: � < 0

In this subsection, we mention our main result Theorem 5.3 along with other results. In this
case, we consider γ < 0 so that μ2 − 4γ = k2 > 0.

Theorem 5.3 Let (A1), (WO ) are true. Further, assume that γ < 0 such that γ + L ≤ 0,
N − μ ≤ 0, (γ + L)k − 2γ (N (signw′) + μ) ≤ 0 and F(z, x, y, x ′, y′) ≥ 0, ∀ z ∈ I ,
then (xn)n and (yn)n which are introduced in (4.3) and (4.4) and (4.5) and (4.6) respectively,
converge in C1(I ) monotonically such that,

x ≤ v ≤ u ≤ y, ∀ z ∈ I ,

where v and u are solutions of (1.6) and (1.7).

Proposition 5.5 Let γ < 0 be such that μ2 − 4γ = −k2 > 0. Further, assume that

(i) (A1) and (WO ) are true;
(ii) there exists γ < 0 such that γ +L ≤ 0, N −μ ≤ 0, and (γ +L)k−2γ (N (signw′)+μ) ≤

0. Then (xn)n and (yn)n, defined in (4.3) and (4.4) and (4.5) and (4.6) respectively such
that

(a) xn+1 ≥ xn, ∀ n ∈ N ,

(b) yn+1 ≤ yn, ∀ n ∈ N .

Proof Using the Lemmas 3.2, 5.7, and 5.9, we can see the proof of Proposition 5.1. ��
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Proposition 5.6 Let (A1) and (WO ) are true. Further, assume that γ < 0, such that γ + L ≤
0, N −μ ≤ 0, (γ + L)k −2γ (N (signw′)+μ) ≤ 0 and F(z, x, y, x ′, y′) ≥ 0, ∀ z ∈ I , are
valid then ∀ n ∈ N, (xn)n and (yn)n given in (4.3) and (4.4) and (4.5) and (4.6) respectively,
such that xn ≤ yn.

Proof Proof is same as given in Proposition 5.2. ��

5.2.4 Case II: 0 < � < �2

4

In this subsection, we mention our main result Theorem 5.4 along with some other results
which are used to prove the main result.

Theorem 5.4 Let (A1) and (WO ) hold, further if γ − L ≤ 0, N − μ ≤ 0, H3 ≥ 0, and
F(z, x, y, x ′, y′) ≥ 0, ∀ z ∈ I , then (xn)n and (yn)n given in (4.3) and (4.4) and (4.5) and
(4.6) respectively, converge in C1(I ) monotonically such that x ≤ v ≤ u ≤ y, ∀z ∈ I ,
where v and u are solutions of (1.6) and (1.7).

Proposition 5.7 Let γ, μ > 0 be such that μ2−4γ = −k2 > 0, N −μ ≤ 0, and γ − L ≤ 0.
Further, assume that

(i) (A1) and (WO ) are true;
(ii) there exists γ ∈ min{1, L} such that H3 ≥ 0. Then the functions (xn)n and (yn)n given

in (4.3) and (4.4) and (4.5) and (4.6) respectively, such that

(a) xn+1 ≥ xn, ∀n ∈ N ,

(b) yn+1 ≤ yn, ∀n ∈ N .

Proof Using the Lemmas 3.2, 5.8, and 5.10, we can see the proof of Proposition 5.1. ��
Proposition 5.8 Let (A1) and (WO ) hold, further assume γ − L ≤ 0, N − μ ≤ 0, H3 ≥ 0,
and F(z, x, y, x ′, y′) ≥ 0, ∀ z ∈ I , are valid then (xn)n and (yn)n introduced in (4.3) and
(4.4) and (4.5) and (4.6) respectively, such that xn ≤ yn.

Proof Proof is same as given in Proposition 5.2. ��

5.2.5 Priory bound

Lemma 5.11 If f (z, w,w′) satisfies the following assumption,

(HW ) let ϕ : R+ → R+ is continuous such that ∀ (z, w, v) ∈ U , | f (z, w, v)| ≤ ϕ(|v|);
and satisfies

max
z∈I

y − min
z∈I

x ≤
∫ ∞

l0

ξ dξ

ϕ(ξ)
,

where l0 = 2max{supz∈I |x(z)| , supz∈I |y(z)|}, then ∃ r > 0 such that any solution w ∈
[x(z), y(z)] of

U0(z, w(z)) ≥ 0, z ∈ I0, (5.23)

w′(0) = 0, w(1) ≥ δw(η), (5.24)

satisfies ‖w′‖∞ ≤ r .
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Fig. 2 For Example 6.1,
γ = 2, μ =
0.040125, x0 to x3 and y0 to y3
(reverse order)

Lemma 5.12 If f (z, w,w′) satisfies (HW ), then ∃ r > 0 such that any solution w ∈
[y(z), x(z)] of

L0(z, w(z)) ≥ 0, z ∈ I0, (5.25)

w′(0) = 0, w(1) ≤ δw(η), (5.26)

satisfies ‖w′‖∞ ≤ r .

6 Mathematical demonstration

Example 6.1 Consider the following NLBVPs,

− w′′(z) = ew − ew′ + sin z
4

32
, z ∈ I0, (6.1)

w′(0) = 0, w(1) = 3w

(
1

10

)
, (6.2)

where f (z, w,w′) = ew−ew′+sin z
4

32 , δ = 3, η = 1
10 . Here x = 1 is lower solution and y = −1

is upper solution such that y ≤ x (reverse order). The Lipschitz constants are L = e
32 and

N = er

32 , where r = 1
4 . Choosing μ = 2N , then from Eq. (5.10), we get γ ≥ 1

64

(
e − 1

e

)
.

Since max
{

L, (μ2/4), 1
64

(
e − 1

e

)}
< γ < π2

4 , we can choose some values between the
above range so that (A0), and H1 ≥ 0, are satisfied. Therefore, Theorem 5.1 is applicable.
Thus, the solution of three-point NLBVPs (6.1) and (6.2) exists (Fig. 2).

Region of existence (Reverse Order) = {(z, w) : 0 ≤ z ≤ 1, y = −1 ≤ w ≤ x = 1} .

Example 6.2 Consider the following NLBVPs,

− w′′(z) =
e2
7 − 2w3 + w′

16
, z ∈ I0, (6.3)

w′(0) = 0, w(1) = 1

3
w

(
1

4

)
. (6.4)

Here f (z, w,w′) = 1
16 (

e2
7 − 2w3 + w′), δ = 1

3 , η = 1
4 and x = −1, y = 1 are in well

ordered. The Lipschitz constants are L = 3
8 and N = 1

16 . We choose N ≤ μ ≤ k, where
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Fig. 3 For Example 6.2,
γ = −3, μ =
0.0625, x0 to x4 and y0 to y3
(well order)

Fig. 4 For Example 6.3,
γ = 0.000624, μ =
0.04, x0 to x2 and y0 to y1 (well
order)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

k ∈ [
0, π

2

]
. From Eq. (5.10), we have γ ≤ −1

8 . Now we can easily obtain a range for γ <

min{−L, −1
8 , −Lk

k−2(N+μ)
}. For this range of γ (A1) and (γ + L)k −2γ (N (signw′)+μ) ≤ 0,

are satisfied. Therefore, Theorem 5.3 is applicable. Thus, the solution of the three-point BVPs
(6.3) and (6.4) exists (Fig. 3).

Region of existence (well order) = {(z, w) : 0 ≤ z ≤ 1, x = −1 ≤ w ≤ y = 1} .

Example 6.3 Consider the following NLBVPs,

− w′′(z) = ew + w′

20
, z ∈ I0, (6.5)

w′(0) = 0, w(1) = 1

2
w

(
1

5

)
. (6.6)

We have f (z, w,w′) = ew+w′
20 , δ = 1

2 , η = 1
5 . x = 0 and y =

(
1 − z2

2

)
are initial lower

and upper solutions arrive at in well ordered. Here, L = 1
20 and N = 1

20 . If N ≤ μ ≤ π
2 , we

can choose some sub interval of 0 < γ ≤ min
{

L, μ2/4
}
in which the nonlinear conditions,

(A1), H3 ≥ 0, and F(z, x, y, x ′, y′) ≥ 0 are valid. Therefore, Theorem 5.4 is applicable.
Thus, the solution of the three-point BVPs (6.5) and (6.6) exists (Fig. 4).

Region of existence (well order) =
{
(z, w) : 0 ≤ z ≤ 1, x = 0 ≤ w ≤ y =

(
1 − z2

2

)}
.
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Fig. 5 For Example 6.4, γ =
1
4 , μ = 1, x0 to x2 and y0 to y2
(reverse order)

Example 6.4 Consider the following NLBVPs,

− w′′(z) = w3

192
− w′

2
, z ∈ I0, (6.7)

w′(0) = 0, w(1) = 2w

(
1

8

)
, (6.8)

where f (z, w,w′) = w3

192 − w′
2 , δ = 2, η = 1

8 . Consider y = −1 is upper solution and
x = 1 is lower solutions and L = 1

64 and N = 1
2 . If we have 2N < μ ≤ π

2 . We can

choose some values of γ = μ2

4 such that conditions (A2), γ − L ≥ 0, 2N − μ ≤ 0, and
F(z, x, y, x ′, y′) ≥ 0, and H2 ≥ 0 are satisfied. Therefore, Theorem 5.2 is applicable. Thus,
the solution of the three-point BVPs (6.7) and (6.8) exists (Fig. 5).

Region of existence (reverse order) = {(z, w) : 0 ≤ z ≤ 1, y = −1 ≤ w ≤ x = 1} .

7 Conclusions

In this article, with the help of different monotone iterative technique (DMIT) an analyti-
cal solution of three-point NLBVPs are studied that arises due to oscillating behavior in a
suspension bridge. Through this method, we have shown that large size bridge design with
m-point boundary conditions, where the nonlinear term includes derivative of solution, can
easily be studied. Maximum and anti maximum principles are developed for k2 > 0 and
k2 ≤ 0 respectively. With the help of lower solution x(z) and upper solution y(z), we have
discussed the classification of existence results such that x ≤ y (well order) and y ≤ x
(reverse order). To prove monotonicity of x, y, the following conditions are assumed on the
nonlinear function f ,

• f (z, w,w′) is Lipschitz with respect to w′;
• For k2 > 0, if γ < 0, then w1 ≤ w2 ⇒ f (z, w2, v) − f (z, w1, v) ≥ −L(w2 − w1);
• For k2 > 0, if 0 < γ <

μ2

4 , thenw1 ≤ w2 ⇒ f (z, w2, v)− f (z, w1, v) ≥ L(w2 −w1);
• If −k2 ≤ 0, then w1 ≤ w2 ⇒ f (z, w2, v) − f (z, w1, v) ≤ L(w2 − w1).

Here μ and γ are taken as constants. We have obtained that DMIT is an efficient method to
study the existence of NLBVPs and easy to handle. The existence of solutions of the NLBVPs
are shown graphically.
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Appendix

See Fig. 6.

Fig. 6 Well and reverse order cases
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